JPH1134796A - Occupant protection device - Google Patents

Occupant protection device

Info

Publication number
JPH1134796A
JPH1134796A JP19831197A JP19831197A JPH1134796A JP H1134796 A JPH1134796 A JP H1134796A JP 19831197 A JP19831197 A JP 19831197A JP 19831197 A JP19831197 A JP 19831197A JP H1134796 A JPH1134796 A JP H1134796A
Authority
JP
Japan
Prior art keywords
occupant
collision
obstacle
braking force
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19831197A
Other languages
Japanese (ja)
Inventor
Kei Oshida
圭 忍田
Hideaki Shibue
秀明 渋江
Masaki Izawa
正樹 伊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19831197A priority Critical patent/JPH1134796A/en
Publication of JPH1134796A publication Critical patent/JPH1134796A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/414Fluid actuator using electrohydraulic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/823Obstacle sensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1875Other parameter or state estimation methods not involving the mathematical modelling of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping
    • B60G2800/222Braking, stopping during collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/914Height Control System

Landscapes

  • Air Bags (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To distribute and reduce a force acting on the body of an occupant in constriction and set the occupant in an appropriate constraint state irrelevant to the riding attitude by enhancing the deceleration of a car body by increasing a braking force, when it is detected impossible to avoid a collision in predicting the collision of the vehicle with an obstacle, and optimizing the attitude of the occupant by an inertia force at that time. SOLUTION: A brake 31 is operated by the detection of an obstacle on an automobile traveling road, the car speed and the deceleration are read from a car speed sensor 28 and a front/rear acceleration sensor 29 respectively. The distance to the obstacle is read from a distance sensor 27 to judge the possibility of the collision avoidance based on respective data and, when it is detected impossible, an operation signal is sent to an air bag 32 to develop it before the collision and a ground load increase control is starred after its completion. The generation of large deceleration forces the upper body of the occupant to incline frontward, tenses the seat belt, and brings the upper body of the occupant in contact with the air bag 32 which is developed frontward so that the car body is collided with the obstacle with the both constraining force acting on the occupant body. The development action of the air bag and the attitude control of the occupant are implemented before and after in time so as to distribute and reduce the body constraining action.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両衝突時の衝撃
から乗員の身体を保護する乗員保護装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an occupant protection device for protecting an occupant's body from an impact at the time of a vehicle collision.

【0002】[0002]

【従来の技術】衝突時の急激な減速度による乗員の移動
を規制するために乗員の身体を拘束するシートベルトや
エアバックが既に多くの市販車に搭載されている。
2. Description of the Related Art Many commercial vehicles are already equipped with seat belts and airbags for restraining the occupant's body in order to restrict the movement of the occupant due to rapid deceleration at the time of a collision.

【0003】[0003]

【発明が解決しようとする課題】しかるに、これらの乗
員拘束手段は、衝突後の極めて短い時間内に乗員の身体
を拘束するように作用するものであることから、拘束時
に乗員の身体に大きな力が加わるのが避けられない。し
かも、乗車姿勢が人によって区々であり、乗員拘束手段
の側から傷害軽減上最適な拘束状態を実現するには限界
がある。
However, since these occupant restraining means act to restrain the occupant's body within a very short time after a collision, a large force is applied to the occupant's body during restraint. Is inevitable. In addition, the riding posture varies from person to person, and there is a limit in realizing the optimum restraint state for reducing the injury from the side of the occupant restraint means.

【0004】本発明は、このような従来技術の問題点を
解消し、拘束時に乗員の身体に作用する力を分散して軽
減すると共に、乗車姿勢にかかわらず適切な拘束状態を
実現可能な乗員保護装置を提供することを目的に案出さ
れたものである。
The present invention solves such problems of the prior art, disperses and reduces the force acting on the occupant's body at the time of restraint, and can realize an appropriate restraint state regardless of the riding posture. It has been devised for the purpose of providing a protection device.

【0005】[0005]

【課題を解決するための手段】このような目的を果たす
ために、本発明においては、衝突時に乗員の身体を拘束
する乗員拘束手段を有する乗員保護装置の構成を、車両
の障害物への衝突を予測する衝突予測手段と、車両の制
動力を一時的に増大させる制動力増大手段とを有し、衝
突予測手段によって衝突回避不能と判定されると、制動
力増大手段を動作して車体の減速度を高め、その際の慣
性力でもって乗員の姿勢を適正化するものとした。これ
によると、衝突に先だって衝突時に比較して小さな減速
度でもって乗員に姿勢変化を生じさせることで、乗員が
乗員拘束手段に確実に拘束された状態とし、この拘束状
態で車両を衝突に至らしめる。このため、乗員拘束時に
乗員に作用する力を分散して軽減すると共に適切な拘束
状態を作り出すことができる。
In order to achieve the above object, according to the present invention, an occupant protection device having occupant restraining means for restraining an occupant's body at the time of a collision is provided. And a braking force increasing means for temporarily increasing the braking force of the vehicle. If the collision predicting means determines that collision cannot be avoided, the braking force increasing means is operated to operate the vehicle body. The deceleration was increased, and the occupant's posture was optimized using the inertia at that time. According to this, prior to the collision, by causing the occupant to change posture with a smaller deceleration than at the time of the collision, the occupant is reliably restrained by the occupant restraining means, and the vehicle is caused to collide in this restrained state. Close. Therefore, the force acting on the occupant when the occupant is restrained can be dispersed and reduced, and an appropriate restrained state can be created.

【0006】特に、前記の制動力増大手段は、車体と車
軸との間に設けたアクチュエータに加速度を発生させ、
その時のばね上質量あるいはばね下質量の慣性力の反力
により、タイヤの接地荷重を一時的に増大させるもので
あると好ましい。これによると、タイヤの接地荷重が増
大することによってタイヤのスリップ限界が引き上げら
れるため、制動力を効果的に増大させて、慣性力を増す
ように減速度を上乗せすることができる。
In particular, the braking force increasing means generates acceleration by an actuator provided between the vehicle body and the axle,
Preferably, the ground contact load of the tire is temporarily increased by the reaction force of the inertial force of the sprung mass or the unsprung mass at that time. According to this, since the slip limit of the tire is raised by increasing the ground contact load of the tire, the braking force can be effectively increased, and the deceleration can be added so as to increase the inertial force.

【0007】その上、前記の乗員拘束手段としてエアバ
ッグを設ける場合には、制動力増大手段の動作に先だっ
て展開されるものとすると良い。これによると、エアバ
ックの展開膨張と乗員の姿勢変化とが時間的に相前後し
て行われ、展開し終えたエアバックに対して乗員の身体
が接触するようになる。
In addition, when an airbag is provided as the occupant restraining means, it is preferable that the airbag be deployed prior to the operation of the braking force increasing means. According to this, the deployment and inflation of the airbag and the change in the posture of the occupant are performed sequentially in time, and the occupant's body comes into contact with the airbag that has been deployed.

【0008】[0008]

【発明の実施の形態】以下に添付の図面を参照して本発
明の構成を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail with reference to the accompanying drawings.

【0009】図1は、本発明による乗員保護装置が適用
される能動型懸架装置の要部の概略構成を模式的に示し
ている。タイヤ1は、上下のサスペンションアーム2・
3により、車体4に対して上下動可能に支持されてい
る。そして下サスペンションアーム3と車体4との間に
は、油圧駆動によるリニアアクチュエータ5が設けられ
ている。
FIG. 1 schematically shows a schematic configuration of a main part of an active suspension device to which an occupant protection device according to the present invention is applied. Tire 1 has upper and lower suspension arms 2.
3 supports the vehicle body 4 so as to be vertically movable. A linear actuator 5 driven by hydraulic pressure is provided between the lower suspension arm 3 and the vehicle body 4.

【0010】リニアアクチュエータ5は、シリンダ/ピ
ストン式のものであり、シリンダ内に挿入されたピスト
ン6の上下の油室7・8に可変容量型油圧ポンプ9から
供給される作動油圧をサーボ弁10で制御することによ
り、ピストンロッド11に上下方向の推力を発生させ、
これによってタイヤ1の中心(車軸)と車体4との間の
相対距離を自由に変化させることができるようになって
いる。
The linear actuator 5 is of a cylinder / piston type, and uses a servo valve 10 to supply hydraulic oil supplied from a variable displacement hydraulic pump 9 to oil chambers 7 and 8 above and below a piston 6 inserted into the cylinder. To generate a vertical thrust on the piston rod 11,
As a result, the relative distance between the center (axle) of the tire 1 and the vehicle body 4 can be freely changed.

【0011】ポンプ9からの吐出油は、ポンプ脈動の除
去および過渡状態での油量を確保するためのアキュムレ
ータ12に蓄えられた上で、各輪に設けられたアクチュ
エータ5に対し、各アクチュエータ5に個々に設けられ
たサーボ弁10を介して供給される。
The oil discharged from the pump 9 is stored in an accumulator 12 for removing the pump pulsation and securing the oil amount in a transient state. Are supplied via servo valves 10 provided individually.

【0012】この油圧回路には、公知の能動型懸架装置
と同様に、アンロード弁13、オイルフィルタ14、逆
止弁15、圧力調整弁16、およびオイルクーラ17な
どが接続されている。
An unload valve 13, an oil filter 14, a check valve 15, a pressure regulating valve 16, an oil cooler 17, and the like are connected to the hydraulic circuit, similarly to a known active suspension system.

【0013】なお、サーボ弁10は、電子制御ユニット
(ECU)18から発せられる制御信号をサーボ弁ドラ
イバ19を介してソレノイド10aに与えることによ
り、油圧アクチュエータ5に与える油圧と方向とが連続
的に制御されるものであり、車体4とピストンロッド1
1との接続部に設けられた荷重センサ20、車体4と下
サスペンションアーム3との間に設けられたストローク
センサ21、車体側の上下加速度を検出するばね上加速
度センサ22、およびタイヤ側の上下加速度を検出する
ばね下加速度センサ23の信号をECU18で処理した
信号に基づき制御される。
The servo valve 10 provides a control signal issued from an electronic control unit (ECU) 18 to a solenoid 10a via a servo valve driver 19, so that the hydraulic pressure and direction applied to the hydraulic actuator 5 are continuously adjusted. The vehicle body 4 and the piston rod 1 are controlled.
1, a load sensor 20 provided between the vehicle body 4 and the lower suspension arm 3, a sprung acceleration sensor 22 for detecting a vertical acceleration on the vehicle body, and a vertical sensor on the tire side. Control is performed based on a signal obtained by processing a signal of the unsprung acceleration sensor 23 for detecting acceleration by the ECU 18.

【0014】ECU18においては、自車の走路上の障
害物を検知すると共にその障害物と車体との間の距離を
検出する距離センサ27からの信号が衝突判断部28に
入力されており、図2に示すように、この信号に基づい
て障害物が検知されると(ステップ1)、ブレーキ31
を作動する(ステップ2)。ついで、車速センサ28か
らの信号から車速を読み込み(ステップ3)、さらに前
後加速度センサ29からの信号から減速度を読み込む
(ステップ4)。これに加えて距離センサ27からの信
号から障害物までの距離を読み込む(ステップ5)。そ
して、これら車速、減速度、並びに障害物までの距離の
各データに基づき、衝突を回避可能か否かが判定される
(ステップ6)。ここで、衝突を回避不能と判定される
と、衝突に先だってエアバッグ32に作動信号が送られ
てエアバッグ32を展開させる(ステップ7)。エアバ
ッグ32が展開し終えると、次に接地荷重増大制御が開
始される(ステップ8)。
In the ECU 18, a signal from a distance sensor 27 for detecting an obstacle on the road of the own vehicle and for detecting a distance between the obstacle and the vehicle body is input to a collision judging section 28. As shown in FIG. 2, when an obstacle is detected based on this signal (step 1), the brake 31
Is activated (step 2). Then, the vehicle speed is read from the signal from the vehicle speed sensor 28 (step 3), and the deceleration is read from the signal from the longitudinal acceleration sensor 29 (step 4). In addition, the distance to the obstacle is read from the signal from the distance sensor 27 (step 5). Then, it is determined whether or not a collision can be avoided based on the data on the vehicle speed, the deceleration, and the distance to the obstacle (step 6). If it is determined that the collision cannot be avoided, an activation signal is sent to the airbag 32 prior to the collision to deploy the airbag 32 (step 7). When the deployment of the airbag 32 is completed, the control for increasing the contact load is started next (step 8).

【0015】このステップ8の接地荷重増大制御におい
ては、図3に示すように、まず、目標荷重演算部24に
入力したばね上加速度センサ22とばね下加速度センサ
23との信号を参照して仮の目標荷重を内部的に発生さ
せ(ステップ11)、この値と荷重センサ20の信号
(実荷重)との偏差を演算し(ステップ12)、この差
分を安定化演算部25で処理した後、変位制限比較演算
部26でストロークセンサ21の信号を参照してアクチ
ュエータ5のストロークの限界内での制御が行われるよ
うにサーボ弁ドライバ19に与える指令値を調整する
(ステップ13)。そしてこの調整された信号により、
目標荷重と実荷重とが等しくなるようにサーボ弁10を
駆動してアクチュエータ5にストロークを発生させ、タ
イヤ接地荷重を増大させる向きの上下加速度を、ばね上
質量とばね下質量との少なくともいずれか一方に発生さ
せる(ステップ14)。これにより、タイヤのグリップ
力が一時的に増大するので、制動力が増大され、車体に
大きな減速度が発生する。
In the contact load increase control in step 8, as shown in FIG. 3, first, the signals of the sprung acceleration sensor 22 and the unsprung acceleration sensor 23 input to the target load calculating section 24 are temporarily referred to. Is internally generated (step 11), a deviation between this value and a signal (actual load) of the load sensor 20 is calculated (step 12), and the difference is processed by the stabilization calculation unit 25. The command value given to the servo valve driver 19 is adjusted by the displacement limit comparison operation unit 26 with reference to the signal of the stroke sensor 21 so that control within the stroke limit of the actuator 5 is performed (step 13). And with this adjusted signal,
The servo valve 10 is driven so that the target load becomes equal to the actual load, a stroke is generated in the actuator 5, and the vertical acceleration in a direction to increase the tire contact load is increased by at least one of the sprung mass and the unsprung mass. One of them is generated (step 14). As a result, the grip force of the tire temporarily increases, so that the braking force is increased and a large deceleration occurs in the vehicle body.

【0016】図4は以上の制御時の乗員の姿勢変化を段
階的に示している。図4(a)に示すように制御前には
シートベルト33が弛んだ状態にあり、図4(b)に示
すように接地荷重増大制御によって大きな減速度が発生
すると、乗員Aの上半身が前傾し、これに対応してシー
トベルト33が緊張する。一方、乗員Aの前方にはエア
バック32が展開されており、ここに乗員Aの上半身が
接触する。このときの乗員Aの姿勢変化は、衝突時の減
速度に比較して接地荷重増大制御による減速度が小さい
ことから比較的緩やかに行われるが、エアバック32並
びにシートベルト33による十分な拘束力が乗員Aの身
体に作用する。そして、エアバック32並びにシートベ
ルト33に乗員Aの身体が適切に拘束された状態で、図
4(c)に示すように、車体が障害物に衝突することに
なる。
FIG. 4 shows stepwise changes in the posture of the occupant during the above control. Before the control, as shown in FIG. 4A, the seat belt 33 is in a slack state, and as shown in FIG. The seatbelt 33 is tilted, and the seatbelt 33 is correspondingly tense. On the other hand, an airbag 32 is deployed in front of the occupant A, and the upper body of the occupant A comes into contact therewith. At this time, the posture change of the occupant A is performed relatively slowly because the deceleration by the ground contact load increasing control is smaller than the deceleration at the time of the collision, but the restraint force by the airbag 32 and the seat belt 33 is sufficient. Acts on the occupant A's body. Then, with the body of the occupant A properly restrained by the airbag 32 and the seat belt 33, the vehicle body collides with an obstacle as shown in FIG. 4C.

【0017】次に前記の接地荷重増大制御の原理につい
て説明する。図5のモデルにおいて、 M2:ばね上質量 M1:ばね下質量 Z2:ばね上座標 Z1:ばね下座標 Kt:タイヤのばね定数 Fz:アクチュエータ推力 とし、下向きを正方向とすると、ばね上質量M2並びに
ばね下質量M1の運動方程式は、それぞれ次式で与えら
れる。ただし式中の*マークは一階微分を表し、**マー
クは二階微分を表す。 M2・Z2**=−Fz M1・Z1**+Kt・Z1=Fz 従って、タイヤ接地荷重Wは次式で与えられる。 W=−Kt・Z1=−Fz+M1・Z1**=M2・Z2**+M1
・Z1** つまり接地荷重Wは、ばね上慣性力とばね下慣性力との
和となるので、アクチュエータ5の伸縮加速度を制御し
てばね上質量とばね下質量との少なくともいずれか一方
の慣性力を変化させることにより、接地荷重Wを変化さ
せることができる。従って、アクチュエータ5の伸張加
速度を制御することにより、接地荷重Wをタイヤ毎に一
時的に増大させることが可能となる。なお、サスペンシ
ョンストロークを200mmとしてアクチュエータ5に1
トンの推力を発生させた場合、約0.2秒間作動させる
ことができる。
Next, the principle of the above-mentioned contact load increase control will be described. In the model of FIG. 5, M2: sprung mass M1: unsprung mass Z2: sprung coordinate Z1: unsprung coordinate Kt: tire spring constant Fz: actuator thrust, and if the downward direction is the positive direction, the sprung mass M2 and The equations of motion of the unsprung mass M1 are given by the following equations, respectively. However, the * mark in the equation represents the first derivative, and the ** mark represents the second derivative. M2 · Z2 ** = − Fz M1 · Z1 ** + Kt · Z1 = Fz Therefore, the tire contact load W is given by the following equation. W = −Kt · Z1 = −Fz + M1 · Z1 ** = M2 · Z2 ** + M1
Z1 **, that is, the ground load W is the sum of the sprung inertia force and the unsprung inertial force. Therefore, the expansion and contraction acceleration of the actuator 5 is controlled to at least one of the sprung mass and the unsprung mass. By changing the force, the contact load W can be changed. Therefore, by controlling the extension acceleration of the actuator 5, it is possible to temporarily increase the contact load W for each tire. The suspension stroke is set to 200 mm and the actuator 5
When a ton of thrust is generated, it can be operated for about 0.2 seconds.

【0018】一般的には、アクチュエータの消費エネル
ギを節約するために車両重量を支持する懸架スプリング
と減衰力発生用ダンパとを併用するが(図6参照)、そ
の場合は、 Ks:懸架スプリングのばね定数 C:ダンパの減衰係数 とすると、ばね上質量M2並びにばね下質量M1の運動方
程式は、それぞれ次式で与えられる。 M2・Z2**+C・(Z2*−Z1*)+Ks・(Z2−Z1)
=−Fz M1・Z1**+C・(Z1*−Z2*)+Ks・(Z1−Z2)
+Kt・Z1=Fz 従って、タイヤ接地荷重Wは次式で与えられる。 W=−Kt・Z1=−Fz+M1・Z1**+C・(Z1*−Z2
*)+Ks・(Z1−Z2)=M2・Z2**+M1・Z1** つまり接地荷重Wは、上記と同様に、アクチュエータの
伸縮加速度を制御することによって変化させることがで
きることが分かる。
In general, a suspension spring for supporting the vehicle weight and a damper for generating a damping force are used in combination in order to save energy consumption of the actuator (see FIG. 6). Spring constant C: damping coefficient of damper Assuming that, the equations of motion of the sprung mass M2 and the unsprung mass M1 are given by the following equations, respectively. M2 · Z2 ** + C · (Z2 * −Z1 * ) + Ks · (Z2-Z1)
= −Fz M1 · Z1 ** + C · (Z1 * −Z2 * ) + Ks · (Z1−Z2)
+ Kt.Z1 = Fz Therefore, the tire contact load W is given by the following equation. W = −Kt · Z1 = −Fz + M1 · Z1 ** + C · (Z1 * −Z2
* ) + Ks · (Z1−Z2) = M2 · Z2 ** + M1 · Z1 ** That is, the ground contact load W can be changed by controlling the expansion and contraction acceleration of the actuator in the same manner as described above.

【0019】なお、図7は、タイヤの接地荷重(=グリ
ップ力)分布を概念的に示し、静荷重の範囲での接地荷
重を実線の円で表し、アクチュエータ5のストローク制
御で増大した接地荷重を二点鎖線の円で表している。図
7は、4輪全ての接地荷重を増大させた場合を例示して
いるが、その時の車両の運動状態や路面の状態などに応
じて、制動力の増大に最適となる荷重分布が得られるよ
うに、各アクチュエータを個々に制御すれば良いことは
言うまでもない。
FIG. 7 conceptually shows the distribution of the contact load (= grip force) of the tire. The contact load in the range of the static load is represented by a solid-line circle, and the contact load increased by the stroke control of the actuator 5. Is represented by a two-dot chain line circle. FIG. 7 illustrates a case where the contact load of all four wheels is increased, but a load distribution that is optimal for increasing the braking force can be obtained according to the motion state of the vehicle or the state of the road surface at that time. Needless to say, it is only necessary to control each actuator individually.

【0020】また上記実施例では、エアバッグ32とシ
ートベルト33とを併用する場合について説明したが、
いずれか一方のみとしても良い。
In the above embodiment, the case where the airbag 32 and the seat belt 33 are used together has been described.
Either one may be used.

【0021】さらに上記実施例は、アクチュエータとし
て油圧駆動のシリンダ装置を用いるものを示したが、こ
れはリニアモータ或いはボイスコイルなどの如きその他
の電気式の推力発生手段を用いても、あるいはカム機構
やばね手段を用いて加速度を発生させても、同様の効果
を得ることができる。
Further, in the above embodiment, the actuator using a hydraulically driven cylinder device as the actuator is shown, but this may be achieved by using other electric thrust generating means such as a linear motor or a voice coil, or by using a cam mechanism. The same effect can be obtained even if acceleration is generated using a spring or a spring means.

【0022】これに加えて、本発明の要旨を逸脱しない
範囲で使用センサを簡略化することができる。例えば、
ばね下、ばね上両加速度センサの出力差を二階積分する
ことでも位置検出信号を得ることができるので、ストロ
ークセンサを廃止することができるし、ばね上、ばね下
両重量の実測値と、ばね下、ばね上両加速度センサの出
力値とを演算することでアクチュエータが発生する力を
求めることができるので、荷重センサを廃止することも
できる。さらに、荷重センサと変位センサとの信号に基
づいて状態推定器を構成し、ばね下、ばね上両加速度を
間接的に求めることもできる。またECUについても、
ディジタル、アナログ、並びにハイブリッドのいずれで
も実現可能なことは言うまでもない。
In addition, the sensors used can be simplified without departing from the scope of the present invention. For example,
The position detection signal can also be obtained by integrating the output difference between the unsprung and unsprung acceleration sensors in the second order, so that the stroke sensor can be eliminated. Since the force generated by the actuator can be obtained by calculating the output values of the lower and sprung acceleration sensors, the load sensor can be eliminated. Furthermore, a state estimator can be configured based on signals from the load sensor and the displacement sensor, and both unsprung and sprung accelerations can be obtained indirectly. Also for the ECU,
Needless to say, any of digital, analog, and hybrid can be realized.

【0023】[0023]

【発明の効果】このように本発明によれば、衝突に先だ
って衝突時に比較して小さな減速度でもって乗員に姿勢
変化を生じさせることで、乗員が乗員拘束手段に確実に
拘束された状態とし、この拘束状態で車両を衝突に至ら
しめるものとしたため、乗員拘束時に乗員に作用する力
を分散して軽減すると共に適切な拘束状態を作り出すこ
とができ、乗員保護能力を高める上に多大な効果を奏す
ることができる。
As described above, according to the present invention, by changing the posture of the occupant prior to the collision with a smaller deceleration than at the time of the collision, the occupant can be reliably restrained by the occupant restraining means. In this restraint state, the vehicle is caused to collide, so that the force acting on the occupant when the occupant is restrained can be dispersed and reduced, and an appropriate restraint state can be created. Can be played.

【0024】特に、制動力増大手段が、車体と車軸との
間に設けたアクチュエータに加速度を発生させ、その時
のばね上質量あるいはばね下質量の慣性力の反力によ
り、タイヤの接地荷重を一時的に増大させるものとする
と、タイヤのスリップ限界が引き上げられることによっ
て制動力を効果的に増大することができる。
In particular, the braking force increasing means generates acceleration in the actuator provided between the vehicle body and the axle, and temporarily reduces the contact load of the tire due to the reaction force of the inertia force of the sprung mass or the unsprung mass at that time. In this case, the braking force can be effectively increased by increasing the tire slip limit.

【0025】その上、乗員拘束手段として設けられるエ
アバッグが制動力増大手段の動作に先だって展開される
ようにすると、エアバックの展開動作と乗員の姿勢変化
とが時間的に相前後して行われるようになり、拘束時に
乗員の身体に作用する力を分散・軽減することができ
る。
In addition, if the airbag provided as the occupant restraining means is deployed before the operation of the braking force increasing means, the deployment operation of the airbag and the change in the posture of the occupant take place in time. As a result, the force acting on the occupant's body during restraint can be dispersed and reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による乗員保護装置が適用された能動型
懸架装置の概略システム構成図。
FIG. 1 is a schematic system configuration diagram of an active suspension device to which an occupant protection device according to the present invention is applied.

【図2】本発明の制御フロー図。FIG. 2 is a control flowchart of the present invention.

【図3】接地荷重増大制御の制御フロー図。FIG. 3 is a control flow chart of ground load increase control.

【図4】a、b並びにcからなり、乗員の拘束状態を段
階的に示す側面図。
FIG. 4 is a side view showing steps a, b, and c, showing a restrained state of the occupant.

【図5】本発明の原理を説明するためのモデル図。FIG. 5 is a model diagram for explaining the principle of the present invention.

【図6】一般的な能動型懸架装置のモデル図。FIG. 6 is a model diagram of a general active suspension device.

【図7】急制動時の概念的な接地荷重分布図。FIG. 7 is a conceptual ground load distribution diagram at the time of sudden braking.

【符号の説明】[Explanation of symbols]

1 タイヤ 2 上サスペンションアーム 3 下サスペンションアーム 4 車体 5 アクチュエータ 6 ピストン 7・8 油室 9 油圧ポンプ 10 サーボ弁 11 ピストンロッド 12 アキュムレータ 13 アンロード弁 14 オイルフィルタ 15 逆止弁 16 圧力調整弁 17 オイルクーラ 18 電子制御ユニット(ECU) 19 サーボ弁ドライバ 20 荷重センサ 21 ストロークセンサ 22 ばね上加速度センサ 23 ばね下加速度センサ 24 目標荷重演算部 25 安定化演算部 26 変位制限比較演算部 27 距離センサ 28 車速センサ 29 前後加速度センサ 30 衝突判断部 31 ブレーキ 32 エアバッグ 33 シートベルト A 乗員 DESCRIPTION OF SYMBOLS 1 Tire 2 Upper suspension arm 3 Lower suspension arm 4 Body 5 Actuator 6 Piston 7.8 Oil chamber 9 Hydraulic pump 10 Servo valve 11 Piston rod 12 Accumulator 13 Unload valve 14 Oil filter 15 Check valve 16 Pressure control valve 17 Oil cooler Reference Signs List 18 electronic control unit (ECU) 19 servo valve driver 20 load sensor 21 stroke sensor 22 sprung acceleration sensor 23 unsprung acceleration sensor 24 target load calculation unit 25 stabilization calculation unit 26 displacement limit comparison calculation unit 27 distance sensor 28 vehicle speed sensor 29 Longitudinal acceleration sensor 30 collision judging unit 31 brake 32 airbag 33 seat belt A passenger

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 車両衝突時の衝撃から乗員を保護する
べく乗員の身体を拘束する乗員拘束手段を有する乗員保
護装置であって、 車両の障害物への衝突を予測する衝突予測手段と、車両
の制動力を一時的に増大する制動力増大手段とを有し、 前記衝突予測手段によって衝突回避不能と判定される
と、前記制動力増大手段を動作して車体の減速度を高
め、その際の慣性力でもって乗員の姿勢を適正化するよ
うにしたことを特徴とする乗員保護装置。
An occupant protection device having occupant restraining means for restraining an occupant's body to protect the occupant from the impact of a vehicle collision, comprising: a collision prediction means for predicting a collision of a vehicle with an obstacle; Braking force increasing means for temporarily increasing the braking force of the vehicle, and when it is determined by the collision prediction means that collision avoidance is impossible, the braking force increasing means is operated to increase the deceleration of the vehicle body. An occupant protection device characterized in that the occupant's posture is optimized by the inertia force of the occupant.
【請求項2】 前記制動力増大手段は、車体と車軸と
の間の上下方向相対距離を能動的に変化させるアクチュ
エータを備え、該アクチュエータの推力でばね上質量と
ばね下質量との少なくともいずれか一方に発生させた加
速度に基づくばね上質量とばね下質量との少なくともい
ずれか一方の慣性力の反力をタイヤの接地荷重に加える
接地荷重増加手段であることを特徴とする請求項1に記
載の乗員保護装置。
2. The braking force increasing means includes an actuator that actively changes a vertical relative distance between a vehicle body and an axle, and at least one of a sprung mass and an unsprung mass by a thrust of the actuator. The contact load increasing means for adding a reaction force of inertia force of at least one of a sprung mass and a unsprung mass based on an acceleration generated to one of the tires to a contact load of the tire. Occupant protection equipment.
【請求項3】 前記乗員拘束手段として、前記衝突予
測手段によって衝突回避不能と判定されると前記制動力
増大手段の動作に先だって展開動作されるエアバッグを
有することを特徴とする請求項1若しくは請求項2に記
載の乗員保護装置。
3. The occupant restraining means includes an airbag that is deployed before the operation of the braking force increasing means when the collision predicting means determines that collision avoidance is impossible. The occupant protection device according to claim 2.
JP19831197A 1997-07-24 1997-07-24 Occupant protection device Pending JPH1134796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19831197A JPH1134796A (en) 1997-07-24 1997-07-24 Occupant protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19831197A JPH1134796A (en) 1997-07-24 1997-07-24 Occupant protection device

Publications (1)

Publication Number Publication Date
JPH1134796A true JPH1134796A (en) 1999-02-09

Family

ID=16389026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19831197A Pending JPH1134796A (en) 1997-07-24 1997-07-24 Occupant protection device

Country Status (1)

Country Link
JP (1) JPH1134796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071370A1 (en) * 1999-05-22 2000-11-30 Volkswagen Aktiengesellschaft Motor vehicle comprising a suspension and shock-absorbing device and a combined safety device
US6657539B2 (en) 2000-12-14 2003-12-02 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
FR2857301A1 (en) * 2003-07-11 2005-01-14 Volkswagen Ag Motor vehicle, has suspension and/or damping device, and lifting device receiving control signal and raising and/or lowering vehicle body in controlled way in optimal accident position
US7184889B2 (en) 2003-11-13 2007-02-27 Denso Corporation Collision-prediction unit for a vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071370A1 (en) * 1999-05-22 2000-11-30 Volkswagen Aktiengesellschaft Motor vehicle comprising a suspension and shock-absorbing device and a combined safety device
DE19923708B4 (en) * 1999-05-22 2012-03-08 Volkswagen Ag Motor vehicle with suspension and damping device and combined safety device
US6657539B2 (en) 2000-12-14 2003-12-02 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
FR2857301A1 (en) * 2003-07-11 2005-01-14 Volkswagen Ag Motor vehicle, has suspension and/or damping device, and lifting device receiving control signal and raising and/or lowering vehicle body in controlled way in optimal accident position
US7184889B2 (en) 2003-11-13 2007-02-27 Denso Corporation Collision-prediction unit for a vehicle

Similar Documents

Publication Publication Date Title
US9527415B2 (en) Active suspension of a motor vehicle passenger seat
US6082715A (en) Integrated semi-active seat suspension and seat lockup system
US8108104B2 (en) Tripped rollover mitigation and prevention systems and methods
US7987031B2 (en) Device for determining a tendency to tilt
US6370461B1 (en) Crash control system for vehicles employing predictive pre-crash signals
US7046167B2 (en) Adaptive collision load path modification system for vehicle collision compatibility
US6604745B2 (en) Process and device for operating a motor vehicle
US5797111A (en) Fuel flow controller
US20050080530A1 (en) Motor vehicle with a pre-safe-system
EP0563845B1 (en) Electric Control Apparatus for and Method of Controlling a Vehicle Suspension Mechanism of which the Spring Constant and the Damping Force can be controlled independently to one another
JP4838793B2 (en) Method for controlling components related to automobile safety, and automobile
US6889128B2 (en) System and method for controlling vehicle suspension components and vehicle occupant protection devices
US6209887B1 (en) Microprocessor controlled vehicle suspension
JPH1134796A (en) Occupant protection device
JP3779441B2 (en) Vehicle collision avoidance control device
JP2008519720A (en) Car with occupant restraint system
JP2010241277A (en) Pedestrian protection device
KR100552733B1 (en) rollover detection system for an automotive vehicles and method thereof
JP3779414B2 (en) Ground load control device
JP2010058768A (en) Attitude control device of vehicle
JP4255260B2 (en) Vehicle stabilizer
JPH1111128A (en) Ground load controlling device
JPH10305717A (en) Ground load controller
JPH1111129A (en) Ground load controlling device
KR19980060282A (en) Passenger position sensor for airbag operation