JPH11343514A - Method for melting high carbon steel using bottom-blown converter - Google Patents

Method for melting high carbon steel using bottom-blown converter

Info

Publication number
JPH11343514A
JPH11343514A JP15277598A JP15277598A JPH11343514A JP H11343514 A JPH11343514 A JP H11343514A JP 15277598 A JP15277598 A JP 15277598A JP 15277598 A JP15277598 A JP 15277598A JP H11343514 A JPH11343514 A JP H11343514A
Authority
JP
Japan
Prior art keywords
converter
carbon
hot metal
slag
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15277598A
Other languages
Japanese (ja)
Inventor
Tomomichi Terabatake
知道 寺畠
Shigeru Ogura
滋 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15277598A priority Critical patent/JPH11343514A/en
Publication of JPH11343514A publication Critical patent/JPH11343514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for melting high carbon steel using a bottom- blown converter capable of employing a catch-carbon method without increasing an unnecessary manufacturing cost. SOLUTION: A hot metal which is dephosphorized in advance is desulfurized with a substance containing metallic magnesium followed by slag-off, and then, charged in a bottom-blown converter, decarburized and refined, and blown out at the carbon concentration in the vicinity of the final target carbon concentration of a product, and tapped. Further preferably, metal ores containing an alloy composition are added in the converter to reduce the hot metal during the decarburizing and refining operation, and the alloy composition is recovered in the molten metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、底吹転炉を用いた
高炭素溶鋼の溶製方法に関し、詳しくは高炭素鋼の精錬
方法の中で底吹転炉による高炉溶銑を用いた溶製方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting high-carbon molten steel using a bottom-blowing converter, and more particularly to a method for refining high-carbon steel using blast-furnace hot metal with a bottom-blowing converter. About the method.

【0002】[0002]

【従来の技術】鋼の強度や硬さを増す最も一般的な成分
として炭素がある。ピアノ線、ワイヤロープ、タイヤコ
ード、軸受、機械構造用材料などの用途で、とくに鋼中
の炭素濃度を0.30wt%以上含有させた、いわゆる高炭素
鋼が用いられている。このような高炭素鋼の溶製方法と
しては、上底吹転炉を用いての溶製が一般的に広く実施
されている。上底吹転炉では上吹ランスからの酸化性ガ
スが直接スラグと接触し易いためスラグの酸化が進み、
その結果スラグ中のT.Feが上昇して燐分配比の高いスラ
グが形成されるため、高炭素領域でも比較的容易に溶鋼
の脱燐が進行する。
BACKGROUND OF THE INVENTION Carbon is the most common component that increases the strength and hardness of steel. For applications such as piano wires, wire ropes, tire cords, bearings, and materials for mechanical structures, so-called high-carbon steels containing a carbon concentration of at least 0.30 wt% in steel are used. As a method for melting such a high carbon steel, melting using an upper and bottom blower is generally widely practiced. In the upper-bottom blowing converter, the oxidizing gas from the upper blowing lance easily contacts the slag directly, so the oxidation of the slag proceeds,
As a result, T.Fe in the slag rises to form a slag having a high phosphorus distribution ratio, so that the dephosphorization of the molten steel proceeds relatively easily even in a high carbon region.

【0003】それと比較して底吹転炉においては、酸化
性ガスが全て溶鋼中に吹込まれるため直接スラグと接触
し難く、溶鋼中炭素濃度がある程度下がらないと酸化が
進まない。そのため高炭素鋼溶製時は、製品成分範囲の
炭素濃度においても脱燐が製品成分範囲まで進行しない
ため吹錬を終了することができず、脱炭効率が低下しス
ラグ中T.Feが上昇し始める低炭素領域(一般的には
〔C〕濃度≦0.25%)になって始めて燐分配比の高いス
ラグが形成されるため、溶鋼の脱燐が進行し燐濃度が製
品成分範囲となる。そこで、製品成分範囲より低い炭素
濃度で取鍋に出鋼し、鍋内で低硫加炭材による調整を実
施して製品成分範囲としている。
In contrast, in a bottom-blowing converter, since the oxidizing gas is all blown into the molten steel, it is difficult to directly contact the slag, and oxidation does not proceed unless the carbon concentration in the molten steel is reduced to some extent. Therefore, when smelting high carbon steel, dephosphorization does not progress to the product component range even at the carbon concentration in the product component range, so blowing cannot be completed, decarburization efficiency decreases, and T.Fe in slag increases. Since a slag having a high phosphorus distribution ratio is formed only in a low carbon region (generally, [C] concentration ≤ 0.25%) at which melting begins, the dephosphorization of molten steel proceeds, and the phosphorus concentration falls within the product component range. Therefore, tapping into a ladle with a carbon concentration lower than the product component range is performed, and adjustment with a low-sulfur carbonized material is performed in the ladle to obtain a product component range.

【0004】なお、吹止Cを目標製品(成品)成分値に
近い値にして吹止・出鋼する溶製方法はキャッチカーボ
ン法と称され、出鋼時の加炭材添加量を節減できるため
有利であるが、高炭素鋼を底吹転炉で溶製する際には、
脱炭と脱燐とのプロセスマッチングに上記のような難点
があるためキャッチカーボン法の適用が困難である。ま
た、鍋内に加炭材を投入すると、加炭材の吸熱が大きい
ため鍋内溶鋼の温度降下が避けられない。そのため、出
鋼温度を上底吹転炉使用の場合よりも30〜100 ℃程度高
くする必要が生じ、転炉耐火物の溶損が促進されて炉寿
命が低下する問題もあった。さらに、出鋼温度を上げる
には高温吹錬が必要であり、それによるスラグの燐分配
比低下を補うべく造滓材を多量に使用せざるを得なくな
り、スラグ処理費用が増加する問題もあった。
[0004] A smelting method in which the blow stop C is set to a value close to the target product (product) component value and the blow stop and tapping is called a catch carbon method, and the amount of carburizing material added during tapping can be reduced. Therefore, when melting high-carbon steel in a bottom-blowing converter,
Because of the above-mentioned difficulties in the process matching between decarburization and dephosphorization, it is difficult to apply the catch carbon method. In addition, when the carburized material is put into the pot, the heat absorption of the carburized material is large, so that the temperature drop of the molten steel in the pot cannot be avoided. Therefore, it is necessary to raise the tapping temperature by about 30 to 100 ° C. as compared with the case of using the upper-bottom blower, and there is also a problem that the erosion of the converter refractory is promoted and the furnace life is shortened. Furthermore, high-temperature blowing is necessary to raise the tapping temperature, so that a large amount of slag-making material must be used to compensate for the decrease in the phosphorus distribution ratio of slag, and there is also a problem that slag processing costs increase. Was.

【0005】このような問題はあるが、反面、底吹転炉
による高炭素鋼の溶製では、高炭素領域でスラグ中T.Fe
が低いという特性があるため、この特性を活用して酸化
鉱物、例えば鉄鉱石、Mn鉱石、Cr鉱石、Ni鉱石、Mo鉱石
等を高炭素領域で還元製錬することができるという少な
からぬ利点があることから、上記のような問題点が解決
できれば産業の発展に寄与するところが大きい。
[0005] Although there is such a problem, on the other hand, in the smelting of high-carbon steel using a bottom-blowing converter, T.Fe
Has a considerable advantage that oxide ores such as iron ore, Mn ore, Cr ore, Ni ore and Mo ore can be reduced and smelted in a high carbon region by utilizing this characteristic. Therefore, if the above problems can be solved, it will greatly contribute to the development of industry.

【0006】[0006]

【発明が解決しようとする課題】一方、底吹転炉による
高炭素鋼溶製に関して、例えば特公昭55−45607 号公報
には、石灰装入率を吹錬期前半に少なくし後半で多くし
て脱燐を行うことで低燐含有量の中炭素及び高炭素鋼を
得ようとする精錬方法が開示されている。しかし、この
方法によれば、キャッチカーボン法の採用が可能である
としているものの、高炭素領域における底吹転炉特有の
低燐分配比スラグで脱燐を促進するには、40〜60kg/tと
いう多量の石灰を使用しなければならず、スラグ処理費
用が嵩むため実用的でない。
On the other hand, regarding the production of high carbon steel by a bottom-blowing converter, for example, Japanese Patent Publication No. 55-45607 discloses that the lime charging rate is reduced in the first half of the blowing period and increased in the second half. A refining method for obtaining a low-carbon medium- and high-carbon steel having a low phosphorus content by performing dephosphorization is disclosed. However, according to this method, although the catch carbon method can be adopted, in order to promote dephosphorization with a low phosphorus distribution ratio slag specific to a bottom-blowing converter in a high carbon region, 40 to 60 kg / t is required. Lime must be used, and the slag disposal cost increases, which is not practical.

【0007】また、特開昭55−94427 号公報には、転炉
精錬前に溶銑脱燐脱硫(ソーダ灰系フラックスを造滓材
に使用)を行い、転炉では副原料(造滓材)を使用しな
い精錬方法が開示されている。これによれば高炭素鋼の
底吹転炉溶製にキャッチカーボン法を採用することがで
きる。ところが、ソーダ灰系フラックスによる処理中の
溶銑温度低下が大きいため、転炉においては炭材系また
はFeSi等合金系の昇熱材が必要となり、安価なスクラッ
プ等鉄源を使用できなくなるため製造コストが増加する
問題がある。また、ソーダ灰系フラックスの多量使用は
スラグ中Na濃度を高くし、スラグ再利用時の処理費用が
増加する問題もある。
Japanese Patent Application Laid-Open No. 55-94427 discloses that hot metal dephosphorization desulfurization (using a soda ash-based flux as a slag-making material) is performed before refining of a converter. A smelting method that does not use smelting is disclosed. According to this, the catch carbon method can be adopted for melting the bottom blow converter of high carbon steel. However, the drop in hot metal temperature during the treatment with soda ash-based flux is large, so the converter requires a carbon-based material or an alloy-based material such as FeSi, so that inexpensive iron sources such as scrap cannot be used. There is a problem that increases. In addition, the use of a large amount of soda ash-based flux raises the Na concentration in the slag, and there is a problem that the processing cost when the slag is reused increases.

【0008】また、上記特開昭55−94427 号公報の方法
によれば、転炉では炉壁保護のために溶銑中Si量に応じ
て少量(15kg/ t 溶銑以下)の造滓材添加を許容する以
外は副原料を全く使用しないため、前記酸化鉱物の還元
製錬を実施する場合、被還元鉱石に含まれる脈石分によ
る吹錬弊害、例えばSiO2濃度上昇起因のスロッピングが
発生して操業が不安定になるため、出鋼後に高価な金属
合金を使用しなければならなくなり、精錬コストが上昇
する問題もある。しかもこれら金属鉱石の還元は吸熱反
応であるため、ソーダ灰による溶銑処理時の温度降下の
著しいこのプロセスでは、余計に昇熱材を必要とするの
で不利である。
According to the method disclosed in Japanese Patent Application Laid-Open No. 55-94427, a small amount (less than 15 kg / t hot metal) of slag-making material is added to the converter in accordance with the amount of Si in the hot metal to protect the furnace wall. Since no auxiliary material is used except to allow, when performing reduction smelting of the oxide mineral, smelting adverse effects due to gangue contained in the ore to be reduced, for example, slopping due to increase in SiO 2 concentration occurs. As a result, the operation becomes unstable, so that an expensive metal alloy must be used after tapping, and there is also a problem that the refining cost increases. Moreover, since the reduction of these metal ores is an endothermic reaction, this process in which the temperature drop during the hot metal treatment with soda ash is remarkable is disadvantageous because an extra heat-raising material is required.

【0009】本発明は、上記従来技術の問題を解決し、
余計な製造コスト増を招かずにキャッチカーボン法を採
用できる底吹転炉を用いた高炭素溶鋼の溶製方法を提供
することを目的とする。
The present invention solves the above-mentioned problems of the prior art,
It is an object of the present invention to provide a method for melting high carbon molten steel using a bottom-blowing converter that can employ a catch carbon method without causing an unnecessary increase in production cost.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記目的
達成の鍵が溶銑脱燐脱硫処理(溶銑予備処理)中に溶銑
温度を降下させないことにあると着眼し、溶銑予備処理
プロセスに鋭意検討を加えた。その結果、脱燐と脱硫と
を同時に行うのではなく脱燐を先行させ、しかる後に脱
硫を行うものとし、かつ、脱硫剤として金属マグネシウ
ム含有物質(Mg系フラックス)を使用することにより、
図1に示すように、溶銑温度降下を格段に小さくするこ
とができるという重要な知見を得た。すなわち、図1
は、処理後溶銑〔S〕=0.005 %とする場合に、横軸に
処理前溶銑〔S〕濃度、縦軸にMg系を基準とした各系の
フラックスによる脱硫処理中溶銑温度降下をとって、石
灰系およびソーダ灰系の値をプロットしたグラフであ
り、同図より、脱硫剤としてのMg系フラックスは、石灰
系フラックスに比べ20℃程度以上、ソーダ灰系フラック
スに比べ15℃程度以上という顕著な溶銑温度降下抑制能
を有することが判明した。
Means for Solving the Problems The present inventors have realized that the key to achieving the above-mentioned object is not to lower the hot metal temperature during hot metal dephosphorization and desulfurization (hot metal pretreatment), and to carry out the hot metal pretreatment process. Eager examination was added. As a result, instead of performing dephosphorization and desulfurization at the same time, prior to dephosphorization and then desulfurization, and by using a metal magnesium-containing substance (Mg-based flux) as a desulfurization agent,
As shown in FIG. 1, an important finding was obtained that the hot metal temperature drop can be significantly reduced. That is, FIG.
When the hot metal after treatment [S] = 0.005%, the horizontal axis represents the hot metal [S] concentration before the processing, and the vertical axis represents the temperature drop of the hot metal during desulfurization by flux of each system based on the Mg system. It is a graph in which the values of lime and soda ash are plotted, and from the same figure, Mg flux as a desulfurizing agent is about 20 ° C. or more compared to lime flux and about 15 ° C. or more compared to soda ash flux. It was found to have a remarkable ability to suppress the drop in hot metal temperature.

【0011】本発明は、かかる知見に基づき成されたも
ので、以下に列挙する通りのものである。 (1)予め脱燐処理した溶銑を金属マグネシウム含有物
質によって脱硫処理したのち除滓し、底吹転炉に装入し
て脱炭精錬して製品最終目標炭素濃度近傍の炭素濃度で
吹止し出鋼することを特徴とする底吹転炉を用いた高炭
素溶鋼の溶製方法。 (2)脱炭精錬の際に転炉内に合金成分を含有する金属
鉱石を添加して還元し、溶鋼中に合金成分を回収するこ
とを特徴とする(1)記載の底吹転炉を用いた高炭素溶
鋼の溶製方法。
The present invention has been made based on such findings, and is as listed below. (1) Hot metal that has been preliminarily dephosphorized is desulfurized with a metal-magnesium-containing material, and then the slag is removed, charged into a bottom-blowing converter and decarburized and refined to blow off at a carbon concentration near the final target carbon concentration of the product A method for smelting high carbon molten steel using a bottom-blowing converter characterized by tapping. (2) The bottom-blowing converter according to (1), wherein a metal ore containing an alloy component is added and reduced in the converter during the decarburization refining, and the alloy component is recovered in the molten steel. The method of smelting the high carbon molten steel used.

【0012】[0012]

【発明の実施の形態】本発明では、まず、高炉溶銑の段
階で製品成分範囲まで脱燐し、さらに金属Mgを含むフラ
ックスを使用して脱硫処理する。この特異の溶銑予備処
理により、溶銑温度降下を有効に抑制することができ、
したがって高価な昇熱材の添加が不要となり、安価な鉄
源が利用できるようになる。なお、溶銑脱燐の方は常法
に従って実施すれば良い。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, dephosphorization is performed to a product component range at the stage of blast furnace hot metal, and further desulfurization treatment is performed using a flux containing metal Mg. With this unique hot metal pretreatment, the hot metal temperature drop can be effectively suppressed,
Therefore, it is not necessary to add an expensive heating material, and an inexpensive iron source can be used. The hot metal dephosphorization may be performed according to a conventional method.

【0013】一方、転炉吹錬中の復燐復硫防止が不可欠
であるから、予備処理後の溶銑を溶銑鍋に払い出した
後、転炉装入前に十分予備処理スラグを掻き出す(除滓
する)必要がある。転炉装入された溶銑中のP量、S量
は既に製品成分範囲に到達しているから、転炉吹錬では
脱炭のみ注力すれば良く、製品最終目標炭素濃度近傍の
炭素濃度で吹止するキャッチカーボン法を容易に採用す
るのが好い。これにより取鍋に出鋼後、低硫加炭材の添
加量を節減することができ、また、該加炭材の吸熱によ
る溶鋼温度低下を補う出鋼温度アップ(30〜100 ℃程
度)の必要もなくなるから、転炉耐火物の溶損進行が鈍
化して炉寿命が延長する。
On the other hand, since it is essential to prevent rephosphorus resulfurization during converter blowing, the pretreated hot metal is discharged to a hot metal ladle, and then the preprocessed slag is sufficiently scraped before charging the converter (slag removal). There is a need to. Since the amount of P and S in the hot metal charged in the converter has already reached the range of product components, it is only necessary to focus on decarburization in converter blowing, and to blow at a carbon concentration near the final target carbon concentration of the product. It is preferable to easily adopt the catch carbon method to stop. This makes it possible to reduce the amount of low-sulfur carburized material added to the ladle after tapping, and to increase the tapping temperature (about 30 to 100 ° C) to compensate for the drop in molten steel temperature due to endothermic heat of the carburized material. Therefore, the progress of erosion of the converter refractory slows down and the furnace life is extended.

【0014】なお、製品最終目標炭素濃度近傍の炭素濃
度とは、一概に規定するのは難しいが、キャッチカーボ
ン法により、加炭材原単位および転炉耐火物原単位の低
減効果が顕著となるような吹止炭素濃度とするのがよ
く、かかる観点から、製品最終目標炭素濃度範囲下限の
50%以上、好ましくは70%以上であって、かつ、製品最
終目標炭素濃度範囲上限以下とするのがよい。
Although it is difficult to define the carbon concentration in the vicinity of the final target carbon concentration of the product, the catch carbon method has a remarkable effect of reducing the unit consumption of carburized material and the unit consumption of converter refractories. It is preferable to set the blown carbon concentration as described above.
It is preferably at least 50%, preferably at least 70%, and no more than the upper limit of the final product target carbon concentration range.

【0015】また、転炉装入時の溶銑温度を従来よりも
高くできることから、この熱余裕を利用して、高炭素領
域でスラグ中T.Feが低いという底吹転炉脱炭法の特性を
十分活かした転炉内鉱石還元製錬、すなわち、合金成分
を含有する金属鉱石を添加して還元し、溶鋼中に合金成
分を回収することが好ましい。かかる金属鉱石として
は、鉄鉱石、Mn鉱石、Cr鉱石、Ni鉱石、Mo鉱石等があ
る。この場合、鉱石に含まれる脈石分を調整するために
少量の造滓材が必要である。さもないと、SiO2濃度上昇
によるスロッピング等、種々の吹錬弊害が生じて安定操
業が困難になる。
Further, since the hot metal temperature at the time of charging the converter can be made higher than before, utilizing this heat margin, the characteristics of the bottom-blowing converter decarburization method in which the T.Fe in the slag is low in the high carbon region. It is preferable to reduce or refine the ore in the converter utilizing the above, that is, to add and reduce a metal ore containing an alloy component and recover the alloy component in the molten steel. Such metal ores include iron ore, Mn ore, Cr ore, Ni ore, Mo ore, and the like. In this case, a small amount of slag-making material is required to adjust the gangue content in the ore. Otherwise, various blowing effects such as slopping due to an increase in the concentration of SiO 2 will occur, and stable operation will be difficult.

【0016】[0016]

【実施例】280t底吹転炉を用いて、目標C:0.45wt%の
高炭素溶鋼を溶製した。本発明の実施例1、2では、ト
ピードカー(混銑車)にて石灰系の脱燐剤を用いて脱燐
処理した溶銑を溶銑鍋に払い出し、金属Mgを含有するフ
ラックスを吹き込んで脱硫処理し、その後、スラグドラ
ッガによって除滓してから、底吹転炉に装入した。装入
前溶銑成分・温度、転炉吹錬条件、吹止成分・温度を表
1に示す。
EXAMPLE Using a 280 t bottom blow converter, a high carbon molten steel with a target C of 0.45 wt% was produced. In Examples 1 and 2 of the present invention, hot metal dephosphorized using a lime-based dephosphorizing agent in a topped car (mixed iron car) is discharged to a hot metal pot, and a flux containing metal Mg is blown into the hot metal to perform desulfurization processing. Thereafter, the residue was removed by a slag dragger and then charged into a bottom-blowing converter. Table 1 shows the hot metal components and temperatures before charging, the converter blowing conditions, and the blowoff components and temperatures.

【0017】比較例として、ソーダ灰を用いて同時脱燐
脱硫処理した溶銑に対し底吹転炉による吹錬を行った。
このときの条件等を表1に併せて示す。
As a comparative example, hot metal subjected to simultaneous dephosphorization and desulfurization treatment using soda ash was blown by a bottom-blowing converter.
Table 1 also shows the conditions at this time.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例1では、比較例よりも脱硫プロセス
における温度降下が小さく、転炉装入温度を35℃高くす
ることができ、比較例で添加を必要とした高価な昇熱材
であるFeSi合金を添加する必要がなくなった。また、比
較例では還元能力に乏しくて鉄鉱石やCr鉱石を使用でき
ず、出鋼後に高価なFeCr合金を添加して合金成分調整せ
ざるを得なかったが、実施例1では同鉱石を還元でき、
その金属成分を溶鋼中に回収することができ、高価なFe
Cr合金の添加量を削減できて製錬コストダウンを実現で
きた。
In Example 1, the temperature drop in the desulfurization process was smaller than in the comparative example, the converter charging temperature could be increased by 35 ° C., and an expensive heating material, FeSi, which had to be added in the comparative example, was used. No need to add alloy. Further, in the comparative example, the iron ore or the Cr ore could not be used due to the poor reducing ability, and it was necessary to add an expensive FeCr alloy after tapping to adjust the alloy components. In Example 1, however, the ore was reduced. Can,
The metal component can be recovered in molten steel, and expensive Fe
The smelting cost was reduced by reducing the amount of Cr alloy added.

【0020】また、実施例2では、実施例1で使用して
いたスクラップを使用せず、実施例1よりもCr鉱石を増
量して2.4t/ch とし、吹止[Cr]を0.23wt%まで上げた結
果、実施例1よりも更にFeCr合金の添加量を削減するこ
とができた。また、実施例1、2では転炉造滓材(CaO
)の使用量を比較例よりも大幅に削減できた。
In the second embodiment, the scrap used in the first embodiment was not used, and the amount of Cr ore was increased to 2.4 t / ch from that of the first embodiment, and the blow stopper [Cr] was 0.23 wt%. As a result, the addition amount of the FeCr alloy could be further reduced as compared with Example 1. In Examples 1 and 2, the converter slag material (CaO
) Was significantly reduced compared to the comparative example.

【0021】[0021]

【発明の効果】かくして本発明によれば、底吹転炉を用
いた高炭素溶鋼の溶製において、余計な製造コスト増を
招かずにキャッチカーボン法を採用でき、さらには、高
炭素領域の低T.Feスラグを活用した鉱石還元製錬を実施
できるという優れた効果を奏する。
As described above, according to the present invention, it is possible to employ the catch carbon method in the smelting of high carbon molten steel using a bottom-blowing converter without incurring an extra increase in production cost. It has an excellent effect that ore reduction smelting using low T.Fe slag can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶銑脱硫用各系フラックスの溶銑温度降下抑制
能を比較して示すグラフである。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a comparison of a hot metal temperature drop suppressing ability of each flux for hot metal desulfurization.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予め脱燐処理した溶銑を金属マグネシウ
ム含有物質によって脱硫処理したのち除滓し、底吹転炉
に装入して脱炭精錬して製品最終目標炭素濃度近傍の炭
素濃度で吹止し出鋼することを特徴とする底吹転炉を用
いた高炭素溶鋼の溶製方法。
1. A hot metal which has been preliminarily dephosphorized is desulfurized with a metal-magnesium-containing substance, and then deslagged, charged into a bottom-blowing converter and decarburized and refined, and blown at a carbon concentration near the final target carbon concentration of the product. A method for smelting high-carbon molten steel using a bottom-blowing converter characterized by stopping the tapping.
【請求項2】 脱炭精錬の際に転炉内に合金成分を含有
する金属鉱石を添加して還元し、溶鋼中に合金成分を回
収することを特徴とする請求項1記載の底吹転炉を用い
た高炭素溶鋼の溶製方法。
2. The bottom blow roller according to claim 1, wherein a metal ore containing an alloy component is added and reduced in the converter during the decarburization refining, and the alloy component is recovered in the molten steel. Melting method of high carbon molten steel using a furnace.
JP15277598A 1998-06-02 1998-06-02 Method for melting high carbon steel using bottom-blown converter Pending JPH11343514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15277598A JPH11343514A (en) 1998-06-02 1998-06-02 Method for melting high carbon steel using bottom-blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15277598A JPH11343514A (en) 1998-06-02 1998-06-02 Method for melting high carbon steel using bottom-blown converter

Publications (1)

Publication Number Publication Date
JPH11343514A true JPH11343514A (en) 1999-12-14

Family

ID=15547883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15277598A Pending JPH11343514A (en) 1998-06-02 1998-06-02 Method for melting high carbon steel using bottom-blown converter

Country Status (1)

Country Link
JP (1) JPH11343514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451134C (en) * 2006-12-28 2009-01-14 武汉钢铁(集团)公司 Double-slag converter process for producing high carbon low-phosphorus molten steel
CN100453657C (en) * 2006-12-28 2009-01-21 武汉钢铁(集团)公司 Mono-slag converter process for producing high carbon low-phosphorus molten steel
CN113388710A (en) * 2021-05-24 2021-09-14 南京钢铁股份有限公司 Smelting control method of ultrahigh-strength cord steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451134C (en) * 2006-12-28 2009-01-14 武汉钢铁(集团)公司 Double-slag converter process for producing high carbon low-phosphorus molten steel
CN100453657C (en) * 2006-12-28 2009-01-21 武汉钢铁(集团)公司 Mono-slag converter process for producing high carbon low-phosphorus molten steel
CN113388710A (en) * 2021-05-24 2021-09-14 南京钢铁股份有限公司 Smelting control method of ultrahigh-strength cord steel

Similar Documents

Publication Publication Date Title
JP2006233264A (en) Method for smelting high-chromium molten steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP2947063B2 (en) Stainless steel manufacturing method
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JPH10140227A (en) Production of high alloy steel by joining two molten steels
CN111074037A (en) Novel process for upgrading manganese-rich slag smelting product structure
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP3486886B2 (en) Steelmaking method using two or more converters
CN115369308B (en) Method for producing high-strength IF steel
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2964861B2 (en) Stainless steel manufacturing method
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JP2587286B2 (en) Steelmaking method
JPS6247417A (en) Melt refining method for scrap
JPH0892627A (en) Production of stainless steel
JPH0776752A (en) Method for melting chromium-containing steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JP3511685B2 (en) Bottom blow converter steelmaking
JPH01215917A (en) Method for melting stainless steel
JPH0250165B2 (en)
JP3721998B2 (en) Hot metal pretreatment method
JPH111714A (en) Steelmaking method
JPH08209228A (en) Steel making method
JPH0510403B2 (en)