JPH11345633A - Air-zinc cell - Google Patents

Air-zinc cell

Info

Publication number
JPH11345633A
JPH11345633A JP10152461A JP15246198A JPH11345633A JP H11345633 A JPH11345633 A JP H11345633A JP 10152461 A JP10152461 A JP 10152461A JP 15246198 A JP15246198 A JP 15246198A JP H11345633 A JPH11345633 A JP H11345633A
Authority
JP
Japan
Prior art keywords
air
zinc
manganese oxide
activated carbon
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10152461A
Other languages
Japanese (ja)
Inventor
Kenichi Nakatsu
研一 仲津
Nobuharu Koshiba
信晴 小柴
Jiro Okamoto
次郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10152461A priority Critical patent/JPH11345633A/en
Publication of JPH11345633A publication Critical patent/JPH11345633A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-zinc cell capable of reducing a volume of its air electrode without degrading a discharge characteristic when used as a main power source for a hearing-aid, a pager, etc. SOLUTION: An air-zinc cell comprises: an air electrode 6 wherein oxygen is used as an active material and a mixture of a manganese oxide and activated carbon is used as a main catalytic material; and a zinc negative electrode wherein zinc 1 is used as a negative electrode active material. Here, mean particle size of the above-mentioned manganese oxide is specified to be in a range of 0.5 to 1.0 μm and that of the above-mentioned activated carbon is specified to be in a range of 1 to 10 μm. Here, preferably, ratio in weight of the above- mentioned manganese oxide to a total sum of it and the above-mentioned activated carbon is in a range of 25 to 60%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン酸化物及
び活性炭を主触媒物質とする空気極を備えた空気亜鉛電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air zinc battery provided with an air electrode using manganese oxide and activated carbon as main catalyst materials.

【0002】[0002]

【従来の技術】空気亜鉛電池は、正極活物質として空気
中の酸素を、負極活物質として亜鉛を用いる一次電池で
あって、電池内部における正極活物質を収容する空間が
不要となるため、アルカリマンガン電池や酸化銀電池と
比較して高いエネルギー密度が得られる等の特徴を有し
ている。近年、ページャーなどの携帯機器の主電源とし
て、あるいは水銀電池に代わる大容量でクリーンな補聴
器用電源として急速に普及してきた。
2. Description of the Related Art A zinc-air battery is a primary battery in which oxygen in the air is used as a positive electrode active material and zinc is used as a negative electrode active material. It has features such as higher energy density than manganese batteries and silver oxide batteries. In recent years, it has rapidly become widespread as a main power supply for portable devices such as pagers, or as a large-capacity clean power supply for hearing aids that replaces mercury batteries.

【0003】最近、ペ−ジャ−等の携帯機器において
は、情報内容の多様化や、振動により着信を知らせるバ
イブレータ機能等の多機能化が進んでいる。これに伴っ
て消費電力が従来の機器に比べて増加しており、機器の
使用可能な期間が短くなることから、空気亜鉛電池の高
容量化が望まれている。
Recently, in portable devices such as pagers, information contents have been diversified, and multi-functions such as a vibrator function for notifying an incoming call by vibration have been advanced. As a result, power consumption has increased compared to conventional devices, and the period during which the devices can be used is shortened. Therefore, it is desired to increase the capacity of air-zinc batteries.

【0004】空気亜鉛電池における放電容量は、負極活
物質を収容する負極ケ−ス内に充填される亜鉛金属の量
に比例する。従って、放電容量を増加させるためには、
負極ケ−ス側の容積の増加が不可欠である。電池外形寸
法は規格化されており、所定の寸法範囲内で負極ケ−ス
の容積を増加させるためには、ケースを構成する金属板
材の厚みを薄型化する方法が挙げられる。しかし、電池
に付加される外力に対して弱くなり、変形等による放電
不良等の危惧がある。そこで、正極の空気極の厚みを薄
化し、正極側が占める体積を減らすことで負極ケ−スの
亜鉛充填量を増加する方法が挙げられる。この方法で
は、空気極の体積減少により正極活物質である酸素の還
元反応が行われる反応場の面積を減少させることにな
り、電池の放電特性、特に大電流にて放電を行う高率放
電での放電特性を悪化させてしまう。
[0004] The discharge capacity of a zinc-air battery is proportional to the amount of zinc metal filled in a negative electrode case containing a negative electrode active material. Therefore, in order to increase the discharge capacity,
It is essential to increase the volume on the negative electrode case side. The external dimensions of the battery are standardized, and in order to increase the capacity of the negative electrode case within a predetermined size range, there is a method of reducing the thickness of the metal plate constituting the case. However, the battery is weakened by an external force applied to the battery, and there is a fear of defective discharge due to deformation or the like. Thus, there is a method of increasing the zinc filling amount of the negative electrode case by reducing the thickness of the air electrode of the positive electrode and reducing the volume occupied by the positive electrode side. In this method, the area of the reaction field where the reduction reaction of oxygen, which is a positive electrode active material, is performed by reducing the volume of the air electrode is reduced. Deteriorates the discharge characteristics.

【0005】空気亜鉛電池の正極ケースには、電池外部
から空気を取り入れる空気孔が設けられており、正極活
物質である酸素はこの空気孔を通って電池外部から正極
ケース内部の空気極に供給され、アルカリ水溶液の存在
下で電気化学的に還元される。空気極の薄化に起因する
放電特性の悪化に対して、空気極の総開孔面積を増加さ
せ、電池内へ流入する酸素量を増やすことによって、還
元反応に供せられる酸素を補うことが可能と考えられ
る。
[0005] The positive electrode case of the zinc-air battery is provided with an air hole for taking in air from outside the battery, and oxygen as a positive electrode active material is supplied from outside the battery to the air electrode inside the positive electrode case through this air hole. And electrochemically reduced in the presence of an aqueous alkaline solution. In response to the deterioration of the discharge characteristics due to the thinning of the cathode, it is necessary to increase the total opening area of the cathode and increase the amount of oxygen flowing into the battery to supplement the oxygen used for the reduction reaction. It is considered possible.

【0006】一般に空気亜鉛電池は、空気孔を介して大
気中の酸素を内部へ取り入れる構造を採用しているため
に、電池の放電及び容量等の特性は外部環境の影響を受
ける。従って、前述した放電特性の悪化を改善するため
に、空気孔の総開孔面積を増加させた場合にも外部環境
の影響により、種々の不具合が生じてしまう。
In general, a zinc-air battery employs a structure in which oxygen in the atmosphere is introduced into the inside through an air hole, so that characteristics such as discharge and capacity of the battery are affected by an external environment. Therefore, even when the total opening area of the air holes is increased in order to improve the above-mentioned deterioration of the discharge characteristics, various problems occur due to the influence of the external environment.

【0007】すなわち、外部環境が低湿度の雰囲気下で
は、電解液が蒸発しやすく、単位時間あたりのイオン伝
導量が制限されてしまうために、放電電流量の減少や、
放電容量の低下を引き起こす原因となる。逆に高湿度の
雰囲気下では、電池内と大気中との平衡湿度によって、
電解液が大気中の水蒸気を吸収してしまい、電気伝導率
の低下やpH値の低下といった現象が現れ、これにより
放電電流量の減少、電圧の低下を引き起こす。さらにま
た、大気中の二酸化炭素が電解液に溶け込みことによっ
ても、pH値および電気伝導率の低下を起こしてしま
う。
That is, when the external environment is in an atmosphere of low humidity, the electrolytic solution is apt to evaporate, and the amount of ionic conduction per unit time is limited.
This may cause a reduction in discharge capacity. Conversely, in a high humidity atmosphere, the equilibrium humidity between the battery and the atmosphere
The electrolyte absorbs water vapor in the atmosphere, causing a phenomenon such as a decrease in electric conductivity or a decrease in pH value, which causes a decrease in discharge current and a decrease in voltage. Furthermore, the carbon dioxide in the atmosphere dissolves in the electrolytic solution, causing a decrease in pH value and electric conductivity.

【0008】以上のように、電池の放電特性および保存
特性を確保した上で、空気極の薄型化による放電容量の
増加をはかることは難しい。
As described above, it is difficult to increase the discharge capacity by reducing the thickness of the air electrode while securing the discharge characteristics and storage characteristics of the battery.

【0009】[0009]

【発明が解決しようとする課題】このような問題の解決
策として、空気極の触媒層に白金等の貴金属触媒を担持
する方法が提案されている。酸素の還元反応は通常酸素
1分子当たり2個の電子が関与する2電子反応が起こる
が、白金等の貴金属の存在下では酸素1分子あたり4個
の電子が関与する4電子反応が起こる。この方法によれ
ば、貴金属触媒の担持により空気極の体積あたりの電流
密度を増加させることができ、放電性能を損なわせるこ
となく空気極を薄型化できる。しかし、貴金属触媒を使
用するために電池の価格が格段に高騰し、市販品として
不適である。
As a solution to such a problem, there has been proposed a method of supporting a noble metal catalyst such as platinum on a catalyst layer of an air electrode. The oxygen reduction reaction usually involves a two-electron reaction involving two electrons per oxygen molecule, but in the presence of a noble metal such as platinum, a four-electron reaction involving four electrons per oxygen molecule occurs. According to this method, the current density per volume of the air electrode can be increased by supporting the noble metal catalyst, and the air electrode can be thinned without impairing the discharge performance. However, the use of a noble metal catalyst has significantly increased the price of the battery, making it unsuitable as a commercial product.

【0010】また、空気中の酸素のみを優先的に透過さ
せる酸素選択性透過膜等を空気孔と空気極の間に設置
し、電池性能を低下させる水蒸気や二酸化炭素の電池内
部への流入を防ぎ、空気孔の開孔面積を増加させ、保存
性能を劣化させることなく酸素の流入量を増加させ、大
電流放電性能を保持しながら薄型空気極を使用し、放電
容量を増加させる方法が考えられる。然し乍、常温域で
このような作用をもった機能材料は報告例がなく、技術
的に非常に困難であると考えられる。
An oxygen-selective permeable membrane or the like that preferentially permeates only oxygen in the air is provided between the air hole and the air electrode to prevent water vapor or carbon dioxide, which lowers battery performance, from flowing into the battery. A method to increase the discharge capacity by increasing the opening area of the air holes, increasing the inflow of oxygen without deteriorating storage performance, and using a thin air electrode while maintaining high current discharge performance is considered. Can be However, there has been no report of a functional material having such an effect in a normal temperature range, and it is considered that it is technically very difficult.

【0011】本発明は、上記問題点を解決するためにな
されたものであり、放電特性及び保存特性を悪化させる
ことなく、放電容量を確保できる電池を提供することを
目的とする。
The present invention has been made to solve the above problems, and has as its object to provide a battery capable of securing a discharge capacity without deteriorating discharge characteristics and storage characteristics.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明の空気亜鉛電池は、酸素を活物質とし、マンガ
ン酸化物、活性炭の混合物を主触媒物質とする空気極
と、亜鉛を負極活物質とする亜鉛負極とを備えてなり、
該マンガン酸化物の平均粒子径が0.5μm〜1.0μ
mの範囲にあり、該活性炭の平均粒子径が1μm〜10
μmの範囲にあることを特徴とする。
To achieve the above object, a zinc-air battery according to the present invention comprises an air electrode having oxygen as an active material, a mixture of manganese oxide and activated carbon as a main catalyst material, and a zinc electrode having a negative electrode. A zinc negative electrode as an active material,
The average particle size of the manganese oxide is 0.5 μm to 1.0 μm
m, and the activated carbon has an average particle size of 1 μm to 10 μm.
It is in the range of μm.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
説明し、本発明の理解に供する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below for the understanding of the present invention.

【0014】請求項1に記載の発明は、酸素を活物質と
し、マンガン酸化物、活性炭を主成分とする空気極と、
亜鉛を負極活物質とする亜鉛負極とを備えてなる空気亜
鉛電池において、マンガン酸化物の平均粒子径を0.5
μm〜1.0μmの範囲に、活性炭の平均粒子径を1μ
m〜10μmの範囲に設定し、これらを混合したものを
空気極の主触媒物質としたものである。
According to a first aspect of the present invention, there is provided an air electrode having oxygen as an active material, manganese oxide and activated carbon as main components,
In an air zinc battery including a zinc negative electrode having zinc as a negative electrode active material, the average particle diameter of manganese oxide is 0.5
In the range of μm to 1.0 μm, the average particle size of activated carbon is 1 μm.
m is set in the range of 10 μm to 10 μm, and a mixture thereof is used as a main catalyst material of the air electrode.

【0015】この構成により、空気極における単位体積
あたりの反応場が増加する。従って、放電性能を維持し
た状態で空気極の薄型化が可能となり、これに対応して
負極容積が増加し、放電容量が確保される。
With this configuration, the reaction field per unit volume at the air electrode increases. Therefore, it is possible to reduce the thickness of the air electrode while maintaining the discharge performance, and accordingly, the capacity of the negative electrode is increased and the discharge capacity is secured.

【0016】さらに、空気極の単位体積あたりの反応面
積が従来よりも大きく、空気極の薄型化による放電性能
の劣化は少ないため、良好な放電特性が得えられる。具
体的には、ページャーのバイブレーター作動持やバック
ライトの点灯時などの重負荷に接続された状態での放電
時に、従来の空気極の薄型化をはかった電池では、反応
場が少ないために求められる電流を満足に流すことがで
きなくなることに加え、電池の分極による電圧降下も大
きく、機器の作動電圧を下回り動作が中断することがあ
った。しかし、本発明の電池では機器の要求する電流を
安定して供給することが可能になる。
Furthermore, since the reaction area per unit volume of the air electrode is larger than before, and the deterioration of the discharge performance due to the thinner air electrode is small, good discharge characteristics can be obtained. Specifically, when discharging while connected to a heavy load, such as when the pager vibrator is activated or the backlight is turned on, the battery used to reduce the thickness of the conventional air electrode has a small reaction field. In addition to being able to satisfactorily flow the required current, the voltage drop due to the polarization of the battery was large, and the operation was interrupted below the operating voltage of the device. However, the battery of the present invention makes it possible to stably supply the current required by the device.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参考に
しながら説明する。尚、本実施例では、ボタン型の形状
を有する空気亜鉛電池について検討を行ったが、本発明
は以下の実施例の形態にとらわれるものでなく、円筒型
等の形状を有する電池ケースにおいても適用可能なもの
である。
Embodiments of the present invention will be described below with reference to the drawings. In this example, a zinc-air battery having a button shape was examined.However, the present invention is not limited to the following embodiment, and is applicable to a battery case having a cylindrical shape or the like. It is possible.

【0018】図1は、本実施例におけるボタン型空気亜
鉛電池の断面図である。この図において、1は負極亜
鉛、2は負極ケース、3は樹脂ガスケット、4は正極ケ
ース、5は不織布および半透膜からなるセパレーター、
6は空気極、7は微細孔を有する撥水膜、8は空気を電
池内部に取り入れる空気孔、9は空気孔から流入した空
気が電極の広範囲に分散させる働きをもつ空気拡散紙、
そして10は空気孔8を封するシール紙である。さらに
正極6は、マンガン酸化物、活性炭およびポリテトラフ
ルオロエチレンの水性ディスパージョンの混合物を練合
し、ペースト状として正極集電体に充填後、加圧成型
し、シート状にして多孔性フッ素樹脂膜を圧着し、それ
を打ち抜きパンチによって円形に打ち抜いたものであ
る。
FIG. 1 is a sectional view of a button-type zinc-air battery according to this embodiment. In this figure, 1 is a negative electrode zinc, 2 is a negative electrode case, 3 is a resin gasket, 4 is a positive electrode case, 5 is a separator made of a nonwoven fabric and a semi-permeable membrane,
6 is an air electrode, 7 is a water-repellent film having micropores, 8 is an air hole for taking in air into the inside of the battery, 9 is air diffusion paper having a function of dispersing air flowing from the air hole to a wide range of the electrode,
Reference numeral 10 denotes a seal paper for sealing the air holes 8. Further, the positive electrode 6 is formed by kneading a mixture of an aqueous dispersion of manganese oxide, activated carbon and polytetrafluoroethylene, filling the positive electrode current collector as a paste, press molding, forming a sheet, and forming a porous fluororesin. The membrane is pressed and then punched into a circle by a punch.

【0019】このような構成を有するボタン型の空気亜
鉛電池を用いて、空気極の主成分であるマンガン酸化物
と活性炭の平均粒径についての検討を行った。
Using a button-type zinc-air battery having such a configuration, the average particle size of manganese oxide and activated carbon, which are the main components of the air electrode, was examined.

【0020】マンガン酸化物および活性炭の平均粒径が
異なる空気極A〜Eを作成した。このとき、マンガン酸
化物と活性炭の配合比比率は重量百分率で30%と70
%として、触媒層の厚みは0.2mmとなるようにし
た。また、従来例として、主触媒物質に平均粒径2.0
μmのマンガン酸化物と平均粒径30μmの活性炭を使
用した以外は、本発明と同様の空気極Fを作成した。
Air electrodes A to E having different average particle diameters of manganese oxide and activated carbon were prepared. At this time, the mixing ratio of manganese oxide to activated carbon was 30% by weight and 70% by weight.
%, The thickness of the catalyst layer was set to 0.2 mm. Further, as a conventional example, an average particle diameter of 2.0
An air electrode F similar to that of the present invention was prepared, except that a manganese oxide of μm and activated carbon having an average particle size of 30 μm were used.

【0021】得られた空気極A〜Fを用いて半電池セル
を構成して、分極試験を行った。結果を(表1)に示
す。分極は、自然電位から0.2V分極したときの電流
密度の値の測定することで判断した。
A half-cell was constructed using the obtained air electrodes A to F, and a polarization test was performed. The results are shown in (Table 1). The polarization was determined by measuring the value of the current density when the polarization was performed at 0.2 V from the natural potential.

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)からわかるように、マンガン酸化
物および活性炭の平均粒径を小径化することで空気極の
電流密度を増加することができる。
As can be seen from Table 1, the current density of the air electrode can be increased by reducing the average particle size of the manganese oxide and the activated carbon.

【0024】また、空気極A〜Fについて水銀圧入法に
よる比表面積を測定した結果を(表2)に示す。
The results of measuring the specific surface area of the air electrodes A to F by the mercury intrusion method are shown in Table 2 below.

【0025】[0025]

【表2】 [Table 2]

【0026】(表2)よりマンガン酸化物および活性炭
の平均粒径を小径化することで空気極の比表面積が増加
することが確認できる。
From Table 2, it can be confirmed that the specific surface area of the air electrode is increased by reducing the average particle size of the manganese oxide and the activated carbon.

【0027】次に、得られた空気極を用いて図1に示す
電池を構成した。詳細な構造についいては、前述したと
おりである。
Next, a battery shown in FIG. 1 was constructed using the obtained air electrode. The detailed structure is as described above.

【0028】マンガン酸化物および活性炭の平均粒径が
異なる空気極A〜Eも用いてページャー用空気亜鉛電池
PR2330(直径23.2mm、高さ3.0mm)を
電池G〜Kを作成した。また、従来例としての従来の空
気極Fを用いた以外は本発明と同様の電池Lを作製た。
それぞれの電池に対して高率放電の一例として、一般に
ページャーの振動呼び出し用のモーターの消費電流に相
当する80mAの定電流放電試験を行った。(表3)は
放電中の電池電圧がモーターの作動限界の0.7Vに到
達するまでの時間を計測した結果である。
Using the air electrodes A to E having different average particle diameters of the manganese oxide and the activated carbon, batteries G to K were prepared for the air zinc battery PR2330 (diameter: 23.2 mm, height: 3.0 mm). Further, a battery L similar to the present invention was produced except that a conventional air electrode F as a conventional example was used.
As an example of high-rate discharge for each battery, a constant current discharge test of 80 mA, which generally corresponds to the current consumption of a motor for pager vibration calling, was performed. Table 3 shows the results of measuring the time until the battery voltage during discharging reaches the operating limit of the motor of 0.7 V.

【0029】[0029]

【表3】 [Table 3]

【0030】(表3)からわかるように、マンガン酸化
物および活性炭の平均粒径を小径化することで空気極の
比表面積が増加し、重負荷に接続された場合の放電性能
が向上する。
As can be seen from Table 3, by reducing the average particle size of the manganese oxide and the activated carbon, the specific surface area of the air electrode is increased, and the discharge performance when connected to a heavy load is improved.

【0031】引き続いて、マンガン酸化物と活性炭の充
填比率についての検討を行った。平均粒子径1.0μm
のマンガン酸化物と、平均粒子径10μmの活性炭と
の充填量の割合を種々変化させて空気極を作成した。マ
ンガン酸化物と活性炭との配合比率を20:80〜7
0:30の範囲で変化させて混合し、厚さ0.2mmの
触媒層を有する空気極M〜Sを作成した。それぞれの放
電性能を半電池の分極特性、水銀圧入法による比表面
積、電池の重負荷放電性能を調査した結果を(表4)に
示す。
Subsequently, the filling ratio between manganese oxide and activated carbon was examined. Average particle size 1.0 μm
The air electrode was prepared by changing the ratio of the amount of the manganese oxide and the amount of the activated carbon having an average particle diameter of 10 μm in various ways. The mixing ratio of manganese oxide to activated carbon is 20:80 to 7
Mixing was performed in the range of 0:30 to prepare air electrodes MS having a catalyst layer having a thickness of 0.2 mm. Table 4 shows the results of investigating the discharge characteristics of each half-battery in terms of the polarization characteristics, the specific surface area by the mercury intrusion method, and the heavy load discharge performance of the battery.

【0032】[0032]

【表4】 [Table 4]

【0033】(表4)より、電池Mでは、活性炭量が多
量なため、電解液が触媒層に過度に浸積し、酸素の拡散
を阻害していると考えられる。また電池Sでは活性炭量
が少量のため反応場が不足していると考えられる。した
がって空気極の触媒を構成する平均粒子径0.5μm
〜1.0μm のマンガン酸化物と、平均粒子径1μm
〜10μmの活性炭の充填量の割合は、両者の和におけ
るマンガン酸化物の占める比率が25〜60%、すなわ
ちマンガン酸化物と活性炭との混合比率が25:75〜
60:40の範囲にあることがよい。
From Table 4, it is considered that in the battery M, since the amount of activated carbon was large, the electrolytic solution excessively immersed in the catalyst layer and inhibited the diffusion of oxygen. Further, it is considered that the reaction field is insufficient in the battery S because the amount of activated carbon is small. Therefore, the average particle diameter constituting the catalyst of the air electrode is 0.5 μm.
Manganese oxide having an average particle diameter of 1 μm
As for the ratio of the amount of the activated carbon charged to 10 to 10 μm, the ratio of the manganese oxide in the sum of the two is 25 to 60%, that is, the mixing ratio of the manganese oxide and the activated carbon is 25:75 to
Preferably, it is in the range of 60:40.

【0034】[0034]

【発明の効果】以上のように、本発明では、空気亜鉛電
池の正極である空気極の主触媒物質として、平均粒子径
0.5μm 〜1.0μm のマンガン酸化物と、平均粒
子径1μm〜10μmの活性炭の混合物を使用し、空気
極の単位体積あたりの反応場を増加させることで、放電
性能を維持した空気極が実現できた。この結果から負極
容積を増加して放電容量を増加することができる。
As described above, in the present invention, manganese oxide having an average particle size of 0.5 μm to 1.0 μm and manganese oxide having an average particle size of 1 μm to By using a mixture of activated carbon of 10 μm and increasing the reaction field per unit volume of the air electrode, an air electrode maintaining the discharge performance was realized. From this result, the discharge capacity can be increased by increasing the negative electrode volume.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のボタン型空気亜鉛電池の構成を示す断
面図
FIG. 1 is a cross-sectional view showing a configuration of a button-type zinc-air battery of the present invention.

【符号の説明】[Explanation of symbols]

1 亜鉛 2 負極ケース 3 樹脂ガスケット 4 正極ケース 5 不織布およびセパレータ 6 空気極 7 撥水膜 8 空気孔 9 空気拡散紙 10 シール紙 DESCRIPTION OF SYMBOLS 1 Zinc 2 Negative electrode case 3 Resin gasket 4 Positive electrode case 5 Nonwoven fabric and separator 6 Air electrode 7 Water repellent film 8 Air hole 9 Air diffusion paper 10 Seal paper

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素を活物質とし、マンガン酸化物、活
性炭の混合物を主触媒物質とする空気極と、亜鉛を負極
活物質とする亜鉛負極とを備えてなる空気亜鉛電池であ
って、該マンガン酸化物の平均粒子径が0.5μm〜
1.0μmの範囲にあり、該活性炭の平均粒子径が1μ
m〜10μmの範囲にあることを特徴とする空気亜鉛電
池。
1. An air zinc battery comprising: an air electrode having oxygen as an active material, a mixture of manganese oxide and activated carbon as a main catalyst material; and a zinc anode having zinc as a negative electrode active material. The average particle size of the manganese oxide is 0.5 μm or more
1.0 μm, and the average particle size of the activated carbon is 1 μm.
A zinc air battery having a diameter in the range of m to 10 μm.
【請求項2】 該マンガン酸化物と該活性炭との配合割
合が、両者の合計に占めるマンガン酸化物の重量割合で
25〜60%にある請求項1記載の空気亜鉛電池。
2. The zinc-air battery according to claim 1, wherein the mixing ratio of the manganese oxide and the activated carbon is 25 to 60% by weight of the total amount of the manganese oxide.
JP10152461A 1998-06-02 1998-06-02 Air-zinc cell Pending JPH11345633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10152461A JPH11345633A (en) 1998-06-02 1998-06-02 Air-zinc cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10152461A JPH11345633A (en) 1998-06-02 1998-06-02 Air-zinc cell

Publications (1)

Publication Number Publication Date
JPH11345633A true JPH11345633A (en) 1999-12-14

Family

ID=15541029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10152461A Pending JPH11345633A (en) 1998-06-02 1998-06-02 Air-zinc cell

Country Status (1)

Country Link
JP (1) JPH11345633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026143A (en) * 2003-07-04 2005-01-27 Toshiba Battery Co Ltd Air cell
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026143A (en) * 2003-07-04 2005-01-27 Toshiba Battery Co Ltd Air cell
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode
US8252451B2 (en) 2008-10-08 2012-08-28 Toyota Jidosha Kabushiki Kaisha Battery electrode and battery electrode manufacturing method

Similar Documents

Publication Publication Date Title
EP0902737B1 (en) Flexible thin layer open electrochemical cell
US4957826A (en) Rechargeable metal-air battery
US6127061A (en) Catalytic air cathode for air-metal batteries
US6060196A (en) Storage-stable zinc anode based electrochemical cell
JP6836603B2 (en) Metal-air battery
US3023258A (en) Hermetically sealed galvanic smoothing or stabilization cell
US20040023112A1 (en) Granular anode for metal-air fuel cell battery
JPH11345633A (en) Air-zinc cell
JPH10302808A (en) Oxygen reduction electrode and zinc air cell
JP4122418B2 (en) Air zinc battery
JPS6337943B2 (en)
JPS6396873A (en) Thin type air battery
JPH1064603A (en) Zinc air battery
JPS63138668A (en) Thin type air cell
JP2000058139A (en) Air cell
JPH0557707B2 (en)
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JPH1154161A (en) Air zinc battery
JP2000268888A (en) Air battery
JPH09199187A (en) Button type air-zinc battery
JPH08241699A (en) Button type alkaline battery
JPH08203538A (en) Gas diffusion type air electrode
JPH10172580A (en) High-output air zinc battery of button type
JPH08315870A (en) Cylindrical air zinc battery
JPH1083841A (en) Oxygen reducing electrode and its manufacture and battery using the electrode

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322