JPH11345620A - Polymer electrolyte fuel cell and its manufacture - Google Patents

Polymer electrolyte fuel cell and its manufacture

Info

Publication number
JPH11345620A
JPH11345620A JP10152470A JP15247098A JPH11345620A JP H11345620 A JPH11345620 A JP H11345620A JP 10152470 A JP10152470 A JP 10152470A JP 15247098 A JP15247098 A JP 15247098A JP H11345620 A JPH11345620 A JP H11345620A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
electrolyte fuel
electrode
polyisobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10152470A
Other languages
Japanese (ja)
Other versions
JP3640333B2 (en
Inventor
Kazuhito Hado
一仁 羽藤
Eiichi Yasumoto
栄一 安本
Kazufumi Nishida
和史 西田
Hisaaki Gyoten
久朗 行天
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15247098A priority Critical patent/JP3640333B2/en
Priority to PCT/JP1999/002832 priority patent/WO1999063610A1/en
Priority to EP99922549A priority patent/EP1009052B1/en
Priority to KR10-2000-7000934A priority patent/KR100372926B1/en
Publication of JPH11345620A publication Critical patent/JPH11345620A/en
Priority to US09/497,058 priority patent/US6531236B1/en
Priority to US10/330,886 priority patent/US6869719B2/en
Priority to US10/910,044 priority patent/US20050003260A1/en
Application granted granted Critical
Publication of JP3640333B2 publication Critical patent/JP3640333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Fuel Cell (AREA)
  • Sealing Material Composition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent leak of a fuel gas and water produced by electrode reaction to the outside of a fuel cell by using a polymer material having polyiosbutylene in the principal chain as a sealing material in the periphery of a reaction electrode. SOLUTION: A pair of reaction electrodes arranged on both sides of a solid polymer electrolyte film is interposed between a pair of bipolar plates for supplying/-exhausting fuel gas, and cooling jigs are attached to the bipolar plates. A sealing material made from a polymer material having polyisobutylene in the principal chain represented by the formula is arranged in the periphery of a reaction electrode. In the formula, R1 , R2 are non-functional groups at the terminals, Xi, Yi are functional groups capable of polymerizing and form the crosslinking points after polymerization, (m) is an integer of at least 1 representing the repeating number of isobutylene oligomer, and (i) is an integer of at least one representing polymerization degree. Leak of a coolant passing through a cooling jig to the outside of a fuel cell is prevented. Mixing of an electron conducting material to the polymer material of the sealing material is allowable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池に関する。
[0001] The present invention relates to a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、プロトン伝
導性の高分子電解質薄膜と、アノ−ドおよびカソ−ドの
反応電極と、それぞれの反応電極の周縁部に配置したガ
スケット状のシール材、さらにカ−ボンあるいは金属製
のバイポ−ラ板と、バイポーラ板を冷却するための冷却
板とにより構成する。
2. Description of the Related Art A polymer electrolyte fuel cell is composed of a proton conductive polymer electrolyte thin film, anode and cathode reaction electrodes, and a gasket-shaped sealing material disposed at the periphery of each reaction electrode. And a bipolar plate made of carbon or metal, and a cooling plate for cooling the bipolar plate.

【0003】電池の電気化学反応を起こす電極触媒層の
構成は、貴金属触媒を担持したカ−ボン粉末と、前述の
プロトン伝導性の高分子電解質薄膜と同じ材料とを混合
したものを用いる。また、必要によりフルオロカ−ボン
化合物系の撥水材をこれに添加する。反応電極は、前述
の電極触媒層とガス拡散層とを接合した構成を有する。
The structure of an electrode catalyst layer that causes an electrochemical reaction of a battery is a mixture of carbon powder carrying a noble metal catalyst and the same material as the above-mentioned proton conductive polymer electrolyte thin film. If necessary, a fluorocarbon compound-based water-repellent material is added thereto. The reaction electrode has a configuration in which the above-described electrode catalyst layer and the gas diffusion layer are joined.

【0004】アノ−ドおよびカソ−ドの構成材料は、純
水素を燃料として用いる場合、同一のものを使用するこ
とが可能である。炭化水素系燃料を改質した水素リッチ
なガスを燃料とする場合、改質ガス中に含まれる一酸化
炭素による貴金属触媒の被毒を抑制するため、アノ−ド
側のみにルテニウムなどの耐CO被毒材料を添加するこ
とも提案されている。
[0004] When pure hydrogen is used as fuel, the same material can be used for the anode and the cathode. When a hydrogen-rich gas obtained by reforming a hydrocarbon-based fuel is used as a fuel, the poisoning of the noble metal catalyst by carbon monoxide contained in the reformed gas is suppressed. It has also been proposed to add poisoning materials.

【0005】高分子電解質は、側鎖の末端にスルホン基
をペンダントした炭化フッソ系の高分子を用いることが
出来る。この電解質は水分を含んだ状態でプロトン伝導
性を有する。そのため電池を作動させるためには、高分
子電解質を常に水分を含んだ状態にする必要がある。水
分を含んだ状態での高分子電解質は、末端のスルホン基
から解離するH+により、強い酸性を呈する。このた
め、電解質と直接接する部分の材料には耐酸性が要求さ
れる。また、反応電極中にも電解質と同等の材料を混合
するため、反応電極と直接接する部分に使用する材料に
も耐酸性が要求される。以上の理由により、これまで電
解質と直接接するガスケット等のシール材には、耐酸性
の強いフルオロカ−ボン系の高分子材料が用いられてき
た。
As the polymer electrolyte, a fluorinated carbon-based polymer having a pendant sulfone group at the terminal of the side chain can be used. This electrolyte has proton conductivity in a state containing water. Therefore, in order to operate the battery, it is necessary to keep the polymer electrolyte moist. The polymer electrolyte containing water exhibits strong acidity due to H + dissociated from the terminal sulfone group. For this reason, the material of the part in direct contact with the electrolyte is required to have acid resistance. In addition, since a material equivalent to the electrolyte is also mixed in the reaction electrode, a material used in a portion directly in contact with the reaction electrode also needs to have acid resistance. For the above reasons, a fluorocarbon polymer material having strong acid resistance has been used as a sealing material such as a gasket which is in direct contact with the electrolyte.

【0006】一方、反応電極の周縁部にはガスケット状
のシール材を配置し、これを一対のバイポ−ラ板で挟持
し、それぞれのカソードおよびアノード反応電極に供給
した燃料ガスを外部に逃がさなようにする。従来、フッ
素系樹脂等の硬いガスケットを予め電極の周縁部に設置
した後、バイポ−ラ板で挟持していたため、電極とガス
ケットの厚みを予め精度良く調整しておく必要があっ
た。
On the other hand, a gasket-like sealing material is arranged around the periphery of the reaction electrode, and is sandwiched between a pair of bipolar plates to prevent the fuel gas supplied to the respective cathode and anode reaction electrodes from escaping to the outside. To do. Conventionally, a hard gasket such as a fluororesin was previously set on the peripheral portion of the electrode and then sandwiched between bipolar plates, so that the thickness of the electrode and the gasket had to be precisely adjusted in advance.

【0007】しかし、ガスケットがゴム状の弾力性を有
すれば、厳密な寸法精度は必要なく、ある程度の厚み調
整でガスケットとしての機能を果たすことが可能とな
る。そこで、ガスケットに求められる特性として、耐酸
性と共に、ゴム状の弾力性を有することが望ましい。そ
のため、フッ素系樹脂と比較すると耐酸性は劣るが、弾
力性を有するエチレン−プロピレン−ジエン系ゴム(E
PDM)等がガスケット材料として使用される場合もあ
った。
However, if the gasket has rubber-like elasticity, strict dimensional accuracy is not required, and the function as a gasket can be achieved by adjusting the thickness to some extent. Therefore, it is desirable for the gasket to have rubber-like elasticity as well as acid resistance as characteristics required for the gasket. Therefore, the ethylene-propylene-diene-based rubber (E
PDM) and the like were sometimes used as gasket materials.

【0008】また、バイポ−ラ板は、電極と直接接する
ため耐酸性が要求されると同時に、ガスタイトであり、
高い電気伝導性を有することが求められる。また、酸化
剤として空気を用いる場合には、カソ−ドに供給される
空気の流速を高めて、生成する水または水蒸気を効率良
く排除する必要がある。そこでバイポ−ラ板のガス流路
構造には、第1図に示したような、通常サ−ペンタイン
型と呼ばれる複雑な流路構造が用いられてきた。バイポ
−ラ板の材料は、ガスタイトである緻密カ−ボン板や、
樹脂を含浸したカ−ボン板、あるいはグラッシ−カ−ボ
ン等のカ−ボン系材料を用い、これに切削加工を施し、
ガス流通溝を設けてバイポ−ラ板とした。また、必要に
より耐食性合金板を切削加工し、また貴金属メッキを施
してバイポ−ラ板として用いてきた。
[0008] Further, the bipolar plate is required to have acid resistance since it is in direct contact with the electrode, and at the same time, is gas tight.
It is required to have high electric conductivity. When air is used as the oxidizing agent, it is necessary to increase the flow rate of the air supplied to the cathode to efficiently remove generated water or water vapor. Therefore, a complicated flow path structure usually called a serpentine type as shown in FIG. 1 has been used for the gas flow path structure of the bipolar plate. The material of the bipolar plate is a dense carbon plate that is gas tight,
Using a carbon-based material such as a carbon plate impregnated with resin or glassy carbon, and performing a cutting process on this,
A gas circulation groove was provided to form a bipolar plate. If necessary, a corrosion-resistant alloy plate is cut and plated with a noble metal to use it as a bipolar plate.

【0009】さらに、必要に応じ、電極と接する電気伝
導性の必要な部位にのみ、前記カ−ボン系材料や耐食性
金属材料を用い、周辺部のマニホ−ルド部などの電気伝
導性の必要ない部分には樹脂を使った複合材料のバイポ
−ラ板等の試みもあった。
Further, if necessary, the above-mentioned carbon-based material or corrosion-resistant metal material is used only in a portion requiring electrical conductivity in contact with the electrode, and there is no need for electrical conductivity such as a peripheral manifold portion. In some parts, there have been attempts to use a bipolar plate of a composite material using a resin.

【0010】また、カ−ボン粉末や金属粉末と樹脂とを
混合し、プレスまたは射出整形により整形することも提
案されている。
It has also been proposed to mix a carbon powder or a metal powder with a resin and to shape the mixture by pressing or injection shaping.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、フルオ
ロカ−ボン系の材料をガスケット等のシール材に用いる
と、高コストであるという課題がある。また、フルオロ
カ−ボン系の材料は一般に樹脂としては非常に硬く、ガ
スまたは冷却水をシ−ルするためには非常に大きな荷重
でガスケットを締め付けなければならない。そのため、
多孔質なフルオロカ−ボン系の材料を用いる試みや、ペ
−スト状のフルオロカ−ボン材料をバイポ−ラ板などに
塗布し、乾燥または半乾燥状態で用いる試みがなされて
いるが、多孔質なフルオロカ−ボン系の材料は依然とし
て高価である。加えて、多孔性が無くなるまで荷重をか
けて締め付けなければ十分なシ−ル効果が得られないと
いう課題があった。
However, when a fluorocarbon-based material is used for a sealing material such as a gasket, there is a problem that the cost is high. Further, fluorocarbon-based materials are generally very hard as a resin, and a gasket must be tightened with a very large load in order to seal gas or cooling water. for that reason,
Attempts have been made to use a porous fluorocarbon-based material, or to apply a paste-like fluorocarbon material to a bipolar plate or the like and use it in a dry or semi-dry state. Fluorocarbon-based materials are still expensive. In addition, there is a problem that a sufficient sealing effect cannot be obtained unless a load is tightened until the porosity is lost.

【0012】一方、シール材にペ−スト状のフルオロカ
−ボン材料を用いても、材料自身が高価であることに変
わりはなく、また乾燥させた状態では、やはり硬いた
め、塗布時の厚み調整が困難であった。また、EPDM
等のゴム状材料は、フッ素系樹脂ほどの耐酸性を持たな
いため、長時間の使用には不向きである。さらに、一般
的なEPDMは熱可塑性を有するため、80℃程度の電
池運転温度で使用する場合には、経時的な変形を伴い、
場合によってはガス流路を閉塞し、燃料の供給量を低下
させるという課題があった。
On the other hand, even if a paste-like fluorocarbon material is used for the sealing material, the material itself is still expensive, and when dried, it is still hard, so that the thickness can be adjusted during coating. Was difficult. Also, EPDM
Are not suitable for long-time use because they do not have acid resistance as much as fluorine resin. Furthermore, since general EPDM has thermoplasticity, it is deformed with time when used at a battery operating temperature of about 80 ° C.
In some cases, there has been a problem that the gas flow path is closed to reduce the fuel supply amount.

【0013】さらに、バイポ−ラ板の材料に関しては、
ガスタイトで緻密なカ−ボン板やグラッシ−カ−ボンを
用いた場合、ガス流路などの加工には切削加工を施さな
ければならない。これは、量産化・低コスト化の観点か
ら、不向きである。また、樹脂を含浸したカ−ボン板を
用いる場合には、樹脂がほとんど弾性を持たないため、
ガス流路などの加工を施した後に樹脂を含浸すると、カ
−ボン板に反りが発生する。そのため、予め樹脂を含浸
した後に、ガス流路などの加工を行う必要があり、切削
加工等による後処理が必要であった。また、フェノ−ル
樹脂やシリコン樹脂などを含浸材として用いた場合、耐
酸性に問題があった。また、耐食性合金や貴金属メッキ
板等を用いる場合にも、サ−ペンタイン型の流路構造を
用いるためには切削加工が必要であった。
Further, regarding the material of the bipolar plate,
When a gas-tight and dense carbon plate or glass carbon is used, the gas flow path and the like must be cut. This is not suitable from the viewpoint of mass production and cost reduction. When a carbon plate impregnated with a resin is used, the resin has little elasticity.
If a resin is impregnated after processing such as a gas flow path, the carbon plate warps. For this reason, after the resin is impregnated in advance, it is necessary to process the gas flow path and the like, and post-processing such as cutting is required. Further, when phenol resin or silicone resin is used as the impregnating material, there is a problem in acid resistance. Further, even when a corrosion-resistant alloy, a noble metal plated plate, or the like is used, a cutting process is required in order to use a serpentine type flow path structure.

【0014】さらに、カ−ボン粉末や金属粉末と樹脂と
を混合し、プレスまたは射出整形により整形する場合
も、樹脂自身に耐酸性が必要である。この点、フッ素系
樹脂などの硬い材料を用いると流動性が低く、成形が難
しかった。また、流動性が悪い樹脂を使用すると、樹脂
の含有率を低減させる必要があるため、成型後に、ガス
タイト性が必要な部位に再度樹脂などを含浸するなどの
後処理が必要であり、それだけ構成が複雑になるという
課題があった。
Further, when carbon powder or metal powder is mixed with a resin and shaped by pressing or injection shaping, the resin itself needs to have acid resistance. In this regard, when a hard material such as a fluorine-based resin is used, the fluidity is low and molding is difficult. In addition, if a resin with poor fluidity is used, it is necessary to reduce the content of the resin. Therefore, after molding, it is necessary to perform a post-treatment such as impregnating the portion requiring gas tightness with the resin again. There was a problem that was complicated.

【0015】[0015]

【課題を解決するための手段】以上の課題を解決するた
め、本発明の高分子電解質型燃料電池は、固体高分子電
解質膜を挟む一対の反応電極を、前記反応電極に燃料ガ
スを供給排出するための一対のバイポーラ板で挟持し、
前記バイポ−ラ板に冷却用治具を取り付けた高分子電解
質型燃料電池において、前記反応電極の周りに(化3)
で示したポリイソブチレンを主鎖骨格とする高分子材料
で構成したシール材を配置し、前記燃料ガスと前記反応
電極における生成水との電池外部への離散を防止したこ
とを特徴とする。
In order to solve the above-mentioned problems, a polymer electrolyte fuel cell according to the present invention comprises a pair of reaction electrodes sandwiching a solid polymer electrolyte membrane. Between a pair of bipolar plates,
In a polymer electrolyte fuel cell in which a cooling jig is attached to the bipolar plate, the reaction electrode is formed around the reaction electrode.
A sealing material made of a polymer material having polyisobutylene as a main chain skeleton is disposed to prevent the fuel gas and water generated at the reaction electrode from being separated outside the battery.

【0016】[0016]

【化3】 Embedded image

【0017】また、固体高分子電解質膜を挟む一対の反
応電極を、前記反応電極に燃料ガスを供給排出するため
の一対のバイポーラ板で挟持し、前記バイポ−ラ板に冷
却用治具を取り付けた高分子電解質型燃料電池におい
て、前記冷却用治具は、(化3)で示したポリイソブチ
レンを主鎖骨格とする高分子材料で構成したシール材を
具備し、前記冷却用治具を通過する冷却剤の電池外部へ
の離散を防止したしたことを特徴とする。このとき、シ
ール材は、(化3)で示したポリイソブチレンを主鎖骨
格とする高分子材料と、電子導電性材料との混合物であ
ることを特徴とする。
Also, a pair of reaction electrodes sandwiching the solid polymer electrolyte membrane is sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In the polymer electrolyte fuel cell described above, the cooling jig includes a sealing material composed of a polymer material having polyisobutylene as a main chain skeleton shown in (Chem. 3), and passes through the cooling jig. The coolant is prevented from being dispersed outside the battery. At this time, the sealant is characterized in that it is a mixture of a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 3) and an electronic conductive material.

【0018】また、固体高分子電解質膜を挟む一対の反
応電極を、前記反応電極に燃料ガスを供給排出するため
の一対のバイポーラ板で挟持し、前記バイポ−ラ板に冷
却用治具を取り付けた高分子電解質型燃料電池におい
て、前記高分子電解質型燃料電池から排出した冷却水
と、前記高分子電解質型燃料電池に導入する燃料ガスと
を熱交換し、かつ加湿と加熱とを同時に行う加湿部が、
(化3)で示したポリイソブチレンを主鎖骨格とする高
分子材料で構成したシ−ル材を具備し、前記冷却水と前
記燃料ガスの電池外部への離散を防止したことを特徴と
する。
Also, a pair of reaction electrodes sandwiching the solid polymer electrolyte membrane is sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In a polymer electrolyte fuel cell, heat exchange is performed between cooling water discharged from the polymer electrolyte fuel cell and fuel gas introduced into the polymer electrolyte fuel cell, and humidification is performed simultaneously with humidification and heating. Department
A sealing material composed of a polymer material having polyisobutylene as a main chain skeleton as shown in (Chemical Formula 3), wherein the cooling water and the fuel gas are prevented from being separated outside the cell. .

【0019】また、固体高分子電解質膜を挟む一対の反
応電極を、前記反応電極に燃料ガスを供給排出するため
の一対のバイポーラ板で挟持し、前記バイポ−ラ板に冷
却用治具を取り付けた高分子電解質型燃料電池におい
て、前記反応電極の周りもしくは前記冷却用治具に、耐
熱性の硬質樹脂からなる中心層を弾性を有する樹脂もし
くはゴムよりなる層で挟持した3層積層構造のシール材
を配置し、前記燃料ガスもしくは前記冷却治具で使用す
る冷却剤の電池外部への離散を防止したことを特徴とす
る。
Further, a pair of reaction electrodes sandwiching the solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plate. In a polymer electrolyte fuel cell, a seal having a three-layer laminated structure in which a central layer made of a heat-resistant hard resin is sandwiched between layers of elastic resin or rubber around the reaction electrode or the cooling jig. A material is arranged to prevent the fuel gas or the coolant used in the cooling jig from scattering outside the battery.

【0020】また、3層積層構造のシール材の中心層を
ポリエチレンテレフタレ−ト樹脂で構成し、これを挟持
する外側の層を(化1)で示したポリイソブチレンを主
鎖骨格とする高分子材料で構成したことを特徴とする。
The central layer of the three-layer laminated sealing material is made of polyethylene terephthalate resin, and the outer layer sandwiching the central layer is made of polyisobutylene represented by the formula (1) having a main chain skeleton. It is characterized by being composed of a molecular material.

【0021】以上で用いた、(化3)において、重合性
二重結合を有する官能基は、アリル基、アクリロイル
基、メタクリロイル基、イソシアネート基、エポキシ基
より選ばれることが望ましい。
In (Chemical Formula 3) used above, the functional group having a polymerizable double bond is desirably selected from allyl, acryloyl, methacryloyl, isocyanate, and epoxy groups.

【0022】また、(化1)で示したポリイソブチレン
を主鎖骨格とする高分子材料のイソブチレンオリゴマー
の繰り返し数mは、56≦m≦72であり、平均64で
あることが望ましい。
The repeating number m of the isobutylene oligomer of the polymer material having polyisobutylene as the main chain skeleton shown in Chemical formula 1 satisfies 56 ≦ m ≦ 72, and desirably 64 on average.

【0023】また、(化3)で示したポリイソブチレン
を主鎖骨格とする高分子材料の重合度は、8000以上
であることが望ましい。
The degree of polymerization of the polymer material having polyisobutylene as the main chain skeleton shown in Chemical formula 3 is desirably 8000 or more.

【0024】また、(化3)で示したポリイソブチレン
を主鎖骨格とする高分子材料で構成したシール材は、
(化4)示した反応性オリゴマーを少なくとも含有する
溶液を、シール箇所に塗布した後、前記反応性オリゴマ
ーの共重合により硬化することで形成したことを特徴と
する。
Further, a sealing material composed of a polymer material having polyisobutylene as a main chain skeleton represented by the following chemical formula (3):
(Chemical Formula 4) The solution is characterized in that a solution containing at least the reactive oligomer shown above is applied to a sealing portion and then cured by copolymerization of the reactive oligomer.

【0025】[0025]

【化4】 Embedded image

【0026】[0026]

【発明の実施の形態】本発明の高分子電解質型燃料電池
は、構成要素である反応電極のシール材や、冷却水のシ
−ル材料、または内部加湿部の水またはガスをシ−ルす
る材料に、(化1)で示したポリイソブチレンを主鎖骨
格とする高分子材料を用いたものであり、これにより、
安価で耐酸性を有するシ−ル材を可能とすることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer electrolyte fuel cell of the present invention seals a sealing material for a reaction electrode as a constituent element, a sealing material for cooling water, or water or gas in an internal humidifying section. As the material, a polymer material having a main chain skeleton of polyisobutylene represented by (Chemical Formula 1) is used.
An inexpensive sealant having acid resistance can be obtained.

【0027】このときの製造方法は、(化2)示した反
応性オリゴマーを少なくとも含有する溶液を、シール箇
所に塗布した後、前記反応性オリゴマーの共重合により
硬化することで、安価に製造できる。
The production method at this time can be produced at low cost by applying a solution containing at least the reactive oligomer shown in (Chemical Formula 2) to a sealing portion and then curing by copolymerization of the reactive oligomer. .

【0028】(化1)で示したポリイソブチレンを主鎖
骨格とする高分子材料は、耐酸性に優れ、安価であり、
かつ弾性を有し、耐熱性を有するため、ガスケットや冷
却水のシ−ル材料としてフッ素系樹脂系樹脂やEPDM
などより優れている。
The polymer material having polyisobutylene as the main chain skeleton shown in Chemical formula 1 has excellent acid resistance, is inexpensive,
And because it has elasticity and heat resistance, it can be used as a gasket or cooling water
And more.

【0029】また、(化1)で示したポリイソブチレン
を主鎖骨格とする高分子材料を含浸したカ−ボン板をバ
イポ−ラ−板として用いる場合、樹脂が弾性を有するた
め、緻密性を有さないカ−ボン板にガス流路などの加工
を施した後に樹脂を含浸する事が可能である。樹脂を含
浸する前の緻密でないカ−ボン板は、樹脂を含浸した後
と比べ、柔らかく加工性が良好であるため、加工を大幅
に容易にできる。
When a carbon plate impregnated with a polymer material having polyisobutylene as a main chain skeleton and represented by the formula (1) is used as a bipolar plate, the resin has elasticity and therefore has a high density. It is possible to impregnate the resin after performing processing such as a gas flow path on a carbon plate having no carbon plate. The non-dense carbon plate before the impregnation with the resin is soft and has good workability as compared with that after the impregnation with the resin, so that the processing can be greatly facilitated.

【0030】さらに、カ−ボン粉末や金属粉末と(化
1)で示したポリイソブチレンを主鎖骨格とする高分子
材料とを混合し、プレスまたは射出整形により整形する
場合も、樹脂が弾力性を有するため成型時の流動性を改
善できる。また、樹脂の添加量を増加させても、成型時
の流動性が良好であるため、成型後の後処理などの工程
も省略することができる。
Further, when the carbon powder or the metal powder is mixed with the polymer material having the main chain skeleton of polyisobutylene shown in the chemical formula (1), and the resin is shaped by pressing or injection shaping, the resin has elasticity. , The fluidity during molding can be improved. Even if the amount of the resin added is increased, the fluidity during molding is good, so that steps such as post-processing after molding can be omitted.

【0031】また、バイポ−ラ板の内、電気伝導性を必
要とする部分にのみカ−ボンあるいは金属を使用し、電
気伝導性の必要ないマニホ−ルド等の複雑な形状を形成
させる周辺部やシ−ル部分に(化1)で示したポリイソ
ブチレンを主鎖骨格とする高分子材料を用いる場合、ゴ
ム状の柔軟性を有するため、シ−ルが容易である。か
つ、電気伝導性の必要な部分に用いられているカ−ボン
や金属材料と、電気伝導性が必要ない部分に用いられて
いる(化1)で示したポリイソブチレンを主鎖骨格とす
る高分子材料の熱膨張計数が異なっても、ゴム状の柔軟
性を有するため、電池の昇降温時に熱膨張計数の違いに
起因するバイポ−ラ板自身の破損などを招くおそれもな
い。
In the bipolar plate, carbon or metal is used only in a portion requiring electrical conductivity, and a peripheral portion which forms a complicated shape such as a manifold which does not require electrical conductivity. When a polymer material having polyisobutylene as a main chain skeleton represented by (Chemical Formula 1) is used for the seal portion or the seal portion, the seal is easy because of the rubber-like flexibility. In addition, a carbon or metal material used for a portion requiring electric conductivity and a polyisobutylene represented by the formula (1) used for a portion not requiring electric conductivity have a main chain skeleton. Even if the molecular materials have different coefficients of thermal expansion, they have rubber-like flexibility, so that the bipolar plate itself may not be damaged due to the difference in thermal expansion coefficient when the temperature of the battery rises or falls.

【0032】以上の記載中、(化1)と(化3)で示し
たポリマーは、繰り返し数mのイソブチレンオリゴマー
に末端官能基XとYを付加したものを1単位として、末
端官能基部分で架橋したものである。X、Yとしてアリ
ル基、アクリロイル基、メタクリロイル基、イソシアネ
ート基、エポキシ基を用いたとき、これらの官能基は多
官能基であるので、これらを架橋点とすると、重合後の
ポリマーはマトリックス状に架橋した網目状構造とな
る。
In the above description, the polymer represented by (Chemical Formula 1) or (Chemical Formula 3) is obtained by adding a terminal functional group X and Y to an isobutylene oligomer having a repetition number m as one unit. Crosslinked. When an allyl group, an acryloyl group, a methacryloyl group, an isocyanate group, or an epoxy group is used as X and Y, since these functional groups are polyfunctional groups, if these are used as crosslinking points, the polymer after polymerization becomes a matrix. A crosslinked network structure results.

【0033】この時、ポリマーの物性は、(化1)と
(化3)で示した高分子材料中の、イソブチレンオリゴ
マーの繰り返し数mと、全体の重合度iと、末端官能基
の種類に大きく影響を受ける。発明者の検討の結果、こ
の材料を高分子電解質型燃料電池でのシール材に使用す
るときは、イソブチレンオリゴマーの繰り返し数mは、
56≦m≦72であり、平均64であることが望まし
く、また、重合度iは、8000以上であることが望ま
しいことを見出した。
At this time, the physical properties of the polymer depend on the number of repetitions m of the isobutylene oligomer, the overall degree of polymerization i, and the type of the terminal functional group in the polymer material shown in (Chem. 1) and (Chem. 3). Significantly affected. As a result of the study by the inventor, when this material is used for a sealing material in a polymer electrolyte fuel cell, the number m of repeating isobutylene oligomers is as follows:
It has been found that 56 ≦ m ≦ 72, it is desirable that the average is 64, and the degree of polymerization i is desirably 8000 or more.

【0034】[0034]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】(実施例1)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
Example 1 A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black-based carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0036】[0036]

【化5】 Embedded image

【0037】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0038】[0038]

【化6】 Embedded image

【0039】次に、図3で示したように、反応電極用と
ガスマニホ−ルド用の孔を設け、板状に成型したガスケ
ット状シールを作製した。この中心部にある反応電極用
の孔に対して、前記MEAの反応電極部分が勘合するよ
うに、2枚のガスケットシールでMEAの電極周辺部の
電解質膜部を挟みこんだ。さらに図1に示した形状の非
多孔質カ−ボン板を素材とするバイポ−ラ板のガス流路
が向かい合う形で、2枚のバイポ−ラ板の間にMEAと
ガスケットシールを挟んで、高分子電解質型燃料電池を
構成した。
Next, as shown in FIG. 3, a hole for a reaction electrode and a hole for a gas manifold were provided, and a gasket-like seal was formed into a plate shape. The electrolyte membrane at the periphery of the MEA electrode was sandwiched between two gasket seals so that the reaction electrode portion of the MEA fit into the reaction electrode hole at the center. Further, the gas flow path of the bipolar plate made of a non-porous carbon plate having the shape shown in FIG. 1 is opposed to each other, and the MEA and the gasket seal are sandwiched between the two bipolar plates. An electrolyte fuel cell was constructed.

【0040】この高分子電解質型燃料電池の両外側に、
ガスマニホ−ルド用の孔を設けたヒ−タ−板・集電板・
絶縁板・エンドプレ−トを取り付け、最外側の両エンド
プレ−ト間を、ボルトとバネとナットを用いて、電極面
積に対して20kg/cm2の圧力で締め付け、高分子
電解質型燃料電池の単電池を構成した。
On both outer sides of the polymer electrolyte fuel cell,
Heater plate, current collector plate, and gas manifold
An insulating plate and an end plate are attached, and the outermost end plates are tightened between the outermost end plates with a bolt, a spring, and a nut at a pressure of 20 kg / cm 2 with respect to the electrode area. A battery was configured.

【0041】以上の板状成型体ガスケット状シールは、
(化1)で示したポリイソブチレンを主鎖骨格とする高
分子材料で構成した厚さ250μmの物に、必要な孔を
打ち抜いて使用した。
The above-mentioned gasket-like seal in the form of a plate-like molded product
Necessary holes were punched out of a 250 μm thick material composed of a polymer material having polyisobutylene as a main chain skeleton shown in Chemical Formula 1 and used.

【0042】このように作製した高分子電解質型燃料電
池を、75℃に保持し、一方の電極側に73℃の露点と
なるよう加湿・加温した水素ガスを、もう一方の電極側
に68℃の露点となるように加湿・加温した空気を供給
した。その結果、電流を外部に出力しない無負荷時に
は、0.98Vの電池開放電圧を得た。
The thus prepared polymer electrolyte fuel cell was maintained at 75 ° C., and hydrogen gas humidified and heated to a dew point of 73 ° C. was applied to one electrode side, and 68 μm was applied to the other electrode side. Air humidified and heated to a dew point of ° C was supplied. As a result, when there was no load in which no current was output to the outside, a battery open-circuit voltage of 0.98 V was obtained.

【0043】また、この電池のガスケット状シール部
(周辺部)からのガスリ−クを測定したが、ガス漏れは
なかった。さらに、この電池を燃料利用率80%、酸素
利用率40%、電流密度0.3A/cm2の条件で連続
発電試験を行ったところ、5000時間以上にわたって
0.7V以上の電池電圧を維持した。
The gas leak from the gasket-shaped seal portion (peripheral portion) of this battery was measured, and no gas leak was found. Further, the battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.3 A / cm 2 , and a battery voltage of 0.7 V or more was maintained for 5000 hours or more. .

【0044】比較例として、板状成型体ガスケット状シ
ールを、(化1)で示したポリイソブチレンを主鎖骨格
とする高分子材料に替わり、(化7)で示したシリコン
樹脂、EPDM,ポリテトラフルオロエチレンで構成し
た高分子電解質型燃料電池を作成し、同条件で発電試験
を行った。
As a comparative example, a gasket-like seal in the form of a plate was replaced with a polymer material having polyisobutylene as the main chain skeleton shown in (Chemical Formula 1), and a silicone resin, EPDM, A polymer electrolyte fuel cell composed of tetrafluoroethylene was prepared, and a power generation test was performed under the same conditions.

【0045】[0045]

【化7】 Embedded image

【0046】その結果、シリコン樹脂を用いた物は、初
期は良好な特性が得られたが、約2000時間経過後、
ガスケット状シール部分から水素ガスのリ−クが検出さ
れた。電池を分解観察したところシリコン製のガスケッ
ト部分が変質していたことが判明した。
As a result, the product using the silicone resin had good characteristics at the beginning, but after about 2,000 hours,
Leak of hydrogen gas was detected from the gasket-shaped seal portion. When the battery was disassembled and observed, it was found that the silicon gasket had been altered.

【0047】EPDMを用いた物は、初期には同様に良
好な特性が得られたが、約200時間経過後、突然電池
電圧が発生しなくなった。電池を分解観察したところ、
ガス流路にEPDM製のガスケットがたれ込み、ガス流
路を閉塞していたことが判明した。
In the device using EPDM, good characteristics were similarly obtained at the beginning, but after approximately 200 hours, the battery voltage suddenly stopped generating. When the battery was disassembled and observed,
It was found that a gasket made of EPDM leaned into the gas flow path and closed the gas flow path.

【0048】ポリテトラフルオロエチレンを用いた物
は、組立直後からガスケット部分からの水素ガスのリ−
クが検出された。
In the case of using polytetrafluoroethylene, hydrogen gas is leaked from the gasket immediately after assembly.
Has been detected.

【0049】本実施例で用いた(化1)で示したポリイ
ソブチレンを主鎖骨格とする高分子材料は、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を56≦m≦72、平均64とし、官能基XおよびYを
共にアリル基としたものに、加速電圧200keV、照
射線量10Mradの電子線照射を行うことで重合し
た。重合度は約1万であった。
The polymer material having polyisobutylene as the main chain skeleton represented by Chemical formula 1 used in the present example was obtained by repeating the isobutylene oligomer in the structure represented by Chemical formula 2 with the number of repetitions m
Was set to 56 ≦ m ≦ 72 and averaged to 64, and the functional groups X and Y both having an allyl group were polymerized by performing electron beam irradiation at an acceleration voltage of 200 keV and an irradiation dose of 10 Mrad. The polymerization degree was about 10,000.

【0050】なを、イソブチレンオリゴマーの繰り返し
数mを56よりも小さくすると、重合後のポリマーは堅
く、組立後の電池のガスケット部分からの水素ガスのリ
−クをなくすのに、より大きい締め付け圧を必要とし
た。また、mを72より大きくすると柔らかすぎて、上
述の電池試験開始後、約2000時間経過時に、ガスケ
ット状シール部分から水素ガスのリ−クが検出された。
When the number of repetitions m of the isobutylene oligomer is set to be smaller than 56, the polymer after polymerization is rigid, and a higher clamping pressure is required to eliminate leakage of hydrogen gas from the gasket portion of the assembled battery. Needed. On the other hand, if m was larger than 72, it was too soft, and leakage of hydrogen gas was detected from the gasket-shaped seal portion after about 2,000 hours had elapsed since the start of the battery test.

【0051】また、電子線の照射量を制御して、重合度
が与える影響を検討した結果、重合度が8000より小
さいと、重合物が柔らかすぎて、上述の電池試験時に、
ガスケット状シール部分から水素ガスのリ−クが検出さ
れた。
Further, the influence of the degree of polymerization was examined by controlling the irradiation amount of the electron beam. As a result, when the degree of polymerization was smaller than 8000, the polymer was too soft, and during the above-described battery test,
Leak of hydrogen gas was detected from the gasket-shaped seal portion.

【0052】また、末端官能基をこれ以外のアクリロイ
ル基、メタクリロイル基、イソシアネート基、エポキシ
基として、それぞれに適した重合反応により硬化したも
のも同様に使用できることを確認した。このとき、アク
リロイル基、メタクリロイル基を末端官能基としたとき
は上記同様の電子線照射を用い、またイソシアネート基
としたときは水分によりウレタン結合化、エポキシ基の
時はエチルジアミンなどの公知のアミン系硬化剤を用い
加熱により硬化した。しかしこのときも、官能基をアリ
ル基としたときと同様に、(化2)で示した構成中のイ
ソブチレンオリゴマーの繰り返し数mを56≦m≦72
とし、重合度を8000以上にしたときに、長時間にわ
たってガスリークを防止できることを確認した。
It was also confirmed that those having the terminal functional groups other than these acryloyl groups, methacryloyl groups, isocyanate groups, and epoxy groups cured by appropriate polymerization reactions can be used in the same manner. At this time, when an acryloyl group or a methacryloyl group is used as a terminal functional group, the same electron beam irradiation as described above is used.When an isocyanate group is used, a urethane bond is formed with water, and when an epoxy group is used, a known amine such as ethyl diamine is used. It was cured by heating using a system curing agent. However, also in this case, as in the case where the functional group is an allyl group, the repetition number m of the isobutylene oligomer in the constitution shown in (Chem. 2) is set to 56 ≦ m ≦ 72.
When the degree of polymerization was 8000 or more, it was confirmed that gas leakage could be prevented for a long time.

【0053】(実施例2)まず、アセチレンブラック系
カ−ボン粉末に、平均粒径約30の白金粒子を25重量
%担持したものを反応電極の触媒とした。この触媒粉末
をイソプロパノ−ルに分散させた溶液に、(化5)で示
したパーフルオロカーボンスルホン酸の粉末をエチルア
ルコールに分散したディスパージョン溶液を混合し、ペ
ースト状にした。このペーストを原料としスクリ−ン印
刷法をもちいて、厚み250μmのカ−ボン不織布の一
方の面に電極触媒層を形成した。形成後の反応電極中に
含まれる白金量は0.5mg/cm2、パーフルオロカ
ーボンスルホン酸の量は1.2mg/cm2となるよう
調整した。
(Example 2) First, acetylene black-based carbon powder loaded with 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for the reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0054】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0055】次に、図3で示したように、反応電極用と
ガスマニホ−ルド用の孔を設け、板状に成型したガスケ
ット状シールを作製し、この中心部にある反応電極用の
孔に対して、前記MEAの反応電極部分が勘合するよう
に、2枚のガスケットシールでMEAの電極周辺部の電
解質膜部を挟みこんだ。さらに図1に示した形状の非多
孔質カ−ボン板を素材とするバイポ−ラ板のガス流路が
向かい合う形で、2枚のバイポ−ラ板の間にMEAとガ
スケットシールを挟んで、高分子電解質型燃料電池を構
成した。
Next, as shown in FIG. 3, a hole for a reaction electrode and a hole for a gas manifold were provided, and a gasket-like seal formed in a plate shape was prepared. On the other hand, the electrolyte membrane portion around the MEA electrode was sandwiched between two gasket seals so that the reaction electrode portion of the MEA fit. Further, the gas flow path of the bipolar plate made of a non-porous carbon plate having the shape shown in FIG. 1 is opposed to each other, and the MEA and the gasket seal are sandwiched between the two bipolar plates. An electrolyte fuel cell was constructed.

【0056】この高分子電解質型燃料電池の両外側に、
それぞれ必要なガスマニホ−ルド用孔を設けたヒ−タ−
板・集電板・絶縁板・エンドプレ−トを取り付け、最外
側の両エンドプレ−ト間を、ボルトとバネとナットを用
いて、電極面積に対して20kg/cm2の圧力で締め
付け、高分子電解質型燃料電池の単電池を構成した。
On both outer sides of the polymer electrolyte fuel cell,
Heaters provided with necessary gas manifold holes
Attach the plate, current collector plate, insulating plate and end plate and tighten the outermost end plate between the outermost end plates with bolts, springs and nuts at a pressure of 20 kg / cm 2 against the electrode area. A unit cell of the electrolyte fuel cell was constructed.

【0057】この時用いた板状成型体ガスケットは、中
心部の層に厚さ150μmの耐熱ポリエチレンテレフタ
レ−ト(PET)樹脂を、PETの両側に厚さ50μm
づつのEPDM層で挟んだ構成の物に必要な孔を打ち抜
いて使用した。
The plate-like molded gasket used at this time was a heat-resistant polyethylene terephthalate (PET) resin having a thickness of 150 μm in the central layer, and a 50 μm thickness on both sides of the PET.
The hole required for the structure sandwiched between the EPDM layers was punched and used.

【0058】この高分子電解質型燃料電池を75℃に保
持し、一方の電極側に73℃の露点となるよう加湿・加
温した水素ガスを、もう一方の電極側に68℃の露点と
なるように加湿・加温した空気を供給したところ、無負
荷時に0.98Vの電池電圧を得た。また、この電池の
ガスケット部(周辺部)からのガスリ−クを測定した
が、ガスの漏れは検出できなかった。さらに、この電池
を燃料利用率80%、酸素利用率40%、電流密度0.
3A/cm2の条件で連続発電試験を行ったところ、5
000時間以上にわたって0.7V以上の電池電圧を保
ったまま、電池電圧の劣化なく発電が可能であった。
The polymer electrolyte fuel cell was maintained at 75 ° C., and hydrogen gas heated and humidified so as to have a dew point of 73 ° C. on one electrode side and 68 ° C. on the other electrode side. When the humidified and heated air was supplied as described above, a battery voltage of 0.98 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was used with a fuel utilization of 80%, an oxygen utilization of 40%, and a current density of 0.
When a continuous power generation test was performed under the conditions of 3 A / cm 2 , 5
Power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 000 hours or more.

【0059】(実施例3)まず、アセチレンブラック系
カ−ボン粉末に、平均粒径約30の白金粒子を25重量
%担持したものを反応電極の触媒とした。この触媒粉末
をイソプロパノ−ルに分散させた溶液に、(化5)で示
したパーフルオロカーボンスルホン酸の粉末をエチルア
ルコールに分散したディスパージョン溶液を混合し、ペ
ースト状にした。このペーストを原料としスクリ−ン印
刷法をもちいて、厚み250μmのカ−ボン不織布の一
方の面に電極触媒層を形成した。形成後の反応電極中に
含まれる白金量は0.5mg/cm2、パーフルオロカ
ーボンスルホン酸の量は1.2mg/cm2となるよう
調整した。
Example 3 First, acetylene black-based carbon powder carrying 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for a reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. The amount of platinum contained in the reaction electrode after formation was adjusted to 0.5 mg / cm 2 , and the amount of perfluorocarbon sulfonic acid was adjusted to 1.2 mg / cm 2 .

【0060】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of the proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0061】次に、図3で示したように、反応電極用と
ガスマニホ−ルド用の孔を設け、板状に成型したガスケ
ット状シールを作製し、この中心部にある反応電極用の
孔に対して、前記MEAの反応電極部分が勘合するよう
に、2枚のガスケットシールでMEAの電極周辺部の電
解質膜部を挟みこんだ。さらに図1に示した形状の非多
孔質カ−ボン板を素材とするバイポ−ラ板のガス流路が
向かい合う形で、2枚のバイポ−ラ板の間にMEAとガ
スケットシールを挟んで、高分子電解質型燃料電池を構
成した。
Next, as shown in FIG. 3, a hole for a reaction electrode and a hole for a gas manifold were provided, and a gasket-like seal formed in a plate shape was prepared. On the other hand, the electrolyte membrane portion around the MEA electrode was sandwiched between two gasket seals so that the reaction electrode portion of the MEA fit. Further, the gas flow path of the bipolar plate made of a non-porous carbon plate having the shape shown in FIG. 1 is opposed to each other, and the MEA and the gasket seal are sandwiched between the two bipolar plates. An electrolyte fuel cell was constructed.

【0062】この高分子電解質型燃料電池の両外側に、
それぞれ必要なガスマニホ−ルド用孔を設けたヒ−タ−
板・集電板・絶縁板・エンドプレ−トを取り付け、最外
側の両エンドプレ−ト間を、ボルトとバネとナットを用
いて、電極面積に対して20kg/cm2の圧力で締め
付け、高分子電解質型燃料電池の単電池を構成した。
On both outer sides of the polymer electrolyte fuel cell,
Heaters provided with necessary gas manifold holes
Attach the plate, current collector plate, insulating plate and end plate and tighten the outermost end plate between the outermost end plates with bolts, springs and nuts at a pressure of 20 kg / cm 2 against the electrode area. A unit cell of the electrolyte fuel cell was constructed.

【0063】この時用いた板状成型体ガスケットは、中
心部の層に厚さ100μmの耐熱ポリエチレンテレフタ
レ−ト(PET)樹脂を、PETの両側に厚さ75μm
づつの(化1)で示したポリイソブチレンを主鎖骨格と
する高分子材料で構成した厚さ250μmの物に必要な
孔を打ち抜いて使用した。シ−ト層で挟んだ構成の物に
必要な孔を打ち抜いて使用した。なを、本実施例で使用
した(化1)で示したポリイソブチレンを主鎖骨格とす
る高分子材料は、請求項1で使用したものと、同一のも
のである。
The plate-like molded gasket used at this time had a heat-resistant polyethylene terephthalate (PET) resin having a thickness of 100 μm in the center layer and a thickness of 75 μm on both sides of the PET.
Necessary holes were punched out of a 250 μm thick material composed of a polymer material having polyisobutylene as a main chain skeleton shown in Chemical formula 1 below. Holes necessary for a product sandwiched between sheet layers were punched out for use. The polymer material having a main chain skeleton of polyisobutylene shown in Chemical formula 1 used in this example is the same as that used in claim 1.

【0064】この高分子電解質型燃料電池を75℃に保
持し、一方の電極側に73℃の露点となるよう加湿・加
温した水素ガスを、もう一方の電極側に68℃の露点と
なるように加湿・加温した空気を供給したところ、無負
荷時に0.98Vの電池電圧を得た。また、この電池の
ガスケット部(周辺部)からのガスリ−クを測定した
が、ガスの漏れは検出できなかった。さらに、この電池
を燃料利用率80%、酸素利用率40%、電流密度0.
3A/cm2の条件で連続発電試験を行ったところ、5
000時間以上にわたって0.7V以上の電池電圧を保
ったまま、電池電圧の劣化なく発電が可能であった。
The polymer electrolyte fuel cell was maintained at 75 ° C., and hydrogen gas heated and humidified so as to have a dew point of 73 ° C. on one electrode side and a dew point of 68 ° C. on the other electrode side. When the humidified and heated air was supplied as described above, a battery voltage of 0.98 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was used at a fuel utilization of 80%, an oxygen utilization of 40%, and a current density of 0.1%.
When a continuous power generation test was performed under the conditions of 3 A / cm 2 , 5
Power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 000 hours or more.

【0065】(実施例4)まず、アセチレンブラック系
カ−ボン粉末に、平均粒径約30の白金粒子を25重量
%担持したものを反応電極の触媒とした。この触媒粉末
をイソプロパノ−ルに分散させた溶液に、(化5)で示
したパーフルオロカーボンスルホン酸の粉末をエチルア
ルコールに分散したディスパージョン溶液を混合し、ペ
ースト状にした。このペーストを原料としスクリ−ン印
刷法をもちいて、厚み250μmのカ−ボン不織布の一
方の面に電極触媒層を形成した。形成後の反応電極中に
含まれる白金量は0.5mg/cm2、パーフルオロカ
ーボンスルホン酸の量は1.2mg/cm2となるよう
調整した。
Example 4 First, an acetylene black-based carbon powder carrying 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for a reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0066】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0067】図4には、本実施例に用いた非多孔質カ−
ボン板からなるバイポ−ラ板を示した。ガス出入り口マ
ニホ−ルドから電極面にガスを導入するガス流路溝の上
面には、ガス流路を確保するための非多孔質カ−ボン薄
板からなるガス流路ブリッジを設けた。実施例1、2、
3で示した板状成型体をガスケット状シールとして用い
た場合には、本発明に包含される方法によってガスケッ
トのガス流路へのたれ込みを防止する手段を備えれば、
図4に示すようなガス流路ブリッジは必要ない。
FIG. 4 shows the non-porous car used in this example.
A bipolar plate made of a bon plate is shown. A gas passage bridge made of a non-porous carbon thin plate for securing a gas passage was provided on the upper surface of the gas passage groove for introducing gas from the gas inlet / outlet manifold to the electrode surface. Examples 1, 2,
When the plate-shaped molded product shown in 3 is used as a gasket-shaped seal, if a means for preventing the gasket from dripping into the gas flow path by a method included in the present invention is provided,
There is no need for a gas channel bridge as shown in FIG.

【0068】図4で示したバイポ−ラ板のマニホ−ルド
周辺部および電極が位置する周辺部に、(化2)示した
反応性オリゴマーとシクロヘキサンとの混合溶液(混合
重量比10:2)を、図5で示す部位に300μmの厚
みになるよう塗布した。その後、85℃で48時間加熱
することで硬化した。ここで、(化2)示した反応性オ
リゴマーが完全に硬化する前に、図5で示した形状のバ
イポ−ラ板2枚のガス流路が向かい合う形で、2枚のバ
イポ−ラ板の間にMEAを挟んで、高分子電解質型燃料
電池を構成した。
A mixed solution of the reactive oligomer and the cyclohexane shown in (Chemical Formula 2) (mixing weight ratio of 10: 2) was placed on the periphery of the manifold of the bipolar plate shown in FIG. 4 and on the periphery of the electrode. Was applied to the site shown in FIG. 5 so as to have a thickness of 300 μm. Then, it was cured by heating at 85 ° C. for 48 hours. Here, before the reactive oligomer shown in (Chemical Formula 2) is completely cured, the gas flow paths of the two bipolar plates having the shape shown in FIG. 5 are opposed to each other between the two bipolar plates. A polymer electrolyte fuel cell was configured with the MEA interposed therebetween.

【0069】この高分子電解質型燃料電池の両外側に、
それぞれ必要なガスマニホ−ルド用孔を設けたヒ−タ−
板・集電板・絶縁板・エンドプレ−トを取り付け、最外
側の両エンドプレ−ト間を、ボルトとバネとナットを用
いて、電極面積に対して20kg/cm2の圧力で締め
付け、高分子電解質型燃料電池の単電池を構成した。
On both outer sides of the polymer electrolyte fuel cell,
Heaters provided with necessary gas manifold holes
Attach the plate, current collector plate, insulating plate and end plate and tighten the outermost end plate between the outermost end plates with bolts, springs and nuts at a pressure of 20 kg / cm 2 against the electrode area. A unit cell of the electrolyte fuel cell was constructed.

【0070】この高分子電解質型燃料電池を75℃に保
持し、一方の電極側に73℃の露点となるよう加湿・加
温した水素ガスを、もう一方の電極側に68℃の露点と
なるように加湿・加温した空気を供給したところ、無負
荷時に0.98Vの電池電圧を得た。また、この電池の
ガスケット部(周辺部)からのガスリ−クを測定した
が、ガスの漏れは検出できなかった。さらに、この電池
を燃料利用率80%、酸素利用率40%、電流密度0.
3A/cm2の条件で連続発電試験を行ったところ、7
000時間以上にわたって0.7V以上の電池電圧を保
ったまま、電池電圧の劣化なく発電が可能であった。
This polymer electrolyte fuel cell was maintained at 75 ° C., and hydrogen gas humidified and heated so as to have a dew point of 73 ° C. on one electrode side and a dew point of 68 ° C. on the other electrode side. When the humidified and heated air was supplied as described above, a battery voltage of 0.98 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was used with a fuel utilization of 80%, an oxygen utilization of 40%, and a current density of 0.
When a continuous power generation test was performed under the conditions of 3 A / cm 2 ,
Power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 000 hours or more.

【0071】本実施例で用いた(化1)で示したポリイ
ソブチレンを主鎖骨格とする高分子材料は、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を、56≦m≦72、平均64とし、官能基XおよびY
を共にアリル基としたものに、重合開始剤として過酸化
ベンゾイルをイソブチレンオリゴマーに対して0.2重
量%添加し、加熱によるラジカル重合を行った。硬化
後、重合度を調べたところ、約9000であった。重合
開始剤としては、アゾビスイソブチルニトリル等の公知
のものを使用することが出来る。
The polymer material having polyisobutylene as the main chain skeleton shown in (Chemical Formula 1) used in the present Example was obtained by repeating the isobutylene oligomer in the structure shown in (Chemical Formula 2) with the number of repetitions m
Is defined as 56 ≦ m ≦ 72, average 64, and the functional groups X and Y
Was converted to an allyl group, benzoyl peroxide as a polymerization initiator was added in an amount of 0.2% by weight based on the isobutylene oligomer, and radical polymerization was performed by heating. After curing, the degree of polymerization was determined to be about 9000. Known polymerization initiators such as azobisisobutylnitrile can be used as the polymerization initiator.

【0072】なを本実施例でも、イソブチレンオリゴマ
ーの繰り返し数mを56よりも小さくすると、重合後の
ポリマーは堅すぎて、電池の組立直後からガスケット部
分からの水素ガスのリ−クが検出された。また、mを7
2より大きくすると柔らかすぎて、上述の電池試験開始
後、約2000時間経過時に、ガスケット状シール部分
から水素ガスのリ−クが検出された。
In this embodiment, if the number of repetitions m of the isobutylene oligomer is smaller than 56, the polymer after polymerization is too hard, and leakage of hydrogen gas from the gasket portion is detected immediately after the battery is assembled. Was. Also, m is 7
When the value was larger than 2, it was too soft, and a leak of hydrogen gas was detected from the gasket-shaped seal portion about 2,000 hours after the start of the battery test.

【0073】また、末端官能基をこれ以外のアクリロイ
ル基、メタクリロイル基、イソシアネート基、エポキシ
基として、それぞれに適した重合反応により硬化したも
のも同様に使用できることを確認した。しかしこのとき
も、官能基をアリル基としたときと同様に、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を56≦m≦72とし、重合度を8000以上にしたと
きに、長時間にわたってガスリークを防止できることを
確認した。
Further, it was also confirmed that those cured by a polymerization reaction suitable for each of the terminal functional groups as other acryloyl groups, methacryloyl groups, isocyanate groups, and epoxy groups can be similarly used. However, also in this case, similarly to the case where the functional group is an allyl group, the repetition number m of the isobutylene oligomer in the structure shown in (Chemical Formula 2)
Was set to 56 ≦ m ≦ 72, and when the degree of polymerization was set to 8000 or more, it was confirmed that gas leakage could be prevented for a long time.

【0074】(実施例5)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
Example 5 A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0075】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, a printed catalyst layer is formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0076】このMEAには、図6に示すようにガスマ
ニホ−ルド用穴を打ち抜き、打ち抜いたガスマニホ−ル
ド用穴内側の周縁部と電極の最外側周縁部に、(化2)
示した反応性オリゴマーとシクロヘキサンとの混合溶液
を、図6で示すように塗布した。この塗布物が完全に硬
化する前に、図1で示した形状の非多孔質カ−ボン板か
らなるバイポ−ラ板2枚のガス流路が向かい合う形で、
2枚のバイポ−ラ板の間にMEAを挟んで、高分子電解
質型燃料電池を構成した。この高分子電解質型燃料電池
の両外側に、それぞれ必要なガスマニホ−ルド用孔を設
けたヒ−タ−板・集電板・絶縁板・エンドプレ−トを取
り付け、最外側の両エンドプレ−ト間を、ボルトとバネ
とナットを用いて、電極面積に対して20kg/cm2
の圧力で締め付け、高分子電解質型燃料電池の単電池を
構成した。
In this MEA, as shown in FIG. 6, a hole for a gas manifold was punched out, and a peripheral portion inside the hole for the gas manifold punched out and an outermost peripheral portion of the electrode were formed as follows.
The mixed solution of the reactive oligomer and cyclohexane shown was applied as shown in FIG. Before the coating material is completely cured, the gas flow paths of two bipolar plates made of a non-porous carbon plate having the shape shown in FIG.
A polymer electrolyte fuel cell was constructed with an MEA sandwiched between two bipolar plates. A heater plate, a current collector plate, an insulating plate, and an end plate provided with necessary gas manifold holes are attached to both outer sides of the polymer electrolyte fuel cell. Using a bolt, a spring, and a nut, to 20 kg / cm 2 with respect to the electrode area.
To form a unit cell of a polymer electrolyte fuel cell.

【0077】この高分子電解質型燃料電池を75℃に保
持し、一方の電極側に73℃の露点となるよう加湿・加
温した水素ガスを、もう一方の電極側に68℃の露点と
なるように加湿・加温した空気を供給したところ、無負
荷時に0.98Vの電池電圧を得た。また、この電池の
ガスケット部(周辺部)からのガスリ−クを測定した
が、ガスの漏れは検出できなかった。さらに、この電池
を燃料利用率80%、酸素利用率40%、電流密度0.
3A/cm2の条件で連続発電試験を行ったところ、7
000時間以上にわたって0.7V以上の電池電圧を保
ったまま、電池電圧の劣化なく発電が可能であった。
The polymer electrolyte fuel cell was maintained at 75 ° C., and a hydrogen gas humidified and heated so as to have a dew point of 73 ° C. on one electrode side and a dew point of 68 ° C. on the other electrode side. When the humidified and heated air was supplied as described above, a battery voltage of 0.98 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was used with a fuel utilization of 80%, an oxygen utilization of 40%, and a current density of 0.
When a continuous power generation test was performed under the conditions of 3 A / cm 2 ,
Power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.7 V or more for 000 hours or more.

【0078】本実施例で用いた(化1)で示したポリイ
ソブチレンを主鎖骨格とする高分子材料は、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を、56≦m≦72、平均64とし、官能基XおよびY
を共にアリル基としたものに、重合開始剤として過酸化
ベンゾイルをイソブチレンオリゴマーに対して0.3重
量%添加し、85℃48時間加熱によるラジカル重合を
行った。硬化後、重合度を調べたところ、約11000
であった。重合開始剤としては、アゾビスイソブチルニ
トリル等の公知のものを使用することが出来る。
The polymer material having polyisobutylene as the main chain skeleton shown in (Chemical Formula 1) used in the present embodiment was obtained by repeating the isobutylene oligomer in the structure shown in (Chemical Formula 2) with the number of repetitions m
Is defined as 56 ≦ m ≦ 72, average 64, and the functional groups X and Y
Was converted to an allyl group, benzoyl peroxide as a polymerization initiator was added in an amount of 0.3% by weight based on the isobutylene oligomer, and radical polymerization was performed by heating at 85 ° C. for 48 hours. After curing, the degree of polymerization was determined to be about 11,000.
Met. Known polymerization initiators such as azobisisobutylnitrile can be used as the polymerization initiator.

【0079】また、(化1)で示したポリイソブチレン
を主鎖骨格とする高分子材料に、電子導電剤を分散した
ものを用いると、電池の出力特性が向上することを見出
した。シール部分の製法は、(化2)で示した構成中の
イソブチレンオリゴマーの繰り返し数mを、56≦m≦
72、平均64とし、官能基XおよびYを共にアリル基
としたものと、シクロヘキンサンと、アセチレンブラッ
クと、重合開始剤として過酸化ベンゾイルを重量比で、
100:20:5:1で混合し、加熱によるラジカル重
合を行った。この高分子電解質型燃料電池を75℃に保
持し、一方の電極側に73℃の露点となるよう加湿・加
温した水素ガスを、もう一方の電極側に68℃の露点と
なるように加湿・加温した空気を供給したところ、無負
荷時に0.98Vの電池電圧を得た。また、この電池の
ガスケット部(周辺部)からのガスリ−クを測定した
が、ガスの漏れは検出できなかった。さらに、この電池
を燃料利用率80%、酸素利用率40%、電流密度0.
5A/cm2の条件で連続発電試験を行ったところ、5
000時間以上にわたって0.72V以上の電池電圧を
保ったまま、電池電圧の劣化なく発電が可能であった。
Further, it has been found that the use of a polymer material having polyisobutylene as a main chain skeleton and having an electronic conductive agent dispersed therein as shown in Chemical formula 1 improves the output characteristics of the battery. The manufacturing method of the seal portion is such that the number of repetitions m of the isobutylene oligomer in the constitution shown in (Chem.
72, an average of 64, and allyl groups as the functional groups X and Y, cyclohexynesan, acetylene black, and benzoyl peroxide as a polymerization initiator in a weight ratio of:
The mixture was mixed at 100: 20: 5: 1, and radical polymerization was performed by heating. The polymer electrolyte fuel cell was maintained at 75 ° C., and humidified and heated to a dew point of 73 ° C. on one electrode side, and humidified to a dew point of 68 ° C. on the other electrode side. -When heated air was supplied, a battery voltage of 0.98 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was used at a fuel utilization of 80%, an oxygen utilization of 40%, and a current density of 0.1%.
When a continuous power generation test was performed under the condition of 5 A / cm 2 ,
Power generation was possible without deterioration of the battery voltage while maintaining the battery voltage of 0.72 V or more for 000 hours or more.

【0080】(実施例6)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
Example 6 An acetylene black-based carbon powder carrying 25% by weight of platinum particles having an average particle size of about 30 was used as a catalyst for a reaction electrode. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0081】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0082】前記MEAの電極部分が、図8で示した電
極用、冷却水用およびガスマニホ−ルド用孔を設けた板
状成型体ガスケットの中心部四角形の電極用孔に勘合す
るように、2枚の板状成型体ガスケットでMEAの電極
周辺部の電解質膜部を挟み、さらに図9に示したガス流
路形状のバイポ−ラ板2枚のガス流路が向かい合う形
で、2枚のバイポ−ラ板の間にMEAと板状成型体ガス
ケットを挟んで、高分子電解質型燃料電池を構成した。
The electrode portion of the MEA is fitted to the square electrode hole in the center of the plate-shaped molded gasket provided with the electrode, cooling water and gas manifold holes shown in FIG. An electrolyte membrane around the electrode of the MEA is sandwiched between two plate-shaped molded body gaskets, and two bipolar plates are formed in such a manner that the two gas flow channels of the bipolar plate having the gas flow channel shape shown in FIG. -A polymer electrolyte fuel cell was constructed with the MEA and the plate-shaped molded gasket interposed between the rubber plates.

【0083】この時用いた前記バイポ−ラ板は、膨張黒
鉛粉末に(化1)で示したポリイソブチレンを主鎖骨格
とする高分子材料を混合し、プレス成形によって作成し
た。この時、バイポ−ラ板の一方の面は、図9に示した
ガス流路などを有する構成であり、反対側の面には冷却
水流路用溝を構成した。
The bipolar plate used at this time was prepared by mixing an expanded graphite powder with a polymer material having a main chain skeleton of polyisobutylene shown in Chemical Formula 1 and press molding. At this time, one surface of the bipolar plate had a gas flow path shown in FIG. 9 and the like, and a cooling water flow path groove was formed on the opposite surface.

【0084】また、この時用いた板状成型体ガスケット
は、中心部の層に厚さ100μmの耐熱ポリエチレンテ
レフタレ−ト(PET)樹脂を、PETの両側に厚さ7
5μmづつの(化1)で示したポリイソブチレンを主鎖
骨格とする高分子材料のシ−ト層で挟んだ構成の物に必
要な孔を打ち抜いて使用した。
The plate-shaped molded gasket used at this time had a heat-resistant polyethylene terephthalate (PET) resin having a thickness of 100 μm in the central layer and a thickness of 7 mm on both sides of the PET.
Holes required were punched out in a structure in which a sheet layer of a polymer material having polyisobutylene represented by (Chemical Formula 1) as a main chain skeleton was sandwiched by 5 μm each.

【0085】なを、本実施例で用いた(化1)で示した
ポリイソブチレンを主鎖骨格とする高分子材料は、実施
例1で用いたものと同位置の構造を有し、同一の製造方
法で構成した。
The polymer material having polyisobutylene as the main chain skeleton shown in Chemical formula 1 used in this example has the same structure as that used in Example 1 and has the same structure. The manufacturing method was adopted.

【0086】この高分子電解質型燃料電池を、単位電池
として、同様の構成の高分子電解質型燃料電池を図10
に模式的に示した構成で、連続的に50段積層した。こ
の時、冷却水流路周辺のガスシ−ル部にも、(化1)で
示したポリイソブチレンを主鎖骨格とする高分子材料を
用いた。この積層電池の両外側に、それぞれ必要なガス
マニホ−ルド・冷却水マニホ−ルド用穴を設けた集電板
・絶縁板・エンドプレ−トを取り付け、最外側の両エン
ドプレ−ト間を、ボルトとバネとナットを用いて、電極
面積に対して20kg/cm2の圧力で締め付け、高分
子電解質型燃料電池スタックを構成した。
The polymer electrolyte fuel cell having the same structure as that shown in FIG.
In the configuration schematically shown in FIG. At this time, a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1) was also used for the gas seal around the cooling water flow path. A current collector plate, an insulating plate, and an end plate provided with necessary gas manifold / cooling water manifold holes are attached to both outer sides of the laminated battery, and a bolt is connected between the outermost end plates. Using a spring and a nut, the stack was fastened at a pressure of 20 kg / cm 2 with respect to the electrode area to form a polymer electrolyte fuel cell stack.

【0087】この高分子電解質型燃料電池スタックに冷
却水を流しながら75℃に保持し、負極側に73℃の露
点となるよう加湿・加温した水素ガスを、正極側に68
℃の露点となるように加湿・加温した空気を供給したと
ころ、無負荷時に49Vの電池電圧を得た。また、この
電池のガスケット部(周辺部)からのガスリ−クを測定
したが、ガスの漏れは検出できなかった。さらに、この
電池を燃料利用率80%、酸素利用率40%、電流密度
0.7A/cm2の条件で連続発電試験を行ったとこ
ろ、5000時間以上にわたって31V以上の電池電圧
を保ったまま、電池電圧の劣化なく発電が可能であっ
た。
The polymer electrolyte fuel cell stack was kept at 75 ° C. while flowing cooling water, and hydrogen gas humidified and heated to a dew point of 73 ° C. on the negative electrode side and 68 ° C. on the positive electrode side.
When humidified and heated air was supplied so as to have a dew point of ° C., a battery voltage of 49 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.7 A / cm 2 , and a battery voltage of 31 V or more was maintained for 5000 hours or more. Power generation was possible without deterioration of the battery voltage.

【0088】(実施例7)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
(Example 7) A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black-based carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. The amount of platinum contained in the reaction electrode after formation was adjusted to 0.5 mg / cm 2 , and the amount of perfluorocarbon sulfonic acid was adjusted to 1.2 mg / cm 2 .

【0089】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0090】前記MEAの電極部分が、図8で示した電
極用、冷却水用およびガスマニホ−ルド用孔を設けた板
状成型体ガスケットの中心部四角形の電極用孔に勘合す
るように、2枚の板状成型体ガスケットでMEAの電極
周辺部の電解質膜部を挟み、さらに図9に示したガス流
路形状のバイポ−ラ板2枚のガス流路が向かい合う形
で、2枚のバイポ−ラ板の間にMEAと板状成型体ガス
ケットを挟んで、高分子電解質型燃料電池を構成した。
The electrode portion of the MEA is fitted into the rectangular hole at the center of the plate-shaped molded gasket provided with holes for electrodes, cooling water and gas manifold shown in FIG. An electrolyte membrane around the electrode of the MEA is sandwiched between two plate-shaped molded body gaskets, and two bipolar plates are formed in such a manner that the two gas flow channels of the bipolar plate having the gas flow channel shape shown in FIG. -A polymer electrolyte fuel cell was constructed with the MEA and the plate-shaped molded gasket interposed between the rubber plates.

【0091】この時用いた前記バイポ−ラ板は、膨張黒
鉛粉末を予め成型した多孔質なシ−トに(化1)で示し
たポリイソブチレンを主鎖骨格とする高分子材料を含浸
し、プレス成形によって作成した。この時、バイポ−ラ
板の一方の面は、図9に示したガス流路などを有する構
成であり、反対側の面には冷却水流路用溝を構成した。
The bipolar plate used at this time was impregnated with a polymer material having a main chain skeleton of polyisobutylene represented by (Chemical Formula 1) in a porous sheet formed by molding expanded graphite powder in advance. Created by press molding. At this time, one surface of the bipolar plate had a gas flow path shown in FIG. 9 and the like, and a cooling water flow path groove was formed on the opposite surface.

【0092】また、この時用いた板状成型体ガスケット
は、中心部の層に厚さ100μmの耐熱ポリエチレンテ
レフタレ−ト(PET)樹脂を、PETの両側に厚さ7
5μmづつの(化1)で示したポリイソブチレンを主鎖
骨格とする高分子材料シ−ト層で挟んだ構成の物に必要
な孔を打ち抜いて使用した。
The plate-like molded gasket used at this time had a heat-resistant polyethylene terephthalate (PET) resin having a thickness of 100 μm in the central layer and a thickness of 7 mm on both sides of the PET.
Holes required were punched out in a structure in which the polymer material sheet having polyisobutylene represented by (Chemical Formula 1) as a main chain skeleton was sandwiched by 5 μm each.

【0093】なを、本実施例で用いた(化1)で示した
ポリイソブチレンを主鎖骨格とする高分子材料は、実施
例1で用いたものと同位置の構造を有し、同一の製造方
法で構成した。
The polymer material having polyisobutylene as the main chain skeleton shown in Chemical formula 1 used in this example has the same structure as that used in Example 1 and has the same structure. The manufacturing method was adopted.

【0094】この高分子電解質型燃料電池を、単位電池
として、同様の構成の高分子電解質型燃料電池を図10
に模式的に示した構成で、連続的に50段積層した。こ
の時、冷却水流路周辺のガスシ−ル部にも、(化1)で
示したポリイソブチレンを主鎖骨格とする高分子材料を
用いた。この積層電池の両外側に、それぞれ必要なガス
マニホ−ルド・冷却水マニホ−ルド用穴を設けた集電板
・絶縁板・エンドプレ−トを取り付け、最外側の両エン
ドプレ−ト間を、ボルトとバネとナットを用いて、電極
面積に対して20kg/cm2の圧力で締め付け、高分
子電解質型燃料電池スタックを構成した。
Using this polymer electrolyte fuel cell as a unit cell, a polymer electrolyte fuel cell having a similar configuration is shown in FIG.
In the configuration schematically shown in FIG. At this time, a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1) was also used for the gas seal around the cooling water flow path. A current collector plate, an insulating plate, and an end plate provided with necessary gas manifold / cooling water manifold holes are attached to both outer sides of the laminated battery, and a bolt is connected between the outermost end plates. Using a spring and a nut, the stack was fastened at a pressure of 20 kg / cm 2 with respect to the electrode area to form a polymer electrolyte fuel cell stack.

【0095】この高分子電解質型燃料電池スタックに冷
却水を流しながら75℃に保持し、負極側に73℃の露
点となるよう加湿・加温した水素ガスを、正極側に68
℃の露点となるように加湿・加温した空気を供給したと
ころ、無負荷時に49Vの電池電圧を得た。また、この
電池のガスケット部(周辺部)からのガスリ−クを測定
したが、ガスの漏れは検出できなかった。さらに、この
電池を燃料利用率80%、酸素利用率40%、電流密度
0.7A/cm2の条件で連続発電試験を行ったとこ
ろ、5000時間以上にわたって31V以上の電池電圧
を保ったまま、電池電圧の劣化なく発電が可能であっ
た。
While cooling water was supplied to the polymer electrolyte fuel cell stack, the temperature was maintained at 75 ° C., and hydrogen gas humidified and heated so as to have a dew point of 73 ° C. on the negative electrode side and 68 ° C. on the positive electrode side.
When humidified and heated air was supplied so as to have a dew point of ° C., a battery voltage of 49 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.7 A / cm 2 , and a battery voltage of 31 V or more was maintained for 5000 hours or more. Power generation was possible without deterioration of the battery voltage.

【0096】(実施例8)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
Example 8 A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. The amount of platinum contained in the reaction electrode after formation was adjusted to 0.5 mg / cm 2 , and the amount of perfluorocarbon sulfonic acid was adjusted to 1.2 mg / cm 2 .

【0097】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, printed catalyst layers are formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0098】前記MEAの電極部分が、図8で示した電
極用、冷却水用およびガスマニホ−ルド用孔を設けた板
状成型体ガスケットの中心部四角形の電極用孔に勘合す
るように、2枚の板状成型体ガスケットでMEAの電極
周辺部の電解質膜部を挟み、さらに図9に示したガス流
路形状のバイポ−ラ板2枚のガス流路が向かい合う形
で、2枚のバイポ−ラ板の間にMEAと板状成型体ガス
ケットを挟んで、高分子電解質型燃料電池を構成した。
The electrode portion of the MEA is fitted to the square electrode hole in the center of the plate-shaped molded gasket provided with the electrode, cooling water and gas manifold holes shown in FIG. An electrolyte membrane around the electrode of the MEA is sandwiched between two plate-shaped molded body gaskets, and two bipolar plates are formed in such a manner that the two gas flow channels of the bipolar plate having the gas flow channel shape shown in FIG. -A polymer electrolyte fuel cell was constructed with the MEA and the plate-shaped molded gasket interposed between the rubber plates.

【0099】この時用いた前記バイポ−ラ板は、膨張黒
鉛粉末を予め成型した多孔質なシ−トをプレス成形し、
成型したガス流路の表面にに撥水処理を施した後、(化
2)で示した反応性オリゴマーとシクロヘキサンとの混
合溶液(混合重量比10:2)を含浸した後、85℃で
48時間加熱することで作成した。この時、バイポ−ラ
板の一方の面は、図9に示したガス流路などを有する構
成であり、反対側の面には冷却水流路用溝を構成した。
撥水処理は、テトラフルオロエチレン−ヘキサフルオロ
プロピレン共重合体のディスパージョン水溶液塗布した
ものを、約350℃で加熱することによって行った。
The bipolar plate used at this time was formed by pressing a porous sheet obtained by previously molding expanded graphite powder.
After subjecting the surface of the molded gas channel to a water-repellent treatment, the mixture is impregnated with a mixed solution (mixing weight ratio of 10: 2) of the reactive oligomer and cyclohexane shown in (Chemical Formula 2), Created by heating for hours. At this time, one surface of the bipolar plate had a gas flow path shown in FIG. 9 and the like, and a cooling water flow path groove was formed on the opposite surface.
The water-repellent treatment was performed by heating a dispersion aqueous solution of a tetrafluoroethylene-hexafluoropropylene copolymer at about 350 ° C.

【0100】また、この時用いた板状成型体ガスケット
は、中心部の層に厚さ100μmの耐熱ポリエチレンテ
レフタレ−ト(PET)樹脂を、PETの両側に厚さ7
5μmづつの(化1)で示したポリイソブチレンを主鎖
骨格とする高分子材料シ−ト層で挟んだ構成の物に必要
な孔を打ち抜いて使用した。
The plate-like molded gasket used at this time had a heat-resistant polyethylene terephthalate (PET) resin having a thickness of 100 μm in the central layer and a thickness of 7 mm on both sides of the PET.
Holes required were punched out in a structure in which the polymer material sheet having polyisobutylene represented by (Chemical Formula 1) as a main chain skeleton was sandwiched by 5 μm each.

【0101】この高分子電解質型燃料電池を、単位電池
として、同様の構成の高分子電解質型燃料電池を図10
に模式的に示した構成で、連続的に50段積層した。こ
の時、冷却水流路周辺のガスシ−ル部にも、(化1)で
示したポリイソブチレンを主鎖骨格とする高分子材料を
用いた。この積層電池の両外側に、それぞれ必要なガス
マニホ−ルド・冷却水マニホ−ルド用穴を設けた集電板
・絶縁板・エンドプレ−トを取り付け、最外側の両エン
ドプレ−ト間を、ボルトとバネとナットを用いて、電極
面積に対して20kg/cm2の圧力で締め付け、高分
子電解質型燃料電池スタックを構成した。
This polymer electrolyte fuel cell is used as a unit cell, and a polymer electrolyte fuel cell having a similar configuration is shown in FIG.
In the configuration schematically shown in FIG. At this time, a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1) was also used for the gas seal around the cooling water flow path. A current collector plate, an insulating plate, and an end plate provided with necessary gas manifold / cooling water manifold holes are attached to both outer sides of the laminated battery, and a bolt is connected between the outermost end plates. Using a spring and a nut, the stack was fastened at a pressure of 20 kg / cm 2 with respect to the electrode area to form a polymer electrolyte fuel cell stack.

【0102】この高分子電解質型燃料電池スタックに冷
却水を流しながら75℃に保持し、負極側に73℃の露
点となるよう加湿・加温した水素ガスを、正極側に68
℃の露点となるように加湿・加温した空気を供給したと
ころ、無負荷時に49Vの電池電圧を得た。また、この
電池のガスケット部(周辺部)からのガスリ−クを測定
したが、ガスの漏れは検出できなかった。さらに、この
電池を燃料利用率80%、酸素利用率40%、電流密度
0.7A/cm2の条件で連続発電試験を行ったとこ
ろ、5000時間以上にわたって31V以上の電池電圧
を保ったまま、電池電圧の劣化なく発電が可能であっ
た。
While maintaining the temperature at 75 ° C. while flowing cooling water through the polymer electrolyte fuel cell stack, hydrogen gas humidified and heated so as to have a dew point of 73 ° C. on the negative electrode side and 68 ° C. on the positive electrode side
When humidified and heated air was supplied so as to have a dew point of ° C., a battery voltage of 49 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.7 A / cm 2 , and a battery voltage of 31 V or more was maintained for 5000 hours or more. Power generation was possible without deterioration of the battery voltage.

【0103】本実施例で用いた(化1)で示したポリイ
ソブチレンを主鎖骨格とする高分子材料は、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を、56≦m≦72、平均64とし、官能基XおよびY
を共にアリル基としたものに、重合開始剤として過酸化
ベンゾイルをイソブチレンオリゴマーに対して0.2重
量%添加し、加熱によるラジカル重合を行った。硬化
後、重合度を調べたところ、約9000であった。
The polymer material having polyisobutylene as the main chain skeleton represented by Chemical formula 1 used in the present example was obtained by repeating the isobutylene oligomer in the structure represented by Chemical formula 2 with the number of repetitions m
Is defined as 56 ≦ m ≦ 72, average 64, and the functional groups X and Y
Was converted to an allyl group, benzoyl peroxide as a polymerization initiator was added in an amount of 0.2% by weight based on the isobutylene oligomer, and radical polymerization was performed by heating. After curing, the degree of polymerization was determined to be about 9000.

【0104】(実施例9)アセチレンブラック系カ−ボ
ン粉末に、平均粒径約30の白金粒子を25重量%担持
したものを反応電極の触媒とした。この触媒粉末をイソ
プロパノ−ルに分散させた溶液に、(化5)で示したパ
ーフルオロカーボンスルホン酸の粉末をエチルアルコー
ルに分散したディスパージョン溶液を混合し、ペースト
状にした。このペーストを原料としスクリ−ン印刷法を
もちいて、厚み250μmのカ−ボン不織布の一方の面
に電極触媒層を形成した。形成後の反応電極中に含まれ
る白金量は0.5mg/cm2、パーフルオロカーボン
スルホン酸の量は1.2mg/cm2となるよう調整し
た。
Example 9 A catalyst for a reaction electrode was prepared by supporting 25% by weight of platinum particles having an average particle size of about 30 on acetylene black-based carbon powder. A dispersion solution of the perfluorocarbon sulfonic acid powder shown in Chemical Formula 5 in ethyl alcohol was mixed with a solution of this catalyst powder dispersed in isopropanol to form a paste. Using this paste as a raw material, an electrode catalyst layer was formed on one surface of a carbon nonwoven fabric having a thickness of 250 μm using a screen printing method. Amount of platinum contained in the reaction electrode after forming the 0.5 mg / cm 2, the amount of perfluorocarbon sulfonic acid was adjusted to be 1.2 mg / cm 2.

【0105】これらの電極は、正極・負極共に同一構成
とし、図2に示したように電極より一回り大きい面積を
有するプロトン伝導性高分子電解質膜の中心部の両面
に、印刷した触媒層が電解質膜側に接するようにホット
プレスによって接合して、電極/電解質接合体(ME
A)を作成した。ここでは、プロトン伝導性高分子電解
質として、(化6)に示したパーフルオロカーボンスル
ホン酸を25μmの厚みに薄膜化したものを用いた。
These electrodes have the same structure for both the positive electrode and the negative electrode. As shown in FIG. 2, a printed catalyst layer is formed on both sides of the center of a proton conductive polymer electrolyte membrane having an area slightly larger than the electrodes. The electrode / electrolyte assembly (ME) was joined by hot pressing so as to be in contact with the electrolyte membrane side.
A) was prepared. Here, as the proton conductive polymer electrolyte, the perfluorocarbon sulfonic acid shown in (Chemical Formula 6) was used as a thin film having a thickness of 25 μm.

【0106】前記MEAの電極部分が、図11に示した
ガス流路形状のバイポ−ラ板2枚のガス流路と向かい合
う形で、2枚のバイポ−ラ板の間にMEAを挟んで、高
分子電解質型燃料電池を構成した。
The electrode portion of the MEA is opposed to the two gas flow paths of the gas flow path-shaped bipolar plate shown in FIG. 11 so that the MEA is sandwiched between the two bipolar plates. An electrolyte fuel cell was constructed.

【0107】この時用いた前記バイポ−ラ板の中心部の
電極が勘合する部分は、SUS316から構成されてお
り、周辺部の電解質と接し、ガスおよび冷却水のマニホ
−ルドが形成されガス及び冷却水をシ−ルする部位は
(化1)で示したポリイソブチレンを主鎖骨格とする高
分子材料で構成した。この時、バイポ−ラ板の一方の面
は、図11に示したガス流路などを有する構成であり、
反対側の面には冷却水流路用溝を構成した。この構成に
よって、バイポ−ラ板の周辺部がガスケットの役目を果
たすため、ガスケットを不要とすることが可能である。
The portion of the bipolar plate used at this time to be fitted with the electrode at the center of the bipolar plate is made of SUS316, which is in contact with the electrolyte at the periphery and forms a manifold of gas and cooling water to form gas and cooling gas. The site for sealing the cooling water was composed of a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1). At this time, one surface of the bipolar plate has a gas flow path shown in FIG.
A groove for a cooling water flow path was formed on the opposite surface. With this configuration, the peripheral portion of the bipolar plate plays the role of a gasket, so that the gasket can be made unnecessary.

【0108】この高分子電解質型燃料電池を、単位電池
として、同様の構成の高分子電解質型燃料電池を図12
に模式的に示した構成で、連続的に50段積層した。こ
の積層電池の両外側に、それぞれ必要なガスマニホ−ル
ド・冷却水マニホ−ルド用穴を設けた集電板を取り付
け、さらに一方の外側には、内部加湿器を設置した。内
部加湿器は、中心部に高分子電解質膜を有し、高分子電
解質膜の一方の面を冷却水の排出水が、他方を供給ガス
が流れ、供給ガスの加湿と加温を同時に行える構造とし
た。この内部加湿器を図12に模式的に示した構成で、
連続的に10段積層した。この時、ガスおよび冷却水の
シ−ルは、バイポ−ラ板の場合と同様に、内部加湿器の
周辺部に位置する(化1)で示したポリイソブチレンを
主鎖骨格とする高分子材料部がガスケットの役目を果た
すため、ガスケットを不要とすることが可能である。更
に、この積層電池の両外側に、それぞれ必要なガスマニ
ホ−ルド・冷却水マニホ−ルド用穴を設けた・絶縁板・
エンドプレ−トを取り付け、最外側の両エンドプレ−ト
間を、ボルトとバネとナットを用いて、電極面積に対し
て20kg/cm2の圧力で締め付け、高分子電解質型
燃料電池スタックを構成した。
Using this polymer electrolyte fuel cell as a unit cell, a polymer electrolyte fuel cell having a similar configuration is shown in FIG.
In the configuration schematically shown in FIG. Current collector plates provided with necessary gas manifold / cooling water manifold holes were attached to both outer sides of the laminated battery, and an internal humidifier was installed on one outer side. The internal humidifier has a polymer electrolyte membrane in the center, and the discharge water of cooling water flows on one side of the polymer electrolyte membrane and the supply gas flows on the other side, so that the supply gas can be humidified and heated at the same time. And This internal humidifier is configured as schematically shown in FIG.
10 layers were continuously laminated. At this time, as in the case of the bipolar plate, the seal of the gas and the cooling water is made of a polymer material having polyisobutylene represented by (Chemical Formula 1) and having a main chain skeleton located at the periphery of the internal humidifier. Since the part serves as a gasket, the gasket can be dispensed with. Further, on both outer sides of the laminated battery, necessary gas manifold / cooling water manifold holes are provided.
An end plate was attached, and the outermost end plates were tightened between the outermost end plates using bolts, springs, and nuts at a pressure of 20 kg / cm 2 with respect to the electrode area to form a polymer electrolyte fuel cell stack.

【0109】この高分子電解質型燃料電池スタックに冷
却水を流しながら75℃に保持し、負極側に乾燥水素ガ
スを内部加湿によって加湿・加温して供給し、正極側に
乾燥空気を内部加湿器によって加湿・加温して供給した
ところ、無負荷時に49Vの電池電圧を得た。また、こ
の電池のガスケット部(周辺部)からのガスリ−クを測
定したが、ガスの漏れは検出できなかった。さらに、こ
の電池を燃料利用率80%、酸素利用率40%、電流密
度0.7A/cm2の条件で連続発電試験を行ったとこ
ろ、5000時間以上にわたって31V以上の電池電圧
を保ったまま、電池電圧の劣化なく発電が可能であっ
た。
While maintaining the temperature at 75 ° C. while flowing cooling water through the polymer electrolyte fuel cell stack, dry hydrogen gas is supplied to the negative electrode side by humidifying and heating by internal humidification, and dry air is internally humidified to the positive electrode side. When the battery was supplied after being humidified and heated, a battery voltage of 49 V was obtained at no load. Gas leakage from the gasket portion (peripheral portion) of this battery was measured, but no gas leakage was detected. Further, the battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 80%, an oxygen utilization rate of 40%, and a current density of 0.7 A / cm 2 , and a battery voltage of 31 V or more was maintained for 5000 hours or more. Power generation was possible without deterioration of the battery voltage.

【0110】本実施例で用いた(化1)で示したポリイ
ソブチレンを主鎖骨格とする高分子材料は、(化2)で
示した構成中のイソブチレンオリゴマーの繰り返し数m
を、56≦m≦72、平均64とし、官能基XおよびY
を共にアリル基としたものに、重合開始剤として過酸化
ベンゾイルをイソブチレンオリゴマーに対して0.2重
量%添加し、85℃48時間加熱によるラジカル重合を
行った。硬化後、重合度を調べたところ、約9000で
あった。
The polymer material having polyisobutylene represented by (Chemical Formula 1) used in the present embodiment and having a main chain skeleton is represented by the following formula:
Is defined as 56 ≦ m ≦ 72, average 64, and the functional groups X and Y
Was converted to an allyl group, benzoyl peroxide as a polymerization initiator was added in an amount of 0.2% by weight based on the isobutylene oligomer, and radical polymerization was performed by heating at 85 ° C. for 48 hours. After curing, the degree of polymerization was determined to be about 9000.

【0111】[0111]

【発明の効果】以上のように本発明は、ガスケット状の
シール剤や、冷却水をシ−ルする材料や、内部加湿部の
水またはガスをシ−ルする材料に、(化1)で示したポ
リイソブチレンを主鎖骨格とする高分子材料を用いるこ
とによって、高い信頼性を有する高分子電解質型燃料電
池を実現することが出来た。
As described above, the present invention can be applied to a gasket-like sealant, a material for sealing cooling water, and a material for sealing water or gas in an internal humidifying section by the following chemical formula (1). By using the polymer material having the main chain skeleton of polyisobutylene as shown, a highly reliable polymer electrolyte fuel cell was realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例で使用したバイポ−ラ板
の構成を示した図
FIG. 1 is a diagram showing a configuration of a bipolar plate used in a first embodiment of the present invention.

【図2】本発明の第1の実施例で使用したバイポ−ラ板
のMEAの構成を示した図
FIG. 2 is a diagram showing the configuration of the MEA of the bipolar plate used in the first embodiment of the present invention.

【図3】本発明の第1の実施例で使用した板状成型体ガ
スケットの構成を示した図
FIG. 3 is a view showing a configuration of a plate-shaped molded gasket used in the first embodiment of the present invention.

【図4】本発明の第4の実施例で使用したバイポ−ラ板
の構成を示した図
FIG. 4 is a diagram showing a configuration of a bipolar plate used in a fourth embodiment of the present invention.

【図5】本発明の第4の実施例で使用したバイポ−ラ板
の構成を示した図
FIG. 5 is a diagram showing a configuration of a bipolar plate used in a fourth embodiment of the present invention.

【図6】本発明の第5の実施例で使用したMEAの構成
を示した図
FIG. 6 is a diagram showing a configuration of an MEA used in a fifth embodiment of the present invention.

【図7】本発明の第6の実施例で使用したMEAの構成
を示した図
FIG. 7 is a diagram showing a configuration of an MEA used in a sixth embodiment of the present invention.

【図8】本発明の第6の実施例で使用した板状成型体ガ
スケットの構成を示した図
FIG. 8 is a view showing a configuration of a plate-shaped molded gasket used in a sixth embodiment of the present invention.

【図9】本発明の第6の実施例で使用したバイポ−ラ板
の構成を示した図
FIG. 9 is a diagram showing a configuration of a bipolar plate used in a sixth embodiment of the present invention.

【図10】本発明の第6の実施例で使用した高分子電解
質型燃料電池スタックの断面構成図
FIG. 10 is a sectional configuration diagram of a polymer electrolyte fuel cell stack used in a sixth embodiment of the present invention.

【図11】本発明の第9の実施例で使用したバイポ−ラ
板の構成を示した図
FIG. 11 is a diagram showing a configuration of a bipolar plate used in a ninth embodiment of the present invention.

【図12】本発明の第9の実施例で使用した高分子電解
質型燃料電池スタックと積層型内部加湿器の断面構成図
FIG. 12 is a cross-sectional view of a polymer electrolyte fuel cell stack and a laminated internal humidifier used in a ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 バイポ−ラ板 2 ガス流路溝 3 入口ガスマニホ−ルド 4 出口ガスマニホ−ルド 5 ガスマニホ−ルド 6 電極 7 電解質膜 8 板状成型体ガスケット 9 電極勘合用穴 10 ガス流路ブリッジ 11 マニホ−ルド周辺部のポリイソブチレン系液状樹
脂塗布層 12 電極周辺部のポリイソブチレン系液状樹脂塗布層 13 電極周縁部のポリイソブチレン系液状樹脂塗布層 14 マニホ−ルド内側周縁部のポリイソブチレン系液
状樹脂塗布層 15 冷却水マニホ−ルド 16 冷却水流路溝 17 バイポ−ラ板と複合化したポリイソブチレン系液
状樹脂硬化物層 18 集電板 19 内部加湿器用仕切り板 20 内部加湿起用しきり板と複合化したポリイソブチ
レン系液状樹脂硬化物層 21 電解質膜と同等の膜 22 排冷却水用流路溝 23 入口ガス用流路溝
DESCRIPTION OF SYMBOLS 1 Bipolar plate 2 Gas flow groove 3 Inlet gas manifold 4 Outlet gas manifold 5 Gas manifold 6 Electrode 7 Electrolyte membrane 8 Plate-shaped molded gasket 9 Electrode fitting hole 10 Gas flow bridge 11 Periphery of manifold Part of polyisobutylene-based liquid resin coating layer 12 Electrode periphery polyisobutylene-based liquid resin coating layer 13 Electrode periphery polyisobutylene-based liquid resin coating layer 14 Polyisobutylene-based liquid resin coating layer on inner peripheral part of manifold 15 Cooling Water manifold 16 Cooling water channel groove 17 Polyisobutylene-based liquid resin cured product layer combined with bipolar plate 18 Current collector plate 19 Partition plate for internal humidifier 20 Polyisobutylene-based liquid composited with internal humidification and riser plate Cured resin layer 21 Membrane equivalent to electrolyte membrane 22 Flow channel for exhaust cooling water 23 Flow channel for inlet gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Gyoten 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Inside

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟む一対の反応電
極を、前記反応電極に燃料ガスを供給排出するための一
対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却用
治具を取り付けた高分子電解質型燃料電池において、前
記反応電極の周りに(化1)で示したポリイソブチレン
を主鎖骨格とする高分子材料で構成したシール材を配置
し、前記燃料ガスと前記反応電極における生成水との電
池外部への離散を防止したことを特徴とする固体高分子
型燃料電池。 【化1】
1. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In the polymer electrolyte fuel cell, a sealing material composed of a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1) is disposed around the reaction electrode, and the fuel gas and the reaction electrode A polymer electrolyte fuel cell, in which generated water is prevented from being dispersed outside the cell. Embedded image
【請求項2】 固体高分子電解質膜を挟む一対の反応電
極を、前記反応電極に燃料ガスを供給排出するための一
対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却用
治具を取り付けた高分子電解質型燃料電池において、前
記冷却用治具は、(化1)で示したポリイソブチレンを
主鎖骨格とする高分子材料で構成したシール材を具備
し、前記冷却用治具を通過する冷却剤の電池外部への離
散を防止したしたことを特徴とする高分子電解質型燃料
電池。
2. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In the polymer electrolyte fuel cell described above, the cooling jig includes a sealing material formed of a polymer material having polyisobutylene as a main chain skeleton shown in (Chemical Formula 1), and passes through the cooling jig. A polymer electrolyte fuel cell characterized in that the cooling agent is prevented from being dispersed outside the cell.
【請求項3】 シール材は、(化1)で示したポリイソ
ブチレンを主鎖骨格とする高分子材料と、電子導電性材
料との混合物であることを特徴とする請求項2記載の固
体高分子型燃料電池。
3. The solid material according to claim 2, wherein the sealing material is a mixture of a polymer material having polyisobutylene as a main chain skeleton represented by Chemical Formula 1 and an electronic conductive material. Molecular fuel cell.
【請求項4】 固体高分子電解質膜を挟む一対の反応電
極を、前記反応電極に燃料ガスを供給排出するための一
対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却用
治具を取り付けた高分子電解質型燃料電池において、バ
イポ−ラ板間の電極周辺部の空隙もしくはバイポ−ラ板
間の電極周縁部部分に、(化1)で示したポリイソブチ
レンを主鎖骨格とする高分子材料で構成したシール材を
配置し、前記燃料ガスと前記反応電極における生成水と
の電池外部への離散を防止したことを特徴とする固体高
分子型燃料電池。
4. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In the polymer electrolyte fuel cell, the polymer having polyisobutylene represented by the formula (1) as a main chain skeleton is provided in a space around the electrode between the bipolar plates or in a peripheral portion of the electrode between the bipolar plates. A polymer electrolyte fuel cell, wherein a sealing material made of a material is disposed to prevent the fuel gas and water generated at the reaction electrode from being separated outside the cell.
【請求項5】 固体高分子電解質膜を挟む一対の反応電
極を、前記反応電極に燃料ガスを供給排出するための一
対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却用
治具を取り付けた高分子電解質型燃料電池において、前
記バイポ−ラ板は、カ−ボン材料もしくは金属材料と、
(化1)で示したポリイソブチレンを主鎖骨格とする高
分子材料とにより構成されることを特徴とする高分子電
解質型燃料電池。
5. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In the polymer electrolyte fuel cell described above, the bipolar plate comprises a carbon material or a metal material;
A polymer electrolyte fuel cell, comprising: a polymer material having polyisobutylene as a main chain skeleton represented by (Chemical Formula 1).
【請求項6】 固体高分子電解質膜を挟む一対の反応電
極を、前記反応電極に燃料ガスを供給排出するための一
対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却用
治具を取り付けた高分子電解質型燃料電池において、前
記高分子電解質型燃料電池から排出した冷却水と、前記
高分子電解質型燃料電池に導入する燃料ガスとを熱交換
し、かつ加湿と加熱とを同時に行う加湿部が、(化1)
で示したポリイソブチレンを主鎖骨格とする高分子材料
で構成したシ−ル材を具備し、前記冷却水と前記燃料ガ
スの電池外部への離散を防止したことを特徴とする高分
子電解質型燃料電池。
6. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. In a polymer electrolyte fuel cell, humidification in which cooling water discharged from the polymer electrolyte fuel cell exchanges heat with fuel gas introduced into the polymer electrolyte fuel cell, and humidification and heating are simultaneously performed Part is (Chemical 1)
A polymer material having a polymer material having polyisobutylene as a main chain skeleton, wherein the cooling water and the fuel gas are prevented from being separated outside the cell. Fuel cell.
【請求項7】 (化1)において、重合可能な官能基
は、アリル基、アクリロイル基、メタクリロイル基、イ
ソシアネート基、エポキシ基より選ばれることを特徴と
する請求項1、2、3または4記載の固体高分子型燃料
電池。
7. The compound according to claim 1, wherein the polymerizable functional group is selected from an allyl group, an acryloyl group, a methacryloyl group, an isocyanate group, and an epoxy group. Polymer electrolyte fuel cell.
【請求項8】 (化1)で示したポリイソブチレンを主
鎖骨格とする高分子材料のイソブチレンオリゴマーの繰
り返し数mは56≦m≦72であることを特徴とする請
求項1、2、3、4または5記載の固体高分子型燃料電
池。
8. The method according to claim 1, wherein the repeating number m of the isobutylene oligomer of the polymer material having polyisobutylene as a main chain skeleton is 56 ≦ m ≦ 72. 6. The polymer electrolyte fuel cell according to 4 or 5.
【請求項9】 (化1)で示したポリイソブチレンを主
鎖骨格とする高分子材料の重合度は、8000以上であ
ることを特徴とする請求項1、2、3、4、5または6
記載の固体高分子型燃料電池。
9. The polymerization degree of the polymer material having polyisobutylene as a main chain skeleton represented by Chemical Formula 1 is 8000 or more, wherein the polymerization degree is 8,000 or more.
The polymer electrolyte fuel cell according to the above.
【請求項10】 (化1)で示したポリイソブチレンを
主鎖骨格とする高分子材料で構成したシール材は、(化
2)示した反応性オリゴマーを少なくとも含有する溶液
を、シール箇所に塗布した後、前記反応性オリゴマーの
共重合により硬化することで形成したことを特徴とする
請求項1、2、3、4、5、6または7記載の固体高分
子型燃料電電池の製造法。 【化2】
10. A sealing material composed of a polymer material having polyisobutylene as a main chain skeleton represented by (Chemical Formula 1) is applied to a sealing portion with a solution containing at least a reactive oligomer represented by (Chemical Formula 2). 8. The method for producing a polymer electrolyte fuel cell according to claim 1, wherein the polymer is cured by copolymerization of the reactive oligomer. Embedded image
【請求項11】 固体高分子電解質膜を挟む一対の反応
電極を、前記反応電極に燃料ガスを供給排出するための
一対のバイポーラ板で挟持し、前記バイポ−ラ板に冷却
用治具を取り付けた高分子電解質型燃料電池において、
前記反応電極の周りもしくは前記冷却用治具に、耐熱性
の硬質樹脂からなる中心層を弾性を有する樹脂もしくは
ゴムよりなる層で挟持した3層積層構造のシール材を配
置し、前記燃料ガスもしくは前記冷却治具で使用する冷
却剤の電池外部への離散を防止したことを特徴とする固
体高分子型燃料電池。
11. A pair of reaction electrodes sandwiching a solid polymer electrolyte membrane are sandwiched between a pair of bipolar plates for supplying and discharging fuel gas to and from the reaction electrodes, and a cooling jig is attached to the bipolar plates. Polymer electrolyte fuel cell
Around the reaction electrode or on the cooling jig, a sealing material having a three-layer laminated structure in which a central layer made of a heat-resistant hard resin is sandwiched between elastic resin or rubber layers, and the fuel gas or A polymer electrolyte fuel cell, wherein the coolant used in the cooling jig is prevented from being dispersed outside the cell.
【請求項12】 3層積層構造のシール材の中心層をポ
リエチレンテレフタレ−ト樹脂で構成し、これを挟持す
る外側の層を(化1)で示したポリイソブチレンを主鎖
骨格とする高分子材料で構成したことを特徴とする請求
項10に記載の高分子電解質型燃料電池。
12. A sealing material having a three-layer laminated structure, wherein the central layer is made of polyethylene terephthalate resin, and the outer layer sandwiching the central layer is made of polyisobutylene represented by the formula (1) having a main chain skeleton. The polymer electrolyte fuel cell according to claim 10, wherein the fuel cell is made of a molecular material.
JP15247098A 1998-06-02 1998-06-02 Polymer electrolyte fuel cell Expired - Lifetime JP3640333B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15247098A JP3640333B2 (en) 1998-06-02 1998-06-02 Polymer electrolyte fuel cell
EP99922549A EP1009052B1 (en) 1998-06-02 1999-05-27 Polymer electrolyte fuel cell and method of manufacture thereof
KR10-2000-7000934A KR100372926B1 (en) 1998-06-02 1999-05-27 Polymer electrolyte fuel cell and method of manufacture thereof
PCT/JP1999/002832 WO1999063610A1 (en) 1998-06-02 1999-05-27 Polymer electrolyte fuel cell and method of manufacture thereof
US09/497,058 US6531236B1 (en) 1998-06-02 2000-02-02 Polymer electrolyte fuel cell stack
US10/330,886 US6869719B2 (en) 1998-06-02 2002-12-27 Polymer electrolyte fuel cell stack
US10/910,044 US20050003260A1 (en) 1998-06-02 2004-08-03 Polymer electrolyte fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15247098A JP3640333B2 (en) 1998-06-02 1998-06-02 Polymer electrolyte fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003350136A Division JP4274892B2 (en) 2003-10-08 2003-10-08 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH11345620A true JPH11345620A (en) 1999-12-14
JP3640333B2 JP3640333B2 (en) 2005-04-20

Family

ID=15541228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15247098A Expired - Lifetime JP3640333B2 (en) 1998-06-02 1998-06-02 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3640333B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117871A (en) * 2000-10-06 2002-04-19 Three Bond Co Ltd Primer composite for bonding fuel cell carbon separator
JP2002533869A (en) * 1998-08-10 2002-10-08 セラニーズ・ヴェンチャーズ・ゲーエムベーハー PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
JP2003031239A (en) * 2001-07-11 2003-01-31 Honda Motor Co Ltd Sealing material coating method of separator for fuel cell
JP2003031234A (en) * 2001-07-11 2003-01-31 Honda Motor Co Ltd Sealing material coating method of separator for fuel cell
JP2003123798A (en) * 2001-10-11 2003-04-25 Toyota Motor Corp Seal structure for fuel cell
KR20030061484A (en) * 2002-01-14 2003-07-22 (주)세티 Bipolar Plate for Fuel Cell and Its Method of Making
JP2005302526A (en) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
US7008714B1 (en) 1999-10-21 2006-03-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7205061B2 (en) 2000-02-08 2007-04-17 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
CN1326279C (en) * 2000-02-08 2007-07-11 松下电器产业株式会社 Polymer electrolyte fuel cell
WO2008029598A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell
WO2008029605A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for manufacturing same
US7452624B2 (en) 2001-02-15 2008-11-18 Panasonic Corporation Polymer electrolyte type fuel cell
JP2008293947A (en) * 2007-05-28 2008-12-04 Samsung Sdi Co Ltd Stack for fuel cell
JP2008547181A (en) * 2005-06-28 2008-12-25 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Bipolar plate for fuel cells with connecting channels
WO2009063724A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Fuel cell separator manufacturing method and fuel cell separator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533869A (en) * 1998-08-10 2002-10-08 セラニーズ・ヴェンチャーズ・ゲーエムベーハー PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
US7008714B1 (en) 1999-10-21 2006-03-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
CN1326279C (en) * 2000-02-08 2007-07-11 松下电器产业株式会社 Polymer electrolyte fuel cell
US7205061B2 (en) 2000-02-08 2007-04-17 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2002117871A (en) * 2000-10-06 2002-04-19 Three Bond Co Ltd Primer composite for bonding fuel cell carbon separator
US7452624B2 (en) 2001-02-15 2008-11-18 Panasonic Corporation Polymer electrolyte type fuel cell
JP2003031239A (en) * 2001-07-11 2003-01-31 Honda Motor Co Ltd Sealing material coating method of separator for fuel cell
JP2003031234A (en) * 2001-07-11 2003-01-31 Honda Motor Co Ltd Sealing material coating method of separator for fuel cell
JP2003123798A (en) * 2001-10-11 2003-04-25 Toyota Motor Corp Seal structure for fuel cell
KR20030061484A (en) * 2002-01-14 2003-07-22 (주)세티 Bipolar Plate for Fuel Cell and Its Method of Making
JP2005302526A (en) * 2004-04-12 2005-10-27 Asahi Glass Co Ltd Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JP2008547181A (en) * 2005-06-28 2008-12-25 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Bipolar plate for fuel cells with connecting channels
WO2008029598A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell
WO2008029605A1 (en) * 2006-09-04 2008-03-13 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for manufacturing same
US9515327B2 (en) 2006-09-04 2016-12-06 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell
JP2008293947A (en) * 2007-05-28 2008-12-04 Samsung Sdi Co Ltd Stack for fuel cell
US8232021B2 (en) 2007-05-28 2012-07-31 Samsung Sdi Co., Ltd. Stack for fuel cell
WO2009063724A1 (en) * 2007-11-12 2009-05-22 Toyota Jidosha Kabushiki Kaisha Fuel cell separator manufacturing method and fuel cell separator
US8921005B2 (en) 2007-11-12 2014-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator manufacturing method and fuel cell separator

Also Published As

Publication number Publication date
JP3640333B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US6531236B1 (en) Polymer electrolyte fuel cell stack
US20070209758A1 (en) Method and process for unitized mea
US8703348B2 (en) Full cell cooling device including porous element having predetermined path for a coolant flow
JPH11345620A (en) Polymer electrolyte fuel cell and its manufacture
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
CA2658983C (en) Fuel cell and gasket for fuel cell
JP2010506352A (en) Method for manufacturing a membrane-electrode assembly
JP3353567B2 (en) Fuel cell
US8133636B2 (en) Fuel cell stack and manufacturing method of the same
JP2002260693A (en) High polymer electrolyte fuel cell
JP2000100452A (en) Solid high polymer electrolyte fuel cell and manufacture therefor
JP4680338B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD OF CONNECTING THE SAME
JP2004103296A (en) Solid polymer type fuel cell
JP2000021418A (en) Solid high polymer electrolyte fuel cell
JP2002280003A (en) Method for manufacturing electrode of polymer electrolyte fuel cell and electrolyte membrane electrode joining body
JP3494137B2 (en) Manufacturing method of polymer electrolyte fuel cell
JP2002208412A (en) Polymer electrolyte fuel cell
JP2000021419A (en) Solid high polymer electrolyte fuel cell
JP2006066139A (en) Fuel cell separator and fuel cell using it
JP4274892B2 (en) Polymer electrolyte fuel cell
JP2002025565A (en) Electrode for high polymer molecule electrolyte fuel cells and its manufacturing process
JP2004179074A (en) Fuel cell
JP3970027B2 (en) Polymer electrolyte fuel cell
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JP2004349013A (en) Fuel cell stack

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

EXPY Cancellation because of completion of term