JPH11343588A - Production of high-purity cobalt - Google Patents

Production of high-purity cobalt

Info

Publication number
JPH11343588A
JPH11343588A JP15127498A JP15127498A JPH11343588A JP H11343588 A JPH11343588 A JP H11343588A JP 15127498 A JP15127498 A JP 15127498A JP 15127498 A JP15127498 A JP 15127498A JP H11343588 A JPH11343588 A JP H11343588A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
purity
impurities
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15127498A
Other languages
Japanese (ja)
Inventor
Kuniteru Suzuki
邦輝 鈴木
Hideo Saito
秀夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP15127498A priority Critical patent/JPH11343588A/en
Publication of JPH11343588A publication Critical patent/JPH11343588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and efficiently prevent the intrusion of impurities into electrodeposited Co by using an aq. soln. contg. cobalt sulfate as an electrolyte, previously removing such impurities as Cu and Cd with the electrodeposition rate higher than the Co in the electrolyte by electrodeposition to purify it and then electrolytically extracting the Co. SOLUTION: An aq. soln. contg. cadmium sulfate obtained by leaching a Co ore with sulfuric acid by 50-90 g/L Co and kept at pH 2-4 is used as an electrolyte. The impurities such as Cu and Cd contained in the electrolyte having a higher electrodeposition rate than Co are previously removed by electrolysis. The electrolyte thus purified is repeatedly used and electrolyzed at 150-350 A current density. In this case, an electrolyte contg. >=50% purified electrolyte and the balance unpurified electrolyte is preferably used in the electrolysis. Consequently, the high-purity Co with such impurities as Cu and Cd decreased is electrolytically extracted by the simple method at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造用のコ
バルトスパッタリングターゲット材等として重要な5N
レベルの高純度コバルトの電解採取による製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 5N material which is important as a cobalt sputtering target material for semiconductor production and the like.
The present invention relates to a method for producing high-purity cobalt by electrolytic extraction.

【0002】[0002]

【従来の技術】高純度コバルト(Co)の製造方法であ
る電解法として、電解精製法と電解採取法を挙げること
ができる。電解精製法は、不純物を含むCo金属をアノ
ードとし、アノードを溶解しながらカソードに精製した
Coを電析するものである。しかし、標準電極電位がC
oに近い不純物、例えばニッケル(Ni)と鉄(Fe)
は分離が困難である。この不具合を解決するために、例
えば特開平6−192879号公報には、電解精製法と
溶媒抽出法を組み合わせ、電解精製で分離の困難な金属
を溶媒抽出で除去し電解液を循環させ高純度Coを得る
方法が提案されている。一方、電解採取法は、Co水溶
液を不溶性アノードを用いて電解し、カソードにCoを
電析させる方法である。とくに、電解精製法と比較し
て、粗金属のような中間段階を経ないで一挙に高純度の
金属を得ることができる、また電解に伴って溶媒を再生
され浸出の循環に利用できる等の利点があるた広く利用
されている。しかし、Coを精製する場合、得られるC
oの純度は電解液の不純物濃度に左右されるために高純
度に精製された電解液を用いる必要がある。このため、
例えば特開平7−3486号公報には電解の各段階でN
i、Fe等の不純物を段階的に溶媒抽出で除去する方法
が提案されている。
2. Description of the Related Art Electrolytic methods for producing high-purity cobalt (Co) include an electrolytic refining method and an electrolytic sampling method. In the electrolytic refining method, Co metal containing impurities is used as an anode, and purified Co is deposited on a cathode while dissolving the anode. However, when the standard electrode potential is C
impurities close to o, for example, nickel (Ni) and iron (Fe)
Are difficult to separate. To solve this problem, for example, Japanese Unexamined Patent Publication No. 6-192879 discloses a method in which electrolytic purification and solvent extraction are combined. A method for obtaining Co has been proposed. On the other hand, the electrowinning method is a method in which an aqueous Co solution is electrolyzed using an insoluble anode to deposit Co on the cathode. In particular, compared to the electrolytic refining method, high-purity metals can be obtained at once without passing through intermediate steps such as crude metals, and the solvent can be regenerated with electrolysis and used for circulation of leaching. It has advantages but is widely used. However, when Co is purified, the resulting C
Since the purity of o depends on the impurity concentration of the electrolytic solution, it is necessary to use a highly purified electrolytic solution. For this reason,
For example, Japanese Unexamined Patent Publication No. 7-3486 discloses that N
A method has been proposed in which impurities such as i and Fe are removed stepwise by solvent extraction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記提
案された高純度Coの製造方法では、電解槽から電解液
を連続的又は間欠的に抜き出して溶媒抽出するものであ
り、工程が複雑になり生産効率が低いという問題があ
る。さらに、Fe、Niの除去を主とするものであり、
銅(Cu)、カドミウム(Cd)等を除去することがで
きないという問題がある。本発明は、上記の問題点に鑑
みてなされたものでり、その課題とするところは、電解
採取により高純度Coを製造する場合の電解液からC
u、Cd等の不純物がCo中に混入するのを防止するた
めの電解液の精製工程を含む高純度Coの製造法を提供
することである。
However, in the method of producing high-purity Co proposed above, the electrolytic solution is continuously or intermittently extracted from the electrolytic cell and the solvent is extracted. There is a problem of low efficiency. Further, it mainly removes Fe and Ni,
There is a problem that copper (Cu), cadmium (Cd) and the like cannot be removed. The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a high-purity Co from an electrolytic solution by electrolytic extraction.
An object of the present invention is to provide a method for producing high-purity Co including a step of purifying an electrolytic solution for preventing impurities such as u and Cd from being mixed into Co.

【0004】[0004]

【課題を解決するための手段】請求項1に記載の発明
は、電解採取により高純度Coを製造する方法におい
て、電析速度がCoより速い不純物を予め電析して除去
する電解液の精製工程を含む高純度Coの製造方法であ
る。請求項2に記載の発明は、請求項1に記載の高純度
Coの製造方法において、前記不純物がCu、Cdであ
る高純度Coの製造方法である。請求項3に記載の発明
は、請求項2に記載の高純度Coの製造方法において、
前記電解液が硫酸コバルトを含む水溶液である高純度C
oの製造方法である。請求項4に記載の発明は、請求項
1〜3に記載の高純度Coの製造方法において、前記電
解液の精製工程によって精製された電解液を繰り返し用
いて電解採取する高純度Coの製造方法である。請求項
5に記載の発明は、請求項4に記載の高純度Coの製造
方法において、前記電解液の精製工程により精製された
電解液を50%以上含有し、前記電解液の精製工程を経
ていない電解液を残部とする電解液を用いる高純度Co
の製造方法である。
According to a first aspect of the present invention, there is provided a method for producing high-purity Co by electrowinning, comprising: purifying an electrolytic solution for preliminarily depositing and removing impurities having a deposition rate higher than that of Co. This is a method for producing high-purity Co including steps. The invention according to claim 2 is the method for producing high-purity Co according to claim 1, wherein the impurities are Cu and Cd. According to a third aspect of the present invention, in the method for producing high-purity Co according to the second aspect,
High purity C wherein the electrolyte is an aqueous solution containing cobalt sulfate
This is a manufacturing method of o. According to a fourth aspect of the present invention, in the method for producing high-purity Co according to any one of the first to third aspects, a method for producing high-purity Co is performed by repeatedly using an electrolytic solution purified in the electrolytic solution refining step. It is. According to a fifth aspect of the present invention, in the method for producing high-purity Co according to the fourth aspect, the electrolytic solution contains at least 50% of the electrolytic solution purified by the electrolytic solution refining step, and the electrolytic solution is refined through the electrolytic solution refining step. High-purity Co using an electrolytic solution with the remaining electrolytic solution as the balance
It is a manufacturing method of.

【0005】本発明は、本発明者らが高純度Coの製造
方法を鋭意検討した結果以下のような作用に基づき見出
したものである。電解液中のCu、Cd等のある特定元
素の電析速度が、Coが溶解している溶液中においてp
pm以下のレベルで存在していても、Coに対して7〜
10倍の速さで電析する。そこで、予備電解によりCo
より電析速度の速い元素であるCu、Cdを先に析出さ
せて、Cu、Cdの濃度を低減した電解液を用いて電解
することにより不純物を低減した高純度のCoを得るこ
とができるものである。また、精製された電解液を繰り
返し用いることにより、新たな不純物の混入を防ぎ高純
度のCoを得るものである。
The present invention has been found by the present inventors based on the following effects as a result of intensive studies on a method for producing high-purity Co. The rate of electrodeposition of a specific element such as Cu or Cd in the electrolytic solution is higher than that in a solution in which Co is dissolved.
pm or less,
Electrodeposit 10 times faster. Therefore, the preliminary electrolysis
High-purity Co with reduced impurities can be obtained by precipitating Cu and Cd, which are elements with a higher electrodeposition rate, and conducting electrolysis using an electrolytic solution with reduced Cu and Cd concentrations. It is. Further, by repeatedly using the purified electrolytic solution, contamination of new impurities is prevented, and high-purity Co is obtained.

【0006】[0006]

【発明の実施の形態】高度に精製された硫酸コバルト
を、硫酸水溶液にコバルト濃度が約70g/lになるよ
うに添加し、次に、Cu、Cd、Fe、Niを添加して
Coの電解採取を行う電解液を作製する。各主要元素の
濃度を表1にまとめた。不純物元素を添加する前の硫酸
コバルト電解液の組成は、Co:70g/L、Ni:1
ppm、Fe:<0.1ppm、Cu:<0.1pp
m、Cd:未検出である。なお、組成分析はICP−M
Sにより行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Highly purified cobalt sulfate is added to an aqueous sulfuric acid solution so that the cobalt concentration becomes about 70 g / l, and then Cu, Cd, Fe and Ni are added to electrolyze Co. An electrolytic solution to be collected is prepared. Table 1 summarizes the concentration of each main element. Before the addition of the impurity element, the composition of the cobalt sulfate electrolyte was as follows: Co: 70 g / L, Ni: 1
ppm, Fe: <0.1 ppm, Cu: <0.1 pp
m, Cd: not detected. The composition was analyzed by ICP-M
Performed by S.

【0007】[0007]

【表1】 [Table 1]

【0008】前記電解液を2Lの電解槽に投入し、0.
5Lの電解液を0.5時間毎に追加する。電解条件は、
電流密度が0.02/m2 で24時間電解を行った。ア
ノード電極としてAl電極に200nmの厚さのAl箔
を巻いたものを用いる。えられた電析Co中の不純物濃
度を表2に示す。
The above-mentioned electrolytic solution is charged into a 2 L electrolytic cell,
Add 5 L of electrolyte every 0.5 hour. The electrolysis conditions are
Electrolysis was performed at a current density of 0.02 / m 2 for 24 hours. A 200-nm-thick Al foil wound around an Al electrode is used as the anode electrode. Table 2 shows the obtained impurity concentrations in the deposited Co.

【0009】[0009]

【表2】 [Table 2]

【0010】その結果、電析Co中の不純物濃度と電解
液中の不純物濃度の比からも明らかなようにCu、Cd
はCoに対して極微量でもCoの約10倍の濃度に電析
濃縮されることが明らかになった。これに対してFe
は、前記比が約2で電析で濃縮されない。Niは、逆に
前記比が1以下で全く濃縮されないし、電解液に含まれ
ても電析Co中に含まれてくる割合が低くなることがわ
かる。
As a result, as is apparent from the ratio of the impurity concentration in the deposited Co to the impurity concentration in the electrolytic solution, Cu, Cd
Was found to be electrodeposited to a concentration of about 10 times that of Co even in a trace amount of Co. On the other hand, Fe
Is not concentrated by electrodeposition at said ratio of about 2. On the contrary, it can be seen that Ni is not concentrated at all when the above ratio is 1 or less, and the ratio of Ni contained in the deposited Co is low even if it is contained in the electrolytic solution.

【0011】ここで、電解液は硫酸を使用する。Co等
の鉱石に酸化鉱、硫化鉱が多く、または硫酸等の酸浸出
の方が反応が早く、さらに硫酸の入手が容易だからであ
る。電解液中のコバルト濃度は50〜90g/lの範囲
がよい。50g/l以下、90g/l以上では電流効率
が低下するためである。電解液のPHは、2〜4の範囲
がよい。PHが2.0以下では電流効率が低下し、4.
0以上ではCoの残渣ロスが大きくなるためである。電
流密度は、150〜350A/cm2 の範囲が好まし
い。150A/cm2以下及び350A/cm2 以上で
は電流効率が低下するためである。とくに、200〜3
00A/cm2 の範囲が好ましい。電流効率が高く、低
コストで製造できるからである。
Here, sulfuric acid is used as the electrolyte. This is because an ore such as Co contains a large amount of oxidized ore or sulfide ore, or acid leaching with sulfuric acid or the like is faster in reaction and further facilitates the acquisition of sulfuric acid. The cobalt concentration in the electrolyte is preferably in the range of 50 to 90 g / l. This is because the current efficiency is reduced at 50 g / l or less and 90 g / l or more. The pH of the electrolyte is preferably in the range of 2 to 4. 3. When the pH is 2.0 or less, the current efficiency decreases, and
This is because if it is 0 or more, the residue loss of Co becomes large. The current density is preferably in the range of 150 to 350 A / cm 2 . This is because the current efficiency decreases at 150 A / cm 2 or less and 350 A / cm 2 or more. In particular, 200-3
A range of 00 A / cm 2 is preferred. This is because it has high current efficiency and can be manufactured at low cost.

【0012】(実施例1)高度に精製された硫酸コバル
トから作製されたCoを約70g/Lを含む硫酸コバル
ト水溶液を前記電解条件と同一の条件で、一次、二次、
三次と各24時間繰り返し電解する。二次電解のコバル
ト濃度及びPH調整は、一次電解の電解尾液の一部にア
ンモニア水を加えて作製する水酸化コバルトを用いて希
釈して調整する。三次電解は二次電解の尾液に濃縮され
たコバルト濃度のみ蒸留水で希釈して調整する。各工程
の電析Co中の主な不純物濃度を表3に示す。
(Example 1) An aqueous solution of cobalt sulfate containing approximately 70 g / L of Co prepared from highly purified cobalt sulfate was subjected to primary, secondary,
Electrolysis is repeated for tertiary and each 24 hours. The cobalt concentration and pH of the secondary electrolysis are adjusted by diluting with cobalt hydroxide prepared by adding aqueous ammonia to a part of the electrolytic tail solution of the primary electrolysis. The tertiary electrolysis is adjusted by diluting only the cobalt concentration concentrated in the tail solution of the secondary electrolysis with distilled water. Table 3 shows the main impurity concentrations in the deposited Co in each step.

【0013】[0013]

【表3】 表3から一次電解の電析Co中のCu、Cd濃度は、二
次電解以降の電析Co中の濃度より2倍以上に高い濃度
になっている。したがい、一次の予備電解によりCu、
Coの濃度を低減させ、次に電解を行うことによりC
u、Cdの不純物濃度が低減される高純度Coを製造す
ることができる。
[Table 3] From Table 3, the concentrations of Cu and Cd in the deposited Co in the primary electrolysis are twice or more higher than those in the deposited Co after the secondary electrolysis. Accordingly, Cu,
By reducing the concentration of Co and then performing electrolysis, C
High-purity Co in which the impurity concentrations of u and Cd are reduced can be manufactured.

【0014】(比較例)高度に精製された硫酸コバルト
水溶液を上記同一の条件で72時間電解する。
Comparative Example A highly purified aqueous solution of cobalt sulfate is electrolyzed under the same conditions as above for 72 hours.

【表4】 上記実施例中の二次、三次電解Co中のCu、Cd濃度
が比較例の電解Coよりも半分以下であり、高純度Co
が得られていることがわかる。
[Table 4] The Cu and Cd concentrations in the secondary and tertiary electrolytic Co in the above example are half or less than the electrolytic Co of the comparative example,
It can be seen that is obtained.

【0015】(実施例2)さらに、実施例1にあるよう
に二次電解に使用した電解液50%と未だに電解に使用
していない電解液50%による電解液により上記同様に
72時間電解を行う。
Example 2 Further, as in Example 1, electrolysis was performed for 72 hours in the same manner as described above using an electrolytic solution containing 50% of the electrolytic solution used for the secondary electrolysis and 50% of the electrolytic solution not yet used for the electrolysis. Do.

【表5】 実施例1の二、三次電解Coと同等の不純物濃度であ
り、電解に使用した電解液を再利用することにより高純
度Coが得られることがわかる。
[Table 5] It can be seen that the impurity concentration is the same as that of the secondary and tertiary electrolytic Co of Example 1, and high-purity Co can be obtained by reusing the electrolytic solution used for the electrolysis.

【0016】[0016]

【発明の効果】本発明は、電解採取により高純度Coを
製造する場合に高度に精製された電解液の作製が不可欠
となるが、化学的精製を繰り返すとすれば、大幅なコス
トアップとなるのを防止して、化学的に極微量にまで精
製されたCu、Cdは電析速度の関係でCo中に混入し
てくる不純物元素を単純な方法で低減することが可能に
なる。
According to the present invention, the production of highly purified electrolytic solution is indispensable when producing high-purity Co by electrowinning, but if chemical purification is repeated, the cost will be significantly increased. In the case of Cu and Cd which have been chemically purified to a very small amount, it becomes possible to reduce the impurity element mixed into Co by a simple method due to the deposition rate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解採取により高純度コバルトを製造す
る方法において、 電析速度がコバルトより速い不純物を予め電析して除去
する電解液の精製工程を含むことを特徴とする高純度コ
バルトの製造方法。
1. A method for producing high-purity cobalt by electrowinning, comprising the step of purifying an electrolytic solution for preliminarily depositing and removing impurities having a deposition rate higher than that of cobalt. Method.
【請求項2】 請求項1に記載の高純度コバルトの製造
方法において、 前記不純物が銅(Cu)、カドミウム(Cd)であるこ
とを特徴とする高純度コバルトの製造方法。
2. The method for producing high-purity cobalt according to claim 1, wherein said impurities are copper (Cu) and cadmium (Cd).
【請求項3】 請求項2に記載の高純度コバルトの製造
方法において、 前記電解液が硫酸コバルトを含む水溶液であることを特
徴とする高純度コバルトの製造方法。
3. The method for producing high-purity cobalt according to claim 2, wherein the electrolytic solution is an aqueous solution containing cobalt sulfate.
【請求項4】 請求項1〜3に記載の高純度コバルトの
製造方法において、 前記電解液の精製工程によって精製された電解液を繰り
返し用いて電解採取することを特徴とする高純度コバル
トの製造方法。
4. The method for producing high-purity cobalt according to claim 1, wherein the electrolytic solution purified in the step of purifying the electrolytic solution is repeatedly used for electrowinning. Method.
【請求項5】 請求項4に記載の高純度コバルトの製造
方法において、 前記電解液の精製工程により精製された電解液を50%
以上含有し、 前記電解液の精製工程を経ていない電解液を残部とする
電解液を用いることを特徴とする高純度コバルトの製造
方法。
5. The method for producing high-purity cobalt according to claim 4, wherein the electrolytic solution purified in the electrolytic solution refining step is 50%
A method for producing high-purity cobalt, characterized by using an electrolytic solution containing the above and remaining as an electrolytic solution that has not been subjected to the electrolytic solution refining step.
JP15127498A 1998-06-01 1998-06-01 Production of high-purity cobalt Pending JPH11343588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127498A JPH11343588A (en) 1998-06-01 1998-06-01 Production of high-purity cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127498A JPH11343588A (en) 1998-06-01 1998-06-01 Production of high-purity cobalt

Publications (1)

Publication Number Publication Date
JPH11343588A true JPH11343588A (en) 1999-12-14

Family

ID=15515102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127498A Pending JPH11343588A (en) 1998-06-01 1998-06-01 Production of high-purity cobalt

Country Status (1)

Country Link
JP (1) JPH11343588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797019A (en) * 2011-05-25 2012-11-28 南通新玮镍钴科技发展有限公司 Method for preparing micro spheroidal metallic cobalt powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797019A (en) * 2011-05-25 2012-11-28 南通新玮镍钴科技发展有限公司 Method for preparing micro spheroidal metallic cobalt powder

Similar Documents

Publication Publication Date Title
KR100512644B1 (en) Method of producing a higher-purity metal
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
CN102560534B (en) Process for electrolytic refining of copper
CN106757179A (en) A kind of cupric electrolysis tail washings purifies the process of decopper(ing) removal of impurities
KR20120041403A (en) Valuable metal recovery method from waste solder
CN106048659A (en) Spent solution treatment method of silver electrolyte
JP3825983B2 (en) Metal purification method
RU2093606C1 (en) Electrolytic method for purifying concentrated hydrochloric acid solutions of alloys of platinum with rhodium, iridium, and/or palladium
JP3878402B2 (en) Metal purification method
JPH11343588A (en) Production of high-purity cobalt
JP2005054249A (en) Method for removing copper from anode slime after copper electrolysis
JP2008106348A (en) Method of separating and recovering zinc
CN1071382C (en) Polyacrylic acid additive for copper electrolytic purification and copper electrolytic metallurgy
JP5780230B2 (en) Gallium recovery method
JP4049886B2 (en) Method for producing high purity cobalt
JP3878407B2 (en) Metal purification method
CN1217033C (en) Process for preparing high-purity copper by electrolyzing extracted copper-contained organic phase
RU2161130C1 (en) Method of recovery and separation of platinum group metals
RU2241773C1 (en) Method for production of noble metal-based selective concentrates
JP3083079B2 (en) Copper electrorefining method
RU2152459C1 (en) Process of electrolytic refining of copper
JPH07243081A (en) Method for recovering rhodium from copper sulfate solution
SU773113A1 (en) Method of electroleaching of zinc-containing materials
US3175965A (en) Electrolysis of pig iron containing copper