JPH11349328A - Titanium dioxide powder for photocatalyst - Google Patents

Titanium dioxide powder for photocatalyst

Info

Publication number
JPH11349328A
JPH11349328A JP10157506A JP15750698A JPH11349328A JP H11349328 A JPH11349328 A JP H11349328A JP 10157506 A JP10157506 A JP 10157506A JP 15750698 A JP15750698 A JP 15750698A JP H11349328 A JPH11349328 A JP H11349328A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide powder
photocatalyst
ppm
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10157506A
Other languages
Japanese (ja)
Other versions
JP4084463B2 (en
Inventor
Michio Matsumura
道雄 松村
Hideki Sakai
英樹 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP15750698A priority Critical patent/JP4084463B2/en
Publication of JPH11349328A publication Critical patent/JPH11349328A/en
Application granted granted Critical
Publication of JP4084463B2 publication Critical patent/JP4084463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive titanium dioxide powder having excellent handleability, scarcely containing impurities and having a high photocatalyst activity. SOLUTION: This titanium dioxide powder for photocatalyst has an average aggregate particle diameter of 0.1-10 μm, an average primary particle diameter of 10-1,000 nm, a BET specific surface area of 0.5-50 m<2> /g and a rutile type ratio of 10-100%. It is preferable that Fe, Al, Si, Na and Cl are contained in amounts of <=10 ppm, <=10 ppm, <=10 ppm, <=10 ppm and <=200 ppm, respectively, as impure components in the titanium dioxide powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の粒子特性を
有し、高い光触媒活性を有する光触媒用酸化チタン粉末
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium oxide powder for photocatalyst having specific particle characteristics and high photocatalytic activity.

【0002】[0002]

【従来の技術】酸化チタンにそのバンドギャップ以上の
エネルギーを持つ光を照射すると、酸化チタンが励起さ
れて伝導帯に電子を生じ、価電帯に正孔を生じる。この
光による励起によって生じた電子は強い還元力を持ち、
一方正孔は強い酸化力を持つ。近年、これらの酸化ある
いは還元力を利用した光触媒反応が注目され、酸化チタ
ン光触媒の用途開発が盛んに行われ、多数の事例が報告
されている。これら酸化チタン光触媒の用途は非常に多
岐にわたっており、例えば水の分解による水素の発生、
排ガス処理、空気清浄、防臭、殺菌、抗菌、水処理、照
明機器等の汚れ防止等々、数多くの用途がある。
2. Description of the Related Art When a titanium oxide is irradiated with light having an energy greater than its band gap, the titanium oxide is excited to generate electrons in a conduction band and holes in a valence band. The electrons generated by this light excitation have strong reducing power,
On the other hand, holes have strong oxidizing power. In recent years, photocatalytic reactions utilizing these oxidizing or reducing powers have attracted attention, and the use of titanium oxide photocatalysts has been actively developed, and numerous cases have been reported. The applications of these titanium oxide photocatalysts are very diverse, such as the generation of hydrogen by decomposition of water,
There are many applications such as exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, and prevention of contamination of lighting equipment.

【0003】従来、光触媒として使用されている酸化チ
タンの多くは、光触媒活性の高いアナターゼ型酸化チタ
ンである。該アナターゼ型酸化チタンを製造する方法と
しては、(1)硫酸チタニル、硫酸チタンなどの含チタ
ン溶液を加水分解させる方法、(2)チタンアルコキシ
ドなどの有機チタン化合物を加水分解させる方法、
(3)四塩化チタンなどのハロゲン化チタン水溶液を中
和又は加水分解させる方法、などが挙げられ、アナター
ゼ型酸化チタンはこれら加水分解により生成した沈殿物
を焼成することにより得られる。これらの方法は湿式法
といわれる方法であり、該湿式法で得られるアナターゼ
型酸化チタン粉末は不純物が多く、また、光触媒用とし
ては一次粒子で数nm〜数10nm程度の超微粒子状のもの
である。
Conventionally, most titanium oxides used as photocatalysts are anatase-type titanium oxides having high photocatalytic activity. As a method for producing the anatase type titanium oxide, (1) a method of hydrolyzing a titanium-containing solution such as titanyl sulfate or titanium sulfate, (2) a method of hydrolyzing an organic titanium compound such as titanium alkoxide,
(3) A method of neutralizing or hydrolyzing an aqueous solution of titanium halide such as titanium tetrachloride, etc., and anatase-type titanium oxide is obtained by calcining a precipitate generated by the hydrolysis. These methods are methods called a wet method, and the anatase-type titanium oxide powder obtained by the wet method has many impurities, and for a photocatalyst, primary particles are in the form of ultrafine particles of about several nm to several tens of nm. is there.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光触媒用アナターゼ型酸化チタン粉末は、超微粒子状の
ため、粉体自身の取扱いが非常に困難となる。例えば、
アナターゼ型酸化チタン粉末を基材にコーティングし光
触媒として使用する場合や、塗料に分散させて使用する
場合など、酸化チタンを溶剤に懸濁させる必要がある
が、超微粒子のため粒子どうしの凝集が起こり易く、分
散性が非常に悪いという問題がある。また、従来のアナ
ターゼ型酸化チタンは、特に排ガス処理、空気清浄、防
臭、殺菌、抗菌、水処理等の酸化作用を促進する光触媒
作用の効果が認められているが、水の分解あるいは有機
合成反応用としては必ずしもその活性が十分ではない。
また、アナターゼ型酸化チタン粉末よりも不純物が少な
く、超微粒子となり難いルチル型酸化チタン粉末を光触
媒に使用する試みもあるが、光触媒活性が低く、実際上
はほとんど使用されていないのが現状である。
However, since the conventional anatase-type titanium oxide powder for photocatalysts is in the form of ultrafine particles, it is very difficult to handle the powder itself. For example,
It is necessary to suspend titanium oxide in a solvent, such as when coating an anatase type titanium oxide powder on a substrate and using it as a photocatalyst, or when dispersing it in a paint. There is a problem that it is likely to occur and dispersibility is very poor. In addition, conventional anatase-type titanium oxide has been found to have a photocatalytic effect that promotes an oxidizing effect, such as exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, and water treatment. Its activity is not always sufficient for use.
There are also attempts to use rutile-type titanium oxide powder, which has less impurities than anatase-type titanium oxide powder and is unlikely to become ultrafine particles, as a photocatalyst, but has a low photocatalytic activity and is practically seldom used. .

【0005】従って、本発明の目的は、上記のような従
来の光触媒用酸化チタンに残された問題を解決し、取扱
い性に優れ、安価で且つ不純物が少なく、しかも光触媒
活性の高い酸化チタン粉末を提供するところにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional titanium oxide for a photocatalyst, and to provide a titanium oxide powder which is excellent in handleability, inexpensive, contains few impurities, and has a high photocatalytic activity. Is to provide.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、一次粒子または一次
粒子が凝集した粒子の粒径が比較的大きく、且つ比表面
積の小さいルチル型の結晶を多く含む高純度の酸化チタ
ン粉末がこれまでの認識とは異なって、意外にも優れた
光触媒活性を示すことを見出し、本発明を完成するに至
った。
Under such circumstances, the inventors of the present invention have conducted intensive studies and as a result, have found that a primary particle or a particle obtained by aggregating primary particles has a relatively large particle size and a rutile type having a small specific surface area. The present inventors have found that a high-purity titanium oxide powder containing a lot of crystals exhibits unexpectedly excellent photocatalytic activity, which is different from the conventional recognition, and has completed the present invention.

【0007】すなわち、本発明は、凝集粒子の平均粒径
が0.1〜10μm 、一次粒子の平均粒子径が10〜1
000nm、BET比表面積が0.5〜50m2/g及びルチ
ル化率が10〜100%である光触媒用酸化チタン粉末
を提供することにある。
That is, according to the present invention, the average particle size of the aggregated particles is 0.1 to 10 μm, and the average particle size of the primary particles is 10 to 1 μm.
An object of the present invention is to provide a titanium oxide powder for a photocatalyst having a 000 nm, a BET specific surface area of 0.5 to 50 m 2 / g and a rutile ratio of 10 to 100%.

【0008】[0008]

【発明の実施の形態】本発明の光触媒用酸化チタン粉末
の凝集粒子の平均粒径は、0.1〜10μmであり、好
ましくは0.5〜10μm 、より好ましくは1〜5μm
である。凝集粒子は一次粒子の集合体であり、その凝集
粒子の平均粒径の測定は、ヘキサメタリン酸ナトリウム
0.28重量%の水溶液350mlに20mgの酸化チタン
粉末を添加し、懸濁分散させた懸濁液中の凝集粒子をレ
ーザ光散乱法粒度測定機を用いて測定することにより行
われる。当該光触媒用酸化チタン粉末の凝集粒子の平均
粒径をかかる範囲とすることにより、特に、水の酸化反
応及びアルコールの酸化反応において、光触媒活性が高
まる。
BEST MODE FOR CARRYING OUT THE INVENTION The average particle size of the aggregated particles of the titanium oxide powder for photocatalyst of the present invention is 0.1 to 10 μm, preferably 0.5 to 10 μm, more preferably 1 to 5 μm.
It is. Aggregated particles are aggregates of primary particles. The average particle size of the aggregated particles was measured by adding 20 mg of titanium oxide powder to 350 ml of an aqueous solution of 0.28% by weight of sodium hexametaphosphate and suspending and dispersing. The measurement is performed by measuring the aggregated particles in the liquid using a laser light scattering particle size analyzer. By setting the average particle size of the aggregated particles of the titanium oxide powder for a photocatalyst in such a range, the photocatalytic activity is increased particularly in the oxidation reaction of water and the oxidation reaction of alcohol.

【0009】本発明の光触媒用酸化チタン粉末の一次粒
子の平均粒子径は、10〜1000nm、好ましくは10
0〜800nmである。この一次粒子の平均粒子径の測定
方法としては、特に制限されないが、例えば、X線回折
法、BET法あるいは電子顕微鏡を用いた公知の粒子径
算出方法が挙げられる。
The average particle size of the primary particles of the titanium oxide powder for photocatalyst of the present invention is 10 to 1000 nm, preferably 10 to 1000 nm.
0 to 800 nm. The method for measuring the average particle size of the primary particles is not particularly limited, and examples thereof include a known particle size calculation method using an X-ray diffraction method, a BET method, or an electron microscope.

【0010】本発明の光触媒用酸化チタン粉末のBET
比表面積は、0.5〜50m2/g、好ましくは1〜30m2
/g、特に好ましくは、1〜10m2/gである。このBET
比表面積の範囲は、従来のアナターゼ型酸化チタンに比
べて小さいにもかかわらず、該光触媒用酸化チタン粉末
は極めて高い光触媒活性を発現する。
BET of titanium oxide powder for photocatalyst of the present invention
The specific surface area is 0.5 to 50 m 2 / g, preferably 1 to 30 m 2
/ g, particularly preferably 1 to 10 m 2 / g. This BET
Although the specific surface area is smaller than that of conventional anatase-type titanium oxide, the titanium oxide powder for photocatalyst exhibits extremely high photocatalytic activity.

【0011】また、本発明の光触媒用酸化チタン粉末の
ルチル化率は、10〜100%、好ましくは、50〜9
9.5%、特に好ましくは70〜99.5%である。特
に、水の酸化反応及びアルコールの酸化反応において
は、ルチル化率が70〜99.5%の高いルチル化率を
有し、且つ前記の粒子特性を有するルチル型酸化チタン
粉末が高い光触媒活性を発現する点で好ましい。本発明
の酸化チタン粉末はルチル化率100%を除いて、ルチ
ル型結晶構造中に、アナターゼ型結晶構造又はアモルフ
ァス構造のものが混在していてもよい。
The rutile conversion ratio of the titanium oxide powder for photocatalyst of the present invention is 10 to 100%, preferably 50 to 9%.
It is 9.5%, particularly preferably 70 to 99.5%. In particular, in the water oxidation reaction and the alcohol oxidation reaction, the rutile-type titanium oxide powder having a high rutile ratio of 70 to 99.5% and having the above-mentioned particle characteristics has high photocatalytic activity. It is preferable in terms of expression. The titanium oxide powder of the present invention may have an anatase crystal structure or an amorphous structure in a rutile crystal structure except for a rutile ratio of 100%.

【0012】ルチル化率の測定方法は、ASTM D3720-84
の方法に従いX線回折測定を行い、ルチル型結晶酸化チ
タンの最強干渉線(面指数110)のピーク面積(I
r)と、アナターゼ型結晶酸化チタンの最強干渉線(面
指数101)のピーク面積(Ia)を求め、次式により
算出して求められる。 ルチル化率(重量%)=100−100/(1+1.2
×Ir/Ia) また、前記ピーク面積(Ir)及びピーク面積(Ia)
は、X線回折スペクトルの該当干渉線におけるベースラ
インから突出した部分の面積をいい、その算出方法は公
知の方法で行えばよく、例えば、コンピュータ計算、近
似三角形化などの手法により求められる。
The method for measuring the rutile ratio is as described in ASTM D3720-84.
X-ray diffraction measurement was performed according to the method described in the above, and the peak area (I) of the strongest interference line (plane index 110) of rutile-type crystal titanium oxide was
r) and the peak area (Ia) of the strongest interference line (plane index 101) of the anatase-type crystalline titanium oxide are calculated, and calculated by the following equation. Rutile ratio (% by weight) = 100−100 / (1 + 1.2)
× Ir / Ia) The peak area (Ir) and the peak area (Ia)
Refers to the area of the portion of the X-ray diffraction spectrum that protrudes from the baseline in the corresponding interference line, and may be calculated by a known method, for example, by computer calculation or approximate triangulation.

【0013】本発明の光触媒用酸化チタン粉末は、不純
物の少ない、高純度のものが好ましく、例えば、酸化チ
タン粉末中に不純物として含まれるFe、Al、Si及
びNaが各々10ppm 以下であり、且つClが200pp
m 以下であることが、より高い光触媒活性を発現させる
ために好ましい。なお、該酸化チタン粉末中の含有Cl
は、100ppm 以下であることが好ましい。また、本発
明の光触媒用酸化チタン粉末は、ルチル化率の低い、例
えばルチル化率10%未満のアナターゼ型酸化チタン粉
末が配合されていてもよい。
The titanium oxide powder for a photocatalyst of the present invention preferably has a low impurity and a high purity. For example, Fe, Al, Si and Na contained as impurities in the titanium oxide powder are each 10 ppm or less, and Cl is 200pp
m or less is preferable in order to exhibit higher photocatalytic activity. The Cl contained in the titanium oxide powder
Is preferably 100 ppm or less. Moreover, the titanium oxide powder for photocatalysts of the present invention may contain an anatase-type titanium oxide powder having a low rutile ratio, for example, a rutile ratio of less than 10%.

【0014】本発明の光触媒用酸化チタン粉末の上記粒
度特性値などの好ましい範囲及び特に好ましい範囲の組
合せを下記に示す。
Preferred ranges and particularly preferred ranges of the above-mentioned particle size characteristic values and the like of the titanium oxide powder for photocatalyst of the present invention are shown below.

【0015】 ──────────────────────────────────── 好ましい範囲 特に好ましい範囲 ──────────────────────────────────── 凝集粒子の平均粒径 (a)0.5〜10μm (b)1〜5μm 一次粒子の平均粒子径 (c)100〜800nm − BET比表面積 (d)1〜30m2/g (e)1〜10m2/g ルチル化率 (f)50〜99.5% (g)70〜99.5% ──────────────────────────────────────────────────────────────────────── Preferred range Particularly preferred range ──────平均 Average particle size of aggregated particles (a) 0.5-10 μm (b) 1-5 μm Average particle size of primary particles (c) 100 to 800 nm-BET specific surface area (d) 1 to 30 m 2 / g (e) 1 to 10 m 2 / g Rutile ratio (f) 50 to 99.5% (g) 70 9999.5% ────────────────────────────────────

【0016】すなわち、本発明の光触媒用酸化チタン粉
末としては、(a)、(c)、(d)及び(f)の組合
せ、(a)、(c)、(d)及び(g)の組合せ、
(a)、(c)、(e)及び(f)の組合せ、(a)、
(c)、(e)及び(g)の組合せ、(b)、(c)、
(d)及び(f)の組合せ、(b)、(c)、(d)及
び(g)の組合せ、(b)、(c)、(e)及び(f)
の組合せ、(b)、(c)、(e)及び(g)の組合せ
が好ましい。
That is, the titanium oxide powder for a photocatalyst of the present invention includes a combination of (a), (c), (d) and (f), a combination of (a), (c), (d) and (g). combination,
(A), (c), a combination of (e) and (f), (a),
Combinations of (c), (e) and (g), (b), (c),
Combinations of (d) and (f), combinations of (b), (c), (d) and (g), (b), (c), (e) and (f)
And combinations of (b), (c), (e) and (g) are preferred.

【0017】本発明の光触媒用酸化チタン粉末を製造す
る方法としては、特に制限されず、公知の種々の方法を
用いることができ、例えば、(1)硫酸チタニル、硫酸
チタンなどの含チタン溶液を加水分解させる方法、
(2)チタンアルコキシドなどの有機チタン化合物を加
水分解させる方法、(3)三塩化チタンあるいは四塩化
チタンなどのハロゲン化チタン水溶液を中和又は加水分
解させる方法、(4)四塩化チタンを気相中で酸素と接
触させ酸化させる気相法、あるいは(5)燃焼して水を
生成する水素ガスなどの可燃性ガスと酸素を燃焼バーナ
ーに供給して火炎を形成し、この中に四塩化チタンを導
入する火炎加水分解法などの方法が挙げられ、このう
ち、(4)の気相法あるいは(5)の火炎加水分解法の
乾式法が低コストで、しかも所望の粒子特性を有する酸
化チタン粉末が得られる点で好ましい。
The method for producing the titanium oxide powder for photocatalyst of the present invention is not particularly limited, and various known methods can be used. For example, (1) a titanium-containing solution such as titanyl sulfate or titanium sulfate is used. Hydrolysis method,
(2) a method of hydrolyzing an organic titanium compound such as a titanium alkoxide, (3) a method of neutralizing or hydrolyzing an aqueous solution of a titanium halide such as titanium trichloride or titanium tetrachloride, and (4) a gas phase of titanium tetrachloride. (5) a combustible gas such as hydrogen gas which generates water by burning and oxygen and is supplied to a combustion burner to form a flame, in which titanium tetrachloride is formed. Among them, a method such as a flame hydrolysis method in which a gas phase method (4) or a dry method such as a flame hydrolysis method (5) is used is a titanium oxide having desired particle characteristics at low cost. It is preferable in that a powder can be obtained.

【0018】前記(4)の気相法について、具体的に説
明する。先ず、液状の四塩化チタンを予め加熱し、気化
させ反応炉に導入する。次に、四塩化チタンの導入と同
時に、酸素ガスを反応炉に導入し、酸化反応を行う。酸
化反応温度としては500〜1200℃、好ましくは6
00〜1100℃である。また、酸化反応の際、反応炉
中に、四塩化チタン及び酸素ガスと共に水素ガスあるい
は水蒸気を供給することが、ルチル化率を制御できる点
で好ましい。該酸化反応により酸化チタン粉末を生成さ
せ、その後、酸化チタン粉末を冷却する。冷却方法とし
ては、通常、冷却ジャケットを具備した冷却槽などが用
いられ、窒素ガス等の不活性ガスを生成酸化チタン粉末
と接触させながら冷却する方法が挙げられる。その後、
冷却された酸化チタン粉末を捕集し、酸化チタン粉末中
に残留する塩素ガスを加熱処理により除去し、酸化チタ
ン粉末を得ることができる。該加熱処理により、不純物
が除去されると共に粒度が調整される。前記加熱処理と
しては、真空加熱処理、空気あるいは窒素ガス雰囲気中
での加熱処理又はスチーム処理等が挙げられる。また、
必要に応じて、生成酸化チタンを分級処理してもよい。
The gas phase method (4) will be specifically described. First, liquid titanium tetrachloride is preliminarily heated, vaporized, and introduced into a reaction furnace. Next, simultaneously with the introduction of titanium tetrachloride, an oxygen gas is introduced into the reaction furnace to perform an oxidation reaction. The oxidation reaction temperature is 500-1200 ° C., preferably 6
00 to 1100 ° C. In addition, during the oxidation reaction, it is preferable to supply hydrogen gas or water vapor to the reaction furnace together with titanium tetrachloride and oxygen gas, since the rutile ratio can be controlled. The oxidation reaction produces titanium oxide powder, and then the titanium oxide powder is cooled. As a cooling method, a cooling tank equipped with a cooling jacket or the like is usually used, and a method of cooling while bringing an inert gas such as nitrogen gas into contact with the generated titanium oxide powder can be mentioned. afterwards,
The cooled titanium oxide powder is collected, and chlorine gas remaining in the titanium oxide powder is removed by heat treatment, whereby a titanium oxide powder can be obtained. The heat treatment removes impurities and adjusts the particle size. Examples of the heat treatment include a vacuum heat treatment, a heat treatment in an air or nitrogen gas atmosphere, and a steam treatment. Also,
If necessary, the produced titanium oxide may be classified.

【0019】本発明の光触媒用酸化チタン粉末が使用さ
れる反応系としては、特に制限されないが、従来、アナ
ターゼ型酸化チタン粉末が使用されていた排ガス処理、
空気清浄、防臭、抗菌、殺菌、抗菌、水処理、照明機器
等の汚れ防止、酸化反応による有害物の分解作用を利用
した光触媒として用いることもできるが、水の分解反応
及びアルコールの酸化反応、種々の有機合成の中間原料
又は各種誘導体の製造等の有機合成反応に特に有用であ
り、とりわけ本発明の光触媒用酸化チタン粉末によって
処理しようとする有害物質が、低濃度である溶液反応又
は気相反応、あるいは酸化分解処理において、酸素を電
子受容体とする場合の酸素濃度が、低濃度である反応が
好ましい。さらに、本発明の光触媒用酸化チタン粉末
は、水の分解反応及びアルコールの酸化反応において、
特に高い光触媒活性を示す。
The reaction system in which the titanium oxide powder for a photocatalyst of the present invention is used is not particularly limited.
Air purification, deodorization, antibacterial, sterilization, antibacterial, water treatment, prevention of contamination of lighting equipment, etc., can be used as a photocatalyst utilizing the decomposing action of harmful substances by oxidation reaction, but water decomposition reaction and alcohol oxidation reaction, It is particularly useful for organic synthesis reactions such as production of various intermediate materials for organic synthesis or various derivatives, and particularly when a harmful substance to be treated by the titanium oxide powder for photocatalyst of the present invention has a low concentration in a solution reaction or gas phase. In the reaction or the oxidative decomposition treatment, a reaction in which the oxygen concentration is low when oxygen is used as the electron acceptor is preferable. Further, the titanium oxide powder for photocatalyst of the present invention, in the decomposition reaction of water and the oxidation reaction of alcohol,
It shows particularly high photocatalytic activity.

【0020】本発明における、ルチル化率の高いルチル
型酸化チタン粉末は、一次粒子及び一次粒子が凝集した
粒子の平均粒径が比較的大きく、比表面積も小さいた
め、従来では光触媒活性が低いとされてきた。それにも
拘らず、極めて高い光触媒活性を発現する理由について
は、明らかではないが、このような粉末では、一次粒子
の光吸収で生じた電子・正孔が粒界を経由して他の粒子
表面で化学反応を起こすためと考えられる。従って、低
濃度の化学種の反応及び光照射強度が強い反応において
特に有効である。
In the present invention, the rutile-type titanium oxide powder having a high rutile ratio has a relatively large average particle diameter and a small specific surface area of primary particles and particles obtained by aggregating the primary particles. It has been. Nevertheless, it is not clear why the photocatalysts exhibit extremely high photocatalytic activity.However, in such powders, electrons and holes generated by light absorption of the primary particles pass through the grain boundaries to the surface of other particles. It is thought to cause a chemical reaction at Therefore, it is particularly effective in the reaction of low-concentration chemical species and the reaction with high light irradiation intensity.

【0021】[0021]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。また、実施例及び比較例で用いる酸化
チタン粉末粒子の平均粒径、X線回折測定方法、不純物
の定量などは以下に示す方法により行った。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. In addition, the average particle size of the titanium oxide powder particles used in the examples and comparative examples, the X-ray diffraction measurement method, and the quantification of impurities were performed by the following methods.

【0022】(酸化チタン粉末の粒子径の測定)凝集粒
子の平均粒径はレーザ光散乱法粒度測定機LA700
(堀場製作所製)を用いて測定した。また、一次粒子の
平均粒子径はBET法により求めた。
(Measurement of Particle Size of Titanium Oxide Powder) The average particle size of the aggregated particles is determined by a laser light scattering particle size analyzer LA700.
(Manufactured by Horiba, Ltd.). The average particle size of the primary particles was determined by the BET method.

【0023】(X線回折測定条件)(X-ray diffraction measurement conditions)

【0024】 ──────────────────────────────────── 回折装置 RAD−1C(株式会社リガク製) X線管球 Cu 管電圧・管電流 40kV、30mA スリット DS−SS:1度、RS:0.15mm モノクロメータ グラファイト 測定間隔 0.002度 計数方法 定時計数法 ────────────────────────────────────回 折 Diffractometer RAD-1C (manufactured by Rigaku Corporation) X-ray tube Cu tube voltage / tube current 40 kV, 30 mA Slit DS-SS: 1 degree, RS: 0.15 mm Monochromator Graphite Measurement interval 0.002 degree Counting method Constant clock method ────────── ──────────────────────────

【0025】また、ルチル化率は、前述の如く、ASTM D
3720-84に従いX線回折パターンにおける、ルチル型結
晶酸化チタンの最強干渉線(面指数110)のピーク面
積(Ir)と、アナターゼ型結晶酸化チタンの最強干渉
線(面指数101)のピーク面積(Ia)を求め前述の
算出式より求めた。
Further, as described above, the rutile ratio is determined according to ASTM D
According to 3720-84, in the X-ray diffraction pattern, the peak area (Ir) of the strongest interference line (plane index 110) of rutile-type crystal titanium oxide and the peak area (peak index 101) of the strongest interference line of anatase-type titanium oxide (plane index 101) Ia) was obtained from the above-described calculation formula.

【0026】(不純物の定量)酸化チタン粉末中のF
e、Al、Si及びNa分を原子吸光法により定量分析
した。また、塩素分は吸光光度法により測定した。
(Quantification of impurities) F in titanium oxide powder
e, Al, Si and Na were quantitatively analyzed by atomic absorption spectrometry. The chlorine content was measured by an absorption spectrophotometry.

【0027】実施例1 気相法により得られた表1に示す物性を有する酸化チタ
ン粉末A0.2gと、3.8容量%の2−プロパノール
水溶液26mlをパイレックス製の内部照射型反応管中
に入れ、攪拌した。次いで、大気中で500Wの高圧水
銀ランプ(光強度ステンレスメッシュにより1/20に
減光)を点灯し、反応溶液中に酸素ガスを10ml/分
で通気しながら光触媒作用による2−プロパノールの酸
化反応を行った。30分後、生成したアセトンの量を定
量した。その結果、生成アセトン量は40μモルであっ
た。
Example 1 0.2 g of a titanium oxide powder A having the physical properties shown in Table 1 obtained by a gas phase method and 26 ml of a 3.8% by volume aqueous 2-propanol solution were placed in an internal irradiation type reaction tube made of Pyrex. And stirred. Then, a 500 W high-pressure mercury lamp (dimmed by 1/20 with a light-intensity stainless mesh) was turned on in the atmosphere, and oxygen gas was passed through the reaction solution at a flow rate of 10 ml / min to oxidize 2-propanol by photocatalysis. Was done. After 30 minutes, the amount of acetone produced was quantified. As a result, the amount of generated acetone was 40 μmol.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1 市販の表2に示す物性を有するアナターゼ型酸化チタン
粉末Bを用いた以外は、実施例1と同様の方法で行っ
た。その結果、生成アセトン量は9μモルであった。
Comparative Example 1 A procedure was performed in the same manner as in Example 1 except that commercially available anatase type titanium oxide powder B having the physical properties shown in Table 2 was used. As a result, the amount of produced acetone was 9 μmol.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の光触媒用酸化チタン粉末は、凝
集粒子(二次粒子)が比較的大きいため、取扱い性に優
れ、安価で且つ不純物が少なく高い光触媒活性を示す。
また、水の酸化分解及びアルコールの酸化分解におい
て、特に高い光触媒活性を示す。
The titanium oxide powder for a photocatalyst of the present invention has a relatively large agglomerated particle (secondary particle), so that it is excellent in handleability, inexpensive, and shows high photocatalytic activity with few impurities.
In addition, it exhibits particularly high photocatalytic activity in oxidative decomposition of water and oxidative decomposition of alcohol.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凝集粒子の平均粒径が0.1〜10μm
、一次粒子の平均粒子径が10〜1000nm、BET
比表面積が0.5〜50m2/g及びルチル化率が10〜1
00%であることを特徴とする光触媒用酸化チタン粉
末。
An average particle size of the aggregated particles is 0.1 to 10 μm.
Average particle diameter of primary particles is 10 to 1000 nm, BET
Specific surface area of 0.5 to 50 m 2 / g and rutile ratio of 10 to 1
A titanium oxide powder for a photocatalyst, which is 00%.
【請求項2】 前記酸化チタン粉末中に不純物成分とし
て含まれるFe、Al、Si及びNaが各々10ppm 以
下であり、且つClが200ppm 以下であることを特徴
とする請求項1記載の光触媒用酸化チタン粉末。
2. The oxidation for photocatalyst according to claim 1, wherein Fe, Al, Si and Na contained as impurity components in the titanium oxide powder are each 10 ppm or less, and Cl is 200 ppm or less. Titanium powder.
JP15750698A 1998-06-05 1998-06-05 Titanium oxide powder for photocatalyst Expired - Fee Related JP4084463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15750698A JP4084463B2 (en) 1998-06-05 1998-06-05 Titanium oxide powder for photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15750698A JP4084463B2 (en) 1998-06-05 1998-06-05 Titanium oxide powder for photocatalyst

Publications (2)

Publication Number Publication Date
JPH11349328A true JPH11349328A (en) 1999-12-21
JP4084463B2 JP4084463B2 (en) 2008-04-30

Family

ID=15651180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750698A Expired - Fee Related JP4084463B2 (en) 1998-06-05 1998-06-05 Titanium oxide powder for photocatalyst

Country Status (1)

Country Link
JP (1) JP4084463B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287996A (en) * 2000-04-03 2001-10-16 Toho Titanium Co Ltd Anatase-type titanium oxide single crystal
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide
JP2010536689A (en) * 2007-08-16 2010-12-02 サチトレベン ピグメンツ オーワイ Process for preparing finely dispersed microcrystalline titanium dioxide product, product thereof and use thereof
JP2013053067A (en) * 2007-05-22 2013-03-21 Evonik Degussa Gmbh Method for producing titanium dioxide powder
JP2013075829A (en) * 2007-05-22 2013-04-25 Evonik Degussa Gmbh Method for producing titanium dioxide having increased sintering activity
US20140294989A1 (en) * 2011-12-22 2014-10-02 Showa Denko K.K. Copper-and-titanium-containing composition and production method therefor
US9126145B2 (en) 2007-08-31 2015-09-08 Cristal USA, Inc. Photocatalytic coating

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287996A (en) * 2000-04-03 2001-10-16 Toho Titanium Co Ltd Anatase-type titanium oxide single crystal
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
US7767721B2 (en) 2002-12-03 2010-08-03 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particles
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
EP1657219A3 (en) * 2004-11-05 2009-04-01 Toda Kogyo Corporation Nanostructural substance
JP2013075829A (en) * 2007-05-22 2013-04-25 Evonik Degussa Gmbh Method for producing titanium dioxide having increased sintering activity
JP2013053067A (en) * 2007-05-22 2013-03-21 Evonik Degussa Gmbh Method for producing titanium dioxide powder
JP2010536689A (en) * 2007-08-16 2010-12-02 サチトレベン ピグメンツ オーワイ Process for preparing finely dispersed microcrystalline titanium dioxide product, product thereof and use thereof
US9126145B2 (en) 2007-08-31 2015-09-08 Cristal USA, Inc. Photocatalytic coating
US9358502B2 (en) 2007-08-31 2016-06-07 Cristal Usa Inc. Photocatalytic coating
US20140294989A1 (en) * 2011-12-22 2014-10-02 Showa Denko K.K. Copper-and-titanium-containing composition and production method therefor
US9210939B2 (en) * 2011-12-22 2015-12-15 Showa Denko K.K. Copper-and-titanium-containing composition and production method therefor

Also Published As

Publication number Publication date
JP4084463B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
Zhang et al. Facile fabrication and characterization of multi-type carbon-doped TiO 2 for visible light-activated photocatalytic mineralization of gaseous toluene
Toloman et al. Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP
Raza et al. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide
Chin et al. Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process
Samsudin et al. Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine
Kominami et al. Synthesis of brookite-type titanium oxide nano-crystals in organic media
Hu et al. Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light
Wang et al. Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water
Gao et al. Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2
Haque et al. Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2
Lee et al. Preparation and characterization of titanium (IV) oxide photocatalysts
Figgemeier et al. Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties
Docters et al. Syntheses of TiO2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of Prosulfuron®
JP4739187B2 (en) Anatase type titanium oxide powder and method for producing the same
JP4084463B2 (en) Titanium oxide powder for photocatalyst
Alexandrescu et al. Development of the IR laser pyrolysis for the synthesis of iron–doped TiO2 nanoparticles: Structural properties and photoactivity
Jahdi et al. Mechanistic pathways for the degradation of SMX drug and floatation of degraded products using F–Pt co-doped TiO 2 photocatalysts
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
JP5553601B2 (en) Method for producing titanium oxide powder
JP2001276615A (en) Titanium oxide powder for photocatalyst
JP3949143B2 (en) Titanium dioxide nanophotocatalyst powder, production method and apparatus thereof
JP2001287996A (en) Anatase-type titanium oxide single crystal
Zhang et al. Nano-TiO2 particles with increased photocatalytic activity prepared by the miniemulsion method
JP2001220141A (en) Titanium oxide dispersion
JP4530238B2 (en) Method for producing titanium oxide powder containing anatase-type titanium oxide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees