JPH11341947A - Control of fermentation - Google Patents

Control of fermentation

Info

Publication number
JPH11341947A
JPH11341947A JP10153004A JP15300498A JPH11341947A JP H11341947 A JPH11341947 A JP H11341947A JP 10153004 A JP10153004 A JP 10153004A JP 15300498 A JP15300498 A JP 15300498A JP H11341947 A JPH11341947 A JP H11341947A
Authority
JP
Japan
Prior art keywords
fermentation
temperature
electric conductivity
fermented food
fermented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10153004A
Other languages
Japanese (ja)
Inventor
Kazuhito Hayakawa
和仁 早川
Hiroshi Misawa
宏 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP10153004A priority Critical patent/JPH11341947A/en
Publication of JPH11341947A publication Critical patent/JPH11341947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling fermentation by simple inline measurement in fermentation process of culturing bacterium of the genus Lactobacillus or Bifidobacterium. SOLUTION: This method for controlling fermentation of a food to be fermented comprises measuring temperature and electroconductivity of a fermentation solution with time, obtaining electroconductivity compensated by temperature from these two factors i.e., temp. and electroconductivity, and controlling fermentation state of the fermentation solution by using the electroconductivity as index in a process producing fermented food by inoculating a microorganism such as lactic acid bacterium into a substrate containing a fermentation raw material and culturing the microorganism. Thereby, problems of a conventional method using electroconductivity as index are solved and fermentation step can simply be controlled in high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、乳酸菌又はビフィ
ドバクテリウム属細菌を培養して発酵食品を製造する際
の発酵プロセスにおける簡便なインライン計測による発
酵管理方法に関するものであり、更に詳しくは、発酵食
品の発酵プロセスにおける発酵管理方法において、電気
伝導度を指標とする従来方法の問題点を根本的に解消す
るとともに、当該発酵プロセスにおいて、簡便かつ高精
度に発酵食品の発酵状態の管理を行うことを可能とする
新しい発酵管理方法に関すものである。
TECHNICAL FIELD The present invention relates to a fermentation management method by simple in-line measurement in a fermentation process for producing a fermented food by culturing a lactic acid bacterium or a Bifidobacterium genus bacterium. In a fermentation management method in a fermentation process of a fermented food, while fundamentally solving the problems of the conventional method using electric conductivity as an index, the fermentation state of the fermented food is easily and accurately managed in the fermentation process. It relates to a new fermentation management method that makes it possible.

【0002】[0002]

【従来の技術】従来、各種の発酵食品のうち、例えば、
発酵乳、乳酸菌飲料等の発酵食品の発酵管理方法として
は、発酵液をアルカリ溶液で滴定することにより求めら
れる酸度や、示差屈折計により求められる糖濃度(Br
ix値)などを指標としてその発酵状態を管理する方法
が用いられている。しかしながら、これらの方法は、い
ずれもサンプリングを必要とするいわゆるオフライン測
定方法によるものであり、コンタミネーションのリスク
を伴う等の問題点を有する。このような問題を解決する
いわゆるインライン測定方法としては、例えば、pH電
極を発酵タンクに装着し、当該pH電極により水素イオ
ン濃度を測定する方法が提唱されている。しかしなが
ら、pH電極は、その構造上電極の内部液が微量ではあ
るが外部に流出すること、インラインでの使用中の更生
が困難であること、電極が薄膜ガラスなどで構成されて
いるため壊れやすいことなどの理由から、pH電極によ
る方法は、食品製造におけるインライン監視方法として
不適当な点があり、その導入例は極めて少ない。
2. Description of the Related Art Conventionally, among various fermented foods, for example,
Fermentation methods for fermented foods such as fermented milk and lactic acid bacteria beverages include acidity determined by titrating the fermented solution with an alkaline solution and sugar concentration (Br) determined by a differential refractometer.
ix value) is used as an index to manage the fermentation state. However, each of these methods is based on a so-called off-line measurement method that requires sampling, and has problems such as a risk of contamination. As a so-called in-line measurement method for solving such a problem, for example, a method in which a pH electrode is attached to a fermentation tank and the hydrogen ion concentration is measured by the pH electrode has been proposed. However, the pH electrode has a small amount of the internal liquid flowing out of the electrode due to its structure, is difficult to rehabilitate during in-line use, and is fragile because the electrode is made of thin-film glass or the like. For this reason, the method using a pH electrode is unsuitable as an in-line monitoring method in food production, and its introduction examples are extremely few.

【0003】また、発酵食品の生産にあたり、発酵中の
基質にマイクロ波を照射し、透過波の減衰を測定するこ
とにより基質の乳酸酸度を求め、発酵状態の変化を確認
することからなる発酵管理方法(特開平8−25675
9号公報)が提案されている。この方法は、マイクロ波
の減衰量に基づいて発酵液中の乳酸の定量測定を行うこ
とを特徴としている。これ以外のインライン測定方法と
して、電気伝導度計による誘電率の値を指標とする食品
の発酵管理方法(特公平2−9780号公報)が提案さ
れている。しかしながら、電気伝導度の値は基質によっ
て異なり、その変動の大きさは電解質濃度の影響を受け
るので、発酵管理の指標として電気伝導度の値をそのま
ま用いることは監視精度の点で問題があった。また、本
発明者らが得た知見によると、基質の温度を僅かに変化
させただけでも電気伝導度の値は変動してしまうことが
わかっており、この点も発酵管理を行う上では非常に問
題となる。
[0003] In the production of fermented foods, the substrate during fermentation is irradiated with microwaves, the lactic acidity of the substrate is determined by measuring the attenuation of the transmitted wave, and the change in fermentation state is confirmed. Method (JP-A-8-25675)
No. 9) has been proposed. This method is characterized in that a quantitative measurement of lactic acid in a fermentation solution is performed based on the amount of microwave attenuation. As another in-line measurement method, a method for managing fermentation of food using the value of the dielectric constant by an electric conductivity meter as an index (Japanese Patent Publication No. 2-9780) has been proposed. However, the value of the electrical conductivity varies depending on the substrate, and the magnitude of the variation is affected by the electrolyte concentration. Therefore, using the electrical conductivity value as it is as an index for fermentation management has a problem in terms of monitoring accuracy. . Further, according to the knowledge obtained by the present inventors, it is known that the value of the electric conductivity fluctuates even if the temperature of the substrate is slightly changed, and this point is also very important in performing fermentation management. Is a problem.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来の技術及びその問題点に鑑
みて、とりわけ、発酵食品の発酵プロセスにおける発酵
管理方法において、電気伝導度を指標とする発酵管理方
法の問題点を根本的に解消することを可能とする簡便か
つ高精度な新しい発酵管理方法を開発することを目標と
して鋭意研究を積み重ねた結果、発酵の前後の電解質濃
度の差が僅かである場合には基質の温度変化に対する電
気伝導度の変化量に基づいて電気伝導度の値を補償する
ことにより温度の影響を排除することができること、そ
して、当該温度補償された電気伝導度値を指標として用
いることにより、より精度の高い発酵管理が行えるこ
と、等の知見を得た。すなわち、本発明者らは、鋭意研
究の結果、乳酸菌又はビフィドバクテリウム属細菌を用
いて発酵乳等の発酵食品を製造する場合には、基質の温
度が1℃変化するごとに電気伝導度は一律に2.4%程
度変化すること、また、当該電気伝導度の変化量に基づ
いて電気伝導度の値を補償することにより精度の高い発
酵管理が行えること等の知見を見出し、本発明を完成す
るに至った。本発明は、発酵食品の発酵プロセスにおい
て、上記のような電気伝導度を指標とする発酵管理を行
う際の問題点を克服し、簡便かつ高精度な発酵管理方法
を提供することを目的とするものである。
Under these circumstances, the present inventors, in view of the above-mentioned prior art and the problems thereof, have developed a method for controlling electric conduction in a fermentation management method in a fermentation process of fermented food. As a result of intensive research with the aim of developing a simple and accurate new fermentation management method that can fundamentally solve the problems of fermentation management method using degree as an index, the electrolyte before and after fermentation If the difference in concentration is small, the effect of temperature can be eliminated by compensating the value of the electric conductivity based on the amount of change in the electric conductivity with respect to the change in the temperature of the substrate. It was found that fermentation management can be performed with higher accuracy by using the obtained electric conductivity value as an index. That is, as a result of intensive studies, the present inventors have found that when fermented foods such as fermented milk are produced using lactic acid bacteria or Bifidobacterium bacteria, the electric conductivity changes every time the temperature of the substrate changes by 1 ° C. Found that the fermentation management can be performed with high accuracy by compensating for the value of the electric conductivity based on the amount of change in the electric conductivity. Was completed. An object of the present invention is to provide a simple and high-precision fermentation management method that overcomes the problems of performing fermentation management using the above-described electric conductivity as an index in a fermentation process of a fermented food. Things.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段からなる。 (1)発酵原料を含む基質に、乳酸菌等の微生物を接種
・培養して発酵食品を製造する過程で、発酵液の温度及
び電気伝導度を経時的に測定し、これらの2因子から温
度補償された電気伝導度値を求め、当該電気伝導度値を
指標として発酵液の発酵状態を管理することからなる発
酵食品の発酵管理方法。 (2)乳製品等の発酵原料を含む基質に、乳酸菌又はビ
フィドバクテリウム属細菌を接種・培養して発酵食品を
製造するに際し、当該基質の温度T1(℃)における基
質中の電気伝導度G1を経時的に測定し、当該G1を、
下記補償式(1) 補償式(1) G2=G1×1.024(T2-T1) で換算することにより任意の温度T2(℃)での電気伝
導度G2を求め、当該G2の値から発酵停止時を決定す
ることを特徴とする前記(1)記載の発酵食品の発酵管
理方法。 (3)発酵原料を含む基質に、乳酸菌等の微生物を接種
・培養して発酵食品を製造する過程で、発酵液の温度及
び電気伝導度を経時的に測定し、これらの2因子から発
酵液の電解質濃度値を求め、当該電解質濃度値を指標と
して発酵液の発酵状態を管理することからなる発酵食品
の発酵管理方法。 (4)基質に、乳酸菌又はビフィドバクテリウム属細菌
を接種・培養して発酵食品を製造するに際し、次の
(a)乃至(c)の過程、(a)予め培養を行い、培養
液の温度T(℃)、電気伝導度G(mS/cm)、及び
電解質濃度S(g/1)の3因子のマトリックスデータ
を経時的に構築する過程、(b)上記(a)で得られた
マトリックスデータを基に、下記補償式(2) 補償式(2) S=(G+aT+b)/(cT+d) の定数a、b、c及びdを求める過程、及び、(c)基
質中の電気伝導度Gを経時的に測定し、Gを上記補償式
(2)で換算することにより電解質濃度値Sを求め、当
該Sの値を上記(a)のマトリックスデータに適用する
過程、により発酵停止時を決定することを特徴とする前
記(3)記載の発酵食品の発酵管理方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) In the process of producing a fermented food by inoculating and culturing microorganisms such as lactic acid bacteria on a substrate containing a fermentation raw material, the temperature and electric conductivity of the fermentation solution are measured over time, and the temperature is compensated from these two factors. A fermentation management method for a fermented food, comprising: obtaining the obtained electric conductivity value, and managing the fermentation state of the fermented liquid using the electric conductivity value as an index. (2) When producing a fermented food by inoculating and culturing a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium on a substrate containing a fermentation raw material such as a dairy product, the electric conductivity in the substrate at a temperature T1 (° C.) of the substrate G1 is measured over time and G1 is
Compensation formula (1) below Compensation formula (1) G2 = G1 × 1.024 (T2−T1) is converted into electric conductivity G2 at an arbitrary temperature T2 (° C.), and fermentation is performed from the value of G2. The method for controlling fermentation of a fermented food according to the above (1), wherein the stop time is determined. (3) In the process of producing a fermented food by inoculating and culturing microorganisms such as lactic acid bacteria on a substrate containing a fermentation raw material, the temperature and electric conductivity of the fermentation liquid are measured over time, and the fermentation liquid is determined from these two factors. A fermentation management method for a fermented food, comprising: determining an electrolyte concentration of the fermented liquid, and managing the fermentation state of the fermented liquid using the electrolyte concentration as an index. (4) The following steps (a) to (c) are carried out in the following steps (a) to (c) for producing a fermented food by inoculating and culturing a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium on a substrate. The process of constructing matrix data of three factors over time of temperature T (° C.), electric conductivity G (mS / cm), and electrolyte concentration S (g / 1), and (b) obtained in (a) above. Compensation formula (2) based on matrix data Compensation formula (2) Process of obtaining constants a, b, c and d of S = (G + aT + b) / (cT + d), and (c) electric conductivity in a substrate G is measured with time, the electrolyte concentration value S is obtained by converting G by the above compensation formula (2), and the value of S is applied to the matrix data of (a). The fermented tube of the fermented food according to the above (3), which is determined. Method.

【0006】すなわち、本発明は、下記の補償式により
〔T1]℃における電気伝導度[G1](mS/cm)
を、任意の温度[T2](℃)の電気伝導度[G2]
(mS/cm)に換算し、G2の値を指標として発酵管
理を行う方法を提供するものである。 補償式(1) G2=G1×1.024(T2-T1) また、本発明は、電解質濃度の変化が電気伝導度の温度
補償係数に与える影響が大きい場合でも、予め測定した
値を基に、発酵管理が行えることを見出したものであ
る。なお、温度補償係数とは、発酵熱等により、発酵液
の温度が変化した際に、それに伴って変化する電気伝導
度の値を補償するための係数である。発酵乳のように1
℃の温度変化に伴い電気伝導度が2.4%変化する場合
には温度補償係数Kは1.024となる。
That is, the present invention provides an electric conductivity [G1] (mS / cm) at [T1] ° C. according to the following compensation equation:
Is the electric conductivity [G2] at an arbitrary temperature [T2] (° C.).
(MS / cm), and provides a method for performing fermentation management using the value of G2 as an index. Compensation formula (1) G2 = G1 × 1.024 (T2−T1) In the present invention, even when the change in the electrolyte concentration has a large effect on the temperature compensation coefficient of the electric conductivity, the present invention is based on the value measured in advance. It has been found that fermentation management can be performed. The temperature compensation coefficient is a coefficient for compensating the value of the electric conductivity that changes when the temperature of the fermented liquid changes due to fermentation heat or the like. 1 like fermented milk
When the electric conductivity changes by 2.4% with the temperature change of ° C., the temperature compensation coefficient K becomes 1.024.

【0007】すなわち、本発明は、基質に、乳酸菌又は
ビフィドバクテリウム属細菌を接種・培養して発酵食品
を製造するに際し、次の(a)乃至(c)の過程、
(a)予め培養を行い培養液の温度T(℃)、電気伝導
度G(mS/cm)、電解質濃度S(g/1)の3因子
のマトリックスデータを経時的に構築する過程、(b)
上記(a)で得られたマトリックスデータを基に、下記
補償式(2)の定数a、b、c及びdを求める過程、及
び、(c)基質中の電気伝導度Gを経時的に測定し、G
を下記補償式(2)で換算することにより電解質濃度S
を求め、当該Sの値を(a)で得られたマトリックスデ
ータに適用する過程、により発酵停止時を決定すること
を特徴とする発酵食品の発酵管理方法を提供するもので
ある。 補償式(2) S=(G+aT+b)/(cT+d)
That is, the present invention provides a method for producing a fermented food by inoculating and culturing a substrate with a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium, comprising the following steps (a) to (c):
(A) a process of preliminarily culturing and constructing, over time, matrix data of three factors of a culture solution temperature T (° C.), electric conductivity G (mS / cm), and electrolyte concentration S (g / 1); )
A process of obtaining the constants a, b, c and d of the following compensation formula (2) based on the matrix data obtained in the above (a), and (c) measuring the electric conductivity G in the substrate over time Then G
Is converted into the electrolyte concentration S by the following compensation equation (2).
And a method of applying the value of S to the matrix data obtained in (a) to determine when fermentation is to be stopped. Compensation formula (2) S = (G + aT + b) / (cT + d)

【0008】[0008]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明の第1の態様は、上記のように、発酵
液の温度及び電気伝導度を経時的に測定し、これらの2
因子から温度補償された電気伝導度値を求め、得られた
電気伝導度値を指標として発酵液の発酵状態を管理する
ことを特徴とするものである。また、本発明の第2の態
様は、上記のように、上記2因子から発酵液の電解質濃
度値を求め、得られた電解質濃度値を指標として発酵液
の発酵状態を管理することを特徴とするものである。
Next, the present invention will be described in more detail. As described above, the first embodiment of the present invention measures the temperature and the electric conductivity of the fermentation liquor over time,
The method is characterized in that a temperature-compensated electric conductivity value is obtained from a factor, and the fermentation state of the fermentation liquid is managed using the obtained electric conductivity value as an index. Further, the second aspect of the present invention is characterized in that as described above, the electrolyte concentration value of the fermentation solution is obtained from the above two factors, and the fermentation state of the fermentation solution is managed using the obtained electrolyte concentration value as an index. Is what you do.

【0009】本発明において、上記補償式(1)は、乳
酸菌又はビフィドバクテリウム属細菌の培養に用いる基
質として、電解質濃度の影響が少なく、培養時の温度に
対する電気伝導度の変化量がほぼ一律である場合及びそ
の変化量が無視出来るほどに少ない場合に好適に適用さ
れる。上記補償式(1)を適用する場合としては、例え
ば、発酵乳の製造管理が好ましい態様として挙げられ
る。発酵乳の製造時には、使用する菌株毎に発酵温度が
異なり、また、乳酸菌が放出する発酵熱が温度を上昇さ
せるため、基質の温度を一定には保てない。しかしなが
ら、上記のように、発酵乳の製造に際しては、いずれの
温度で発酵を行っても温度に対する電気伝導度の変化量
がほぼ一律であるため、補償式(1)が適用可能とな
る。すなわち、特定温度における発酵経時的な電気伝導
度を予め測定しておき、更に発酵終点の電気伝導度を設
定しておけば、上記補償式を用いて、発酵の開始直後か
ら、その進行状態の把握や発酵終点の予測を行うことが
できる。発酵乳の製造時における電解質濃度の影響が少
ない理由は、乳酸菌発酵による乳酸の生成は比較的緩や
かに進行するため、通常の発酵乳のpH程度まで発酵を
行っても乳酸生成量がそれ程多くはならないためと考え
られる。また、発酵乳の製造以外でも酸の生成が穏やか
な場合には、その発酵系における温度補償係数を実測値
から求めることで、発酵管理を行うことができる。
In the present invention, the compensation formula (1) has a small effect on the electrolyte concentration as a substrate used for culturing lactic acid bacteria or Bifidobacterium bacteria, and the amount of change in electrical conductivity with respect to the temperature during culturing is almost zero. It is preferably applied when the amount is uniform and the amount of change is negligibly small. When the above-mentioned compensation formula (1) is applied, for example, production control of fermented milk is a preferred embodiment. During the production of fermented milk, the temperature of the substrate cannot be kept constant because the fermentation temperature differs for each strain used and the heat of fermentation released by the lactic acid bacteria increases the temperature. However, as described above, in the production of fermented milk, the compensation amount (1) can be applied because the amount of change in the electrical conductivity with respect to the temperature is substantially uniform regardless of the fermentation performed at any temperature. That is, the electric conductivity over time of fermentation at a specific temperature is measured in advance, and if the electric conductivity at the end point of fermentation is further set, using the above compensation formula, immediately after the start of fermentation, It is possible to grasp and predict the end point of fermentation. The reason that the influence of the electrolyte concentration during the production of fermented milk is small is that the production of lactic acid by lactic acid bacteria fermentation proceeds relatively slowly, so that even when fermenting to about the pH of ordinary fermented milk, the amount of lactic acid produced is not so large. It is thought that it does not become. In addition, in the case where the generation of an acid is moderate other than the production of fermented milk, the fermentation management can be performed by obtaining the temperature compensation coefficient in the fermentation system from the actually measured value.

【0010】一方、上記補償式(2)は、乳酸菌又はビ
フイドバクテリウム属細菌の培養に用いる基質として、
培養時の温度に対する電気伝導度の変化量が比較的大き
い場合に好適に適用される。例えば、乳酸菌等の微生物
の発酵産物を収率よく得るために、微生物の酸生成をア
ルカリ添加により中和させつつ培養を進める際には、基
質中の微生物濃度が非常に高くなる。このような場合に
は、生成する酸、すなわち電解質の濃度も高くなるた
め、温度のみでは電気伝導度を補償することができない
状況となる。上記補償式(2)の定数であるa、b、c
及びdは、使用する基質等によって異なるため、適宜設
定する必要がある。このため、予め菌の培養を行い、発
酵液の温度、電気伝導度、乳酸濃度の3因子のマトリッ
クスデータを構築し、このデータからa、b、c及びd
を求めておく必要がある。すなわち、適宜の発酵原料、
例えば、乳製品等を発酵原料として含む基質に、乳酸菌
又はビフィドバクテリウム属細菌を接種・培養して発酵
食品を製造するに際し、 (a)予め培養を行い、先験的情報として、発酵液の温
度T(℃)、電気伝導度G(mS/cm)、電解質濃度
S(g/l)の3因子のマトリックスデータを経時的に
構築する。 (b)このときの電解質濃度は、下記式 S=(G+aT+b)/(cT+d) で算出され、上記マトリックスデータを基に、上記式の
定数a、b、c及びdを求めておく。 (c)次に、発酵液(基質)中の電気伝導度Gを経時的
に測定し、測定された発酵液の温度Tと電気伝導度Gの
2因子から電解質濃度値Sを求め、試料の電解質濃度を
得て、当該電解質濃度値を管理指標として、発酵液の発
酵状態を管理して、発酵の停止時を決定する。
On the other hand, the compensation formula (2) is used as a substrate for culturing lactic acid bacteria or bacteria belonging to the genus Bifidobacterium.
It is suitably applied when the amount of change in electrical conductivity with respect to the temperature during culture is relatively large. For example, in order to obtain a fermentation product of a microorganism such as a lactic acid bacterium with a high yield, when the culture is advanced while neutralizing the acid production of the microorganism by adding an alkali, the concentration of the microorganism in the substrate becomes extremely high. In such a case, the generated acid, that is, the concentration of the electrolyte also becomes high, so that the electric conductivity cannot be compensated only by the temperature. A, b, c, which are constants of the compensation equation (2)
Since d and d vary depending on the substrate used and the like, they need to be set appropriately. For this purpose, the bacteria are cultured in advance, and matrix data of the three factors of temperature, electric conductivity, and lactic acid concentration of the fermentation solution are constructed, and a, b, c, and d are obtained from the data.
Need to be sought. That is, appropriate fermentation raw materials,
For example, when a fermented food is produced by inoculating and cultivating a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium on a substrate containing dairy products or the like as a fermentation raw material, (a) culturing in advance, The matrix data of three factors of temperature T (° C.), electric conductivity G (mS / cm), and electrolyte concentration S (g / l) are constructed with time. (B) The electrolyte concentration at this time is calculated by the following equation S = (G + aT + b) / (cT + d), and constants a, b, c and d of the above equation are obtained based on the matrix data. (C) Next, the electric conductivity G in the fermentation liquid (substrate) is measured with time, and the electrolyte concentration value S is determined from two factors of the measured fermentation liquid temperature T and electric conductivity G, The electrolyte concentration is obtained, the fermentation state of the fermentation liquid is managed using the electrolyte concentration value as a management index, and the stop time of fermentation is determined.

【0011】上記補償式(1)、(2)をコンピュータ
ーにプログラムしておき、これに発酵液の温度や電気伝
導度の実測値を適用することにより、上記測定と同時に
温度補償された電気伝導度や電解質濃度を出力表示する
ことも適宜可能である。上記方法によって得られる測定
データを発酵食品の製造プロセスの制御に適用すること
も可能であり、これにより、発酵食品の発酵工程を自動
管理することが可能となる。本発明の方法は、発酵食品
の発酵状態を簡便かつ高精度に管理する方法として、上
記発酵乳、乳酸菌飲料等の発酵食品に好適に適用される
が、これらに限らずこれらと同等の発酵食品であればそ
の種類の如何を問わず適用することができる。
The above compensation equations (1) and (2) are programmed in a computer, and the measured values of the temperature and the electric conductivity of the fermentation liquor are applied thereto. It is also possible to output and display the degree and the electrolyte concentration as appropriate. It is also possible to apply the measurement data obtained by the above method to the control of the production process of the fermented food, whereby the fermentation process of the fermented food can be automatically controlled. The method of the present invention is suitably applied to fermented foods such as the above-mentioned fermented milk and lactic acid bacteria beverages as a method for simply and accurately controlling the fermentation state of the fermented food, but is not limited thereto, and is not limited thereto, and is equivalent to these fermented foods. Then, it can be applied regardless of the type.

【0012】[0012]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例1 滅菌した20%スキムミルク溶液に、ストレプトコッカ
ス サーモフィルス(Storeptococcus
thermophilus)YIT2001を3%接種
し、培養経時的に、発酵液に直接電極を接触させない電
磁誘導方式により、インラインで発酵液の電気伝導度を
測定した。培養初期、中期、後期の温度に対する電気伝
導度を図1に示した。一般に、糖は電解質溶液の電気伝
導度を下げること、酸は電気伝導度を上げることが知ら
れている。発酵乳においては、培養経時的に乳糖の減少
と乳酸の増加などが同時に進むことにより、電気伝導度
は、培養経時的に大きくなった。図1に示されるよう
に、温度変化に対しては、電気伝導度は影響を受け、温
度に比例して大きくなった。温度に対する電気伝導度の
変化量は、2.4%/℃であり、培養の全期間を通じて
この関係に変化はなかった。したがって、以下の温度補
償式を導いた。 G2=G1 ×1.024(T2-T1)
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example 1 A sterile 20% skim milk solution was added to Streptococcus thermophilus (Streptococcus).
Inoculum 3% of the fermented solution was inoculated with YIT2001, and the electric conductivity of the fermented solution was measured in-line by an electromagnetic induction method in which the electrode was not brought into direct contact with the fermented solution over time. FIG. 1 shows the electric conductivity with respect to the temperature in the early, middle and late stages of the culture. In general, sugar is known to decrease the electric conductivity of an electrolyte solution, and acid is known to increase the electric conductivity. In the fermented milk, the decrease in lactose and the increase in lactic acid and the like proceeded simultaneously with the lapse of culture, so that the electric conductivity increased with the lapse of culture. As shown in FIG. 1, the electrical conductivity was affected by the temperature change and increased in proportion to the temperature. The change in electrical conductivity with temperature was 2.4% / ° C, and there was no change in this relationship throughout the culture. Therefore, the following temperature compensation formula was derived. G2 = G1 × 1.024 (T2-T1)

【0013】この温度補償式で35℃に換算した発酵液
の電気伝導度、及びpH、乳酸濃度、発酵液温度、発酵
液の温度で実測した電気伝導度、また、発酵液をサンプ
リングして、35℃の一定温度で測定した電気伝導度の
発酵経時的な値を表1に示した。
The electric conductivity of the fermentation liquor converted to 35 ° C. by this temperature compensation formula, the pH, the lactic acid concentration, the fermentation liquor temperature, the electric conductivity measured at the temperature of the fermentation liquor, and the fermentation liquor are sampled. Table 1 shows the values of the electric conductivity measured at a constant temperature of 35 ° C over time of fermentation.

【0014】[0014]

【表1】 [Table 1]

【0015】35℃で実際に測定した電気伝導度と、温
度補償式から求めた35℃における値とはよく一致し、
上述の温度補償式で、温度の影響が棄却された電気伝導
度が求められることが明らかとなった。一般的な発酵乳
の10〜30%の粉乳濃度の範囲でこの温度補償式は好
適に適応できた。この温度補償された電気伝導度値を用
いることにより、温度補償を行わない場合に比べて、よ
り精度の高い発酵管理が行えることが明らかとなった。
The electrical conductivity actually measured at 35 ° C. and the value at 35 ° C. obtained from the temperature compensation equation agree well,
It has been clarified that the above-mentioned temperature compensation formula requires an electric conductivity in which the influence of temperature is neglected. This temperature compensation formula could be suitably applied in the range of 10-30% milk powder concentration of general fermented milk. It has been clarified that fermentation management with higher accuracy can be performed by using the temperature-compensated electric conductivity value as compared with the case where temperature compensation is not performed.

【0016】実施例2 6%のグルコースを含むロゴサ培地(1Lあたり以下の
成分を含む。トリプチケースペプトン10.0g、イー
ストエキス5.0g、トリプトース3.0g、リン酸2
水素カリウム0.5g、リン酸水素2カリウム0.5
g、クエン酸アンモニウム2.0g、ツイーン80
1.0g、酢酸ナトリウム1.1g、硫酸マグネシウム
7水和物575mg、硫酸鉄7水和物34mg、硫酸マ
ンガン2水和物120mg)にラクトバチルス カゼイ
FERM BP−1366株(Lactobacil
lus casei FERM BP−1366)を3
%接種した。発酵の進行にともない発酵液のpHは低下
するが、6規定の水酸化ナトリウムを逐次添加し、pH
が6.5で一定となるように発酵を行った。
Example 2 Rogosa medium containing 6% glucose (containing the following components per liter: 10.0 g of trypticase peptone, 5.0 g of yeast extract, 3.0 g of tryptose, 2 g of phosphoric acid
0.5 g of potassium hydrogen, dipotassium hydrogen phosphate 0.5
g, ammonium citrate 2.0 g, Tween 80
1.0 g, sodium acetate 1.1 g, magnesium sulfate heptahydrate 575 mg, iron sulfate heptahydrate 34 mg, manganese sulfate dihydrate 120 mg) and Lactobacillus casei FERM BP-1366 strain (Lactobacil).
rus casei FERM BP-1366)
% Inoculated. As the fermentation progresses, the pH of the fermentation liquor decreases, but 6N sodium hydroxide is added successively to adjust the pH.
The fermentation was carried out so that the value was constant at 6.5.

【0017】培養経時的にサンプリングを行い、乳酸濃
度、及び温度を20〜45℃まで変化させたときの電気
伝導度を図2に示した。糖の消費と乳酸の増加に伴い、
電気伝導度も培養経時的に大きくなった。温度と電気伝
導度の関係を示す温度補償式は、乳酸濃度がほぼ0g/
1の発酵初期では、 G2=G1 × 1.012(T2-T1) となったが、乳酸濃度が50g/lに達する発酵後期で
は、 G2=G1 ×1.066(T2-T1) となり、発酵中に温度補償式の係数kが1.012から
1.066まで変化した。したがって、発酵液の電解質
濃度の変化が大きい発酵においては、実施例1で示した
ような、一つの温度補償式で培養の全期間の電気伝導度
を補正することは困難であることがわかった。
FIG. 2 shows the lactic acid concentration and the electric conductivity when the temperature was changed from 20 to 45 ° C. by sampling over time. With the increase of sugar consumption and lactic acid,
The electric conductivity also increased with time in the culture. The temperature compensation equation showing the relationship between temperature and electric conductivity indicates that the lactic acid concentration is almost 0 g /
In the early stage of fermentation, G2 = G1 × 1.012 (T2-T1) , but in the late stage of fermentation when the lactic acid concentration reaches 50 g / l, G2 = G1 × 1.066 (T2-T1) . During this, the coefficient k of the temperature compensation equation changed from 1.012 to 1.066. Therefore, in fermentation in which the change in the electrolyte concentration of the fermentation liquor is large, it has been found that it is difficult to correct the electric conductivity for the entire period of the cultivation with one temperature compensation type as shown in Example 1. .

【0018】したがって、予め発酵を行い、先験的情報
として、図2のように発酵液の温度[T](℃)、電気
伝導度[G](mS/cm)、乳酸濃度[L](g/
1)の3因子のマトリックスデータを構築した。このと
きの乳酸濃度は、 L=(G+aT+b)/(cT+d) で、算出され、係数はそれぞれa=−0.1219、b
=−2.4792、c=0.0107、d=0.151
5であった。発酵液の乳酸濃度を酵素法と本発明の方法
による電気伝導度から連続測定した結果を図3に示し
た。本発明の方法を用いることにより、測定された発酵
液の温度と電気伝導度の2因子から、正確な電解質濃度
値を求めることができることが明らかとなり、当該電解
質濃度値を用いることにより、容易に発酵プロセスを高
い精度で管理することが可能であることがわかった。
Therefore, fermentation is carried out in advance, and as a priori information, as shown in FIG. 2, the temperature [T] (° C.), the electric conductivity [G] (mS / cm), the lactic acid concentration [L] ( g /
The matrix data of the three factors of 1) was constructed. The lactic acid concentration at this time is calculated as L = (G + aT + b) / (cT + d), and the coefficients are a = −0.1219 and b, respectively.
= -2.4792, c = 0.0107, d = 0.151
It was 5. FIG. 3 shows the results of continuous measurement of the lactic acid concentration of the fermented liquor from the electrical conductivity by the enzyme method and the method of the present invention. By using the method of the present invention, it becomes clear that an accurate electrolyte concentration value can be obtained from the two factors of the measured fermentation solution temperature and electric conductivity, and by using the electrolyte concentration value, It has been found that the fermentation process can be managed with high precision.

【0019】[0019]

【発明の効果】以上詳記したとおり、本発明は、発酵原
料を含む基質に、乳酸菌等の微生物を接種・培養して発
酵食品を製造する過程で、発酵液の温度及び電気伝導度
を経時的に測定し、これらの2因子から温度補償された
電気伝導度値又は発酵液の電解質濃度値を求め、当該電
気伝導度値又は電解質濃度値を指標として発酵液の発酵
状態を管理することからなる発酵食品の発酵管理方法に
係るものであり、本発明によれば、培養時の温度に対す
る電気伝導度の変化量がほぼ一律である場合及びその変
化量が無視出来るほどに少ない場合には、特定の温度補
償式を用いることにより、温度の影響が消去された電気
伝導度値を求めることが可能であり、当該温度補償され
た電気伝導度の値を用いることにより、より精度の高い
発酵管理を行うことが可能となる。また、本発明によれ
ば、培養時の温度に対する電気伝導度の変化量が比較的
大きい場合には、特定の補償式を用いることにより、正
確な電解質濃度値を求めることが可能であり、当該電解
質濃度の値を用いることにより、より精度の高い発酵管
理を行うことが可能となる。
As described above in detail, the present invention relates to a method for inoculating and culturing microorganisms such as lactic acid bacteria on a substrate containing a fermentation raw material to produce a fermented food in the course of producing a fermented food. From the two factors to determine the temperature-compensated electric conductivity value or the electrolyte concentration value of the fermentation solution from these two factors, and to manage the fermentation state of the fermentation solution using the electric conductivity value or the electrolyte concentration value as an index. According to the present invention, according to the present invention, when the amount of change in electrical conductivity with respect to the temperature during culture is substantially uniform and the amount of change is negligibly small, By using a specific temperature compensation formula, it is possible to obtain an electric conductivity value from which the influence of temperature has been eliminated, and by using the value of the temperature-compensated electric conductivity, more accurate fermentation management can be performed. Do this It is possible. Further, according to the present invention, when the amount of change in electrical conductivity with respect to the temperature during culture is relatively large, by using a specific compensation formula, it is possible to obtain an accurate electrolyte concentration value. By using the value of the electrolyte concentration, more accurate fermentation management can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電磁誘導方式により、インラインで電気伝導度
を測定した場合の、培養初期、中期、後期の温度に対す
る電気伝導度を示す説明図である。
FIG. 1 is an explanatory diagram showing the electric conductivity with respect to the temperature at the initial stage, middle stage, and late stage of culture when the electric conductivity is measured in-line by the electromagnetic induction method.

【図2】培養経時的にサンプリングを行い、乳酸濃度、
及び温度を20〜45℃まで変化させたときの電気伝導
度を示す説明図である。
FIG. 2 Sampling is performed over time for cultivation, and lactic acid concentration,
It is explanatory drawing which shows the electric conductivity when changing the temperature from 20 to 45 degreeC.

【図3】発酵液の乳酸濃度を酵素法と本発明の方法によ
る電気伝導度から連続測定した結果を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing the results of continuous measurement of the lactic acid concentration of a fermentation solution from the electrical conductivity by the enzymatic method and the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発酵原料を含む基質に、乳酸菌等の微生
物を接種・培養して発酵食品を製造する過程で、発酵液
の温度及び電気伝導度を経時的に測定し、これらの2因
子から温度補償された電気伝導度値を求め、当該電気伝
導度値を指標として発酵液の発酵状態を管理することか
らなる発酵食品の発酵管理方法。
In the process of producing a fermented food by inoculating and culturing microorganisms such as lactic acid bacteria on a substrate containing a fermentation raw material, the temperature and electric conductivity of the fermentation solution are measured over time, and these two factors are used. A fermentation management method for a fermented food, comprising determining a temperature-compensated electric conductivity value, and managing a fermentation state of a fermented liquid using the electric conductivity value as an index.
【請求項2】 乳製品等の発酵原料を含む基質に、乳酸
菌又はビフィドバクテリウム属細菌を接種・培養して発
酵食品を製造するに際し、当該基質の温度T1(℃)に
おける基質中の電気伝導度G1を経時的に測定し、当該
G1を、下記補償式(1) 補償式(1) G2=G1×1.024(T2-T1) で換算することにより任意の温度T2(℃)での電気伝
導度G2を求め、当該G2の値から発酵停止時を決定す
ることを特徴とする請求項1記載の発酵食品の発酵管理
方法。
2. In producing a fermented food by inoculating and culturing a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium onto a substrate containing a fermentation raw material such as a dairy product, an electric current in the substrate at a temperature T1 (° C.) of the substrate is produced. The conductivity G1 is measured over time, and the G1 is converted to the following compensation formula (1) G2 = G1 × 1.024 (T2-T1) to obtain an arbitrary temperature T2 (° C.). 2. The fermentation management method for fermented food according to claim 1, wherein the electric conductivity G2 of the fermented food is determined and the fermentation stop time is determined from the value of G2.
【請求項3】 発酵原料を含む基質に、乳酸菌等の微生
物を接種・培養して発酵食品を製造する過程で、発酵液
の温度及び電気伝導度を経時的に測定し、これらの2因
子から発酵液の電解質濃度値を求め、当該電解質濃度値
を指標として発酵液の発酵状態を管理することからなる
発酵食品の発酵管理方法。
3. In the process of producing a fermented food by inoculating and culturing microorganisms such as lactic acid bacteria on a substrate containing a fermentation raw material, the temperature and electric conductivity of the fermentation solution are measured over time, and these two factors are used. A fermentation management method for a fermented food, comprising determining an electrolyte concentration value of a fermented liquid, and managing a fermentation state of the fermented liquid using the electrolyte concentration value as an index.
【請求項4】 基質に、乳酸菌又はビフィドバクテリウ
ム属細菌を接種・培養して発酵食品を製造するに際し、
次の(a)乃至(c)の過程、(a)予め培養を行い、
培養液の温度T(℃)、電気伝導度G(mS/cm)、
及び電解質濃度S(g/1)の3因子のマトリックスデ
ータを経時的に構築する過程、(b)上記(a)で得ら
れたマトリックスデータを基に、下記補償式(2) 補償式(2) S=(G+aT+b)/(cT+d) の定数a、b、c及びdを求める過程、及び、(c)基
質中の電気伝導度Gを経時的に測定し、Gを上記補償式
(2)で換算することにより電解質濃度値Sを求め、当
該Sの値を上記(a)のマトリックスデータに適用する
過程、により発酵停止時を決定することを特徴とする請
求項3記載の発酵食品の発酵管理方法。
4. In producing a fermented food by inoculating and culturing a substrate with a lactic acid bacterium or a bacterium belonging to the genus Bifidobacterium,
The following steps (a) to (c), (a) pre-culture,
Temperature T (° C.) of the culture solution, electric conductivity G (mS / cm),
And the process of constructing matrix data of three factors of electrolyte concentration S (g / 1) with time. (B) Based on the matrix data obtained in the above (a), the following compensation formula (2) compensation formula (2) ) S = (G + aT + b) / (cT + d) The process of obtaining constants a, b, c and d, and (c) measuring the electrical conductivity G in the substrate over time, and calculating G by the above-mentioned compensation equation (2). 4. The fermentation of a fermented food according to claim 3, wherein the electrolyte concentration value S is obtained by converting the fermented food into the matrix data of (a). Management method.
JP10153004A 1998-06-02 1998-06-02 Control of fermentation Pending JPH11341947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10153004A JPH11341947A (en) 1998-06-02 1998-06-02 Control of fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10153004A JPH11341947A (en) 1998-06-02 1998-06-02 Control of fermentation

Publications (1)

Publication Number Publication Date
JPH11341947A true JPH11341947A (en) 1999-12-14

Family

ID=15552855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10153004A Pending JPH11341947A (en) 1998-06-02 1998-06-02 Control of fermentation

Country Status (1)

Country Link
JP (1) JPH11341947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861847B2 (en) 2002-03-27 2005-03-01 Junichi Yamagishi Fermentation controller
US7169908B2 (en) * 2003-01-09 2007-01-30 Genentech, Inc. Purification of polypeptides
US20140363866A1 (en) * 2013-06-10 2014-12-11 Ineos Bio Sa Control of conductivity in anaerobic fermentation
US9885063B2 (en) * 2013-06-10 2018-02-06 Ineos Bio Sa Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage
US10100338B2 (en) * 2012-05-22 2018-10-16 Ineos Bio S.A. Method of operation of a syngas fermentation process
JP2018530999A (en) * 2015-10-26 2018-10-25 シャンユー ヌウ バイオロジカル ケミカル カンパニー リミテッド Coenzyme Q10 fermentation production process with simultaneous control of oxygen consumption rate and conductivity online
JP2020091149A (en) * 2018-12-04 2020-06-11 浜松ホトニクス株式会社 Fermentation state monitoring device and method for monitoring state of fermentation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861847B2 (en) 2002-03-27 2005-03-01 Junichi Yamagishi Fermentation controller
US7169908B2 (en) * 2003-01-09 2007-01-30 Genentech, Inc. Purification of polypeptides
US7579448B2 (en) 2003-01-09 2009-08-25 Genentech, Inc. Purification of microbial cell fermentation homogenates
US10100338B2 (en) * 2012-05-22 2018-10-16 Ineos Bio S.A. Method of operation of a syngas fermentation process
US20140363866A1 (en) * 2013-06-10 2014-12-11 Ineos Bio Sa Control of conductivity in anaerobic fermentation
US9850503B2 (en) * 2013-06-10 2017-12-26 Ineos Bio Sa Control of conductivity in anaerobic fermentation
US9885063B2 (en) * 2013-06-10 2018-02-06 Ineos Bio Sa Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage
JP2018530999A (en) * 2015-10-26 2018-10-25 シャンユー ヌウ バイオロジカル ケミカル カンパニー リミテッド Coenzyme Q10 fermentation production process with simultaneous control of oxygen consumption rate and conductivity online
JP2020091149A (en) * 2018-12-04 2020-06-11 浜松ホトニクス株式会社 Fermentation state monitoring device and method for monitoring state of fermentation

Similar Documents

Publication Publication Date Title
Degeest et al. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium
Grobben et al. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium
Harvey et al. Roles of citrate and acetoin in the metabolism of Streptococcus diacetilactis
JPH11341947A (en) Control of fermentation
Sen et al. Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus
Forrest et al. Enthalpy changes associated with the lactic fermentation of glucose
Guo et al. Metabolic footprint analysis of volatile metabolites by gas chromatography-ion mobility spectrometry to discriminate between different fermentation temperatures during Streptococcus thermophilus milk fermentation
JP2900979B2 (en) Lactic acidity measurement method of lactic acid fermentation broth using infrared ATR method
CN110462018A (en) Method for controlling biotechnology processes
Ko et al. A metabolic model of cellular energetics and carbon flux during aerobic Escherichia coli fermentation
EP1780286B1 (en) Bacterium counting method, bacterium counter, and cell used for the counter
Heriban et al. Process and metabolic characteristics of Bacillus coagulans as a lactic acid producer
Hristovski et al. Real-time monitoring of kefir-facilitated milk fermentation using microbial potentiometric sensors
Wentworth et al. Self-cycling fermentation of a citric acid producing strain of Candida lipolytica
Oner et al. Utilization of spline functions for smoothing fermentation data and for estimation of specific rates
Kostov et al. Lactic acid production with Lactobacillus casei ssp. rhamnosus NBIMCC 1013: Modeling and optimization of the nutrient medium
JPH0689A (en) Production of alcohol by repeated batch fermentation method
JPH10271989A (en) Control of culture of bifidus bacteria
Franks et al. Mechanistic model of the growth of Streptococcus cremoris HP at super optimal temperatures
Ranzi et al. Protein and cell volume distributions during the production of beta-galactosidase in batch cultures of Kluyveromyces lactis
Ramanjooloo et al. 1H NMR quantitative assessment of lactic acid produced by biofermentation of cane sugar juice
SU1431690A3 (en) Method of analysing glutamat-pyruvate- and glutamat-oxaloacetatetransaminase
JPS6359838A (en) Method for controlling fermentation of food
JPH08317797A (en) Measurement of fermention tank
Biryukov Computer control and optimization of microbial metabolite production