JPH11340891A - Control method for satellite channel and its system - Google Patents

Control method for satellite channel and its system

Info

Publication number
JPH11340891A
JPH11340891A JP15861298A JP15861298A JPH11340891A JP H11340891 A JPH11340891 A JP H11340891A JP 15861298 A JP15861298 A JP 15861298A JP 15861298 A JP15861298 A JP 15861298A JP H11340891 A JPH11340891 A JP H11340891A
Authority
JP
Japan
Prior art keywords
line
line setting
condition
frequency band
bandwidth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15861298A
Other languages
Japanese (ja)
Other versions
JP3119353B2 (en
Inventor
Hiroaki Watabe
浩章 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15861298A priority Critical patent/JP3119353B2/en
Publication of JPH11340891A publication Critical patent/JPH11340891A/en
Application granted granted Critical
Publication of JP3119353B2 publication Critical patent/JP3119353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the operating efficiency of a system and the channel efficiency by reducing a call-loss rate. SOLUTION: A secondary demand connection controller SDC 16 of a slave station 3 informs a master station of channel setting request information including plural channel setting conditions, a permissible range for each channel setting condition, and priority for each channel setting condition, and a primary demand connection controller PDC 10 of a master station 2 first selects favorable conditions for a channel setting condition with higher priority and adjusts the channel setting condition within the permissible range, so that a communication frequency band is set within a continuous idle frequency band in existence to present, based on the channel setting request information informed of the SDC 16 of the slave station 3. Then the master station 2 informs the slave station 3 of the frequency band width available of communication with the channel setting condition after the adjustment and its center frequency, together with the channel setting condition after the adjustment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の局が衛星回
線を通じて相互に通信を行う場合に衛星回線を制御する
方法およびシステムに関するものである。
The present invention relates to a method and a system for controlling a satellite link when a plurality of stations communicate with each other via a satellite link.

【0002】[0002]

【従来の技術】衛星通信システムでは、音声、データ、
映像等の様々な種類の情報を衛星回線上で効率的に送受
信するため、回線速度や回線品質などの条件が異なる衛
星回線を個々に設定する必要がある。このような様々な
回線が混在する不均一なシステムでは、多元接続方式と
して周波数分割多元接続(FDMA:Frequenc
y Division Multiple Acces
s)方式を採用するのが最も経済的である。FDMA方
式とは、回線速度や回線品質の条件に応じた周波数帯域
幅を適宜決定し、あらかじめ指定された一定幅の周波数
帯域の中から上記決定した帯域幅分を切り出し、切り出
した帯域を所望の回線に割り当てて衛星回線を設定する
方式である。また、システム内での通信要求の発生、す
なわち呼の発生は時間的、空間的に散発的であるから、
限られた周波数帯域を有効に利用する手段として要求割
当接続(DAMA:Demand Assignmen
tMultiple Access)方式を併用する場
合が多い。
2. Description of the Related Art In a satellite communication system, voice, data,
In order to efficiently transmit and receive various types of information such as video on a satellite line, it is necessary to individually set satellite lines having different conditions such as line speed and line quality. In such a non-uniform system in which various lines are mixed, a frequency division multiple access (FDMA: Frequency) is used as a multiple access method.
y Division Multiple Acces
s) It is most economical to adopt the method. With the FDMA method, a frequency bandwidth according to the conditions of the line speed and the line quality is appropriately determined, the above-mentioned determined bandwidth is cut out from a frequency band of a predetermined fixed width, and the cut-out band is converted into a desired band. This is a method of setting a satellite line by allocating it to a line. Also, since the generation of communication requests within the system, that is, the generation of calls, is sporadic in time and space,
Demand Assignment Connection (DAMA: Demand Assignment) as a means to effectively use the limited frequency band
tMultiple Access) method is often used together.

【0003】DAMA方式によって呼発生毎に周波数帯
域の割当を行うと、帯域幅が異なる回線を同一帯域上で
割り当てる場合、帯域の共用により、各トラヒックの時
間変動を吸収する大群化効果が得られる。しかし、狭帯
域呼の散発的な発生により、割当可能な空き帯域が歯抜
け状態になり、広帯域呼に割り当てるべき連続した空き
帯域が得られないという端数効果が発生する。その結
果、広帯域呼の呼損率が増加し、回線能率の低下あるい
は呼損率の不均衡を招くことがある。特に、広帯域呼は
狭帯域呼に比べて設定可能な実効回線数が元々少ないこ
ともあって、このような端数効果による呼損率は狭帯域
呼に比べて増大する。
When a frequency band is allocated every time a call is generated according to the DAMA system, when lines having different bandwidths are allocated on the same band, sharing of the band provides a large grouping effect of absorbing time fluctuation of each traffic. . However, the sporadic occurrence of a narrowband call causes a vacant band to be allocated, resulting in a fractional effect that a continuous vacant band to be allocated to a wideband call cannot be obtained. As a result, the blocking rate of a broadband call increases, which may lead to a decrease in line efficiency or an imbalance in the blocking rate. In particular, a broadband call originally has a smaller number of effective lines that can be set than a narrowband call, and thus the call loss rate due to such a fractional effect increases as compared with a narrowband call.

【0004】こうした問題に対して、下記<文献1>お
よび<文献2>では2種類および3種類の異なる速度の
回線の場合に回線能率の向上を計る方式を検討し、定位
選択方式の有効性を示している。また、<文献3>では
広帯域呼に優先順位を設けて広帯域呼の呼損率の劣化を
抑える種々の方式を検討しており、狭帯域呼に割り当て
可能な状態でも広帯域呼用に空き回線を確保する回線留
保方式が有効であることを示し、<文献4>では最適回
線留保条件を効率的に求める方法を提示している。さら
に<文献5>では呼損率制御を含めて端数効果を低減す
る浮動境界形方式を提案している。しかし、衛星通信に
おけるこの端数効果問題は非常に深刻であり、有限な周
波数資源の効率的な利用を計るために依然様々な検討が
行われている。以上のように、FDMA方式による衛星
通信システムにおいて、帯域幅の異なる回線をDAMA
方式で割り当てることによって生じる端数効果は、空き
帯域の断片化を促進し、呼の生起率が減少しない限り、
時間の経過と共に最も広帯域を要する呼ほど呼損率が増
加するという問題を抱えている。
In order to solve such a problem, the following <Document 1> and <Document 2> discuss a method for improving the line efficiency in the case of two or three types of lines having different speeds, and examine the effectiveness of the localization selection method. Is shown. Also, in Reference 3, various methods are considered for setting a priority order for broadband calls to suppress the deterioration of the blocking loss rate of wideband calls, and secure an empty line for wideband calls even in a state where it can be assigned to narrowband calls. It shows that the line reservation method is effective, and <Document 4> proposes a method for efficiently finding the optimum line reservation condition. Further, <Document 5> proposes a floating boundary type method for reducing a fractional effect including call blocking rate control. However, this fractional effect problem in satellite communications is very serious, and various studies are still being made to measure the efficient use of finite frequency resources. As described above, in a satellite communication system based on the FDMA scheme, lines having different
The fractional effect created by the allocation in this manner promotes the fragmentation of free bandwidth and, as long as the call occurrence rate does not decrease,
There is a problem in that a call requiring the widest bandwidth increases with a lapse of time as the call loss rate increases.

【0005】本発明はこのような問題の解決するために
なされたもので、その目的は、呼損率の低減を実現する
衛星回線の制御方法および衛星回線の制御システムを提
供することにある。 <文献1>千葉健一郎、高畑文雄:「伝送帯域が異なる
2種類の衛星回線の周波数割当てに関する特性評価」、
電子情報通信学会全国大会295、1985年 <文献2>小野義人、千葉健一郎、高畑文雄:「伝送帯
域が異なる3種類のキャリアに対する回線割り当て方式
に関する検討」、電子情報通信学会技報SAT91−7
2、1991年 <文献3>今井満:「多元トラヒック処理における回線
留保とパッキングについて」、電子情報通信学会技法S
E80−44、1980年 <文献4>三宅功:「異速度混在回線の最適留保制
御」、電子情報通信学会論文誌B J71−B 12
pp.1419−1424、1988年12月 <文献5>林正人、高畑文雄:「伝送帯域の異なるFD
MA衛星回線に対する呼損率制御可能な回線割当制御方
式の検討」、電子情報通信学会論文誌 B−IIVo
l.J78−B−II No.4 pp.231−23
9 1995年4月
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a satellite channel control method and a satellite channel control system for realizing a reduction in a call blocking rate. <Reference 1> Kenichiro Chiba and Fumio Takahata: "Characteristic evaluation on frequency assignment of two types of satellite links with different transmission bands",
IEICE National Convention 295, 1985 <Reference 2> Yoshito Ono, Kenichiro Chiba, Fumio Takahata: "Study on Line Assignment Method for Three Carriers with Different Transmission Bands", IEICE Technical Report SAT91-7
2, 1991 <Reference 3> Mitsuru Imai: "Reservation and Packing in Multi-Traffic Processing", IEICE Technique S
E80-44, 1980 <Literature 4> Isao Miyake: "Optimal reservation control of mixed-rate mixed lines", IEICE Transactions on Information B J71-B12
pp. 1419-1424, December 1988 <Reference 5> Masato Hayashi and Fumio Takahata: "FDs with different transmission bands"
A Study on a Channel Assignment Control Method that Can Control the Blocking Rate for MA Satellite Link ", IEICE Transactions on Information Technology, B-IIVo
l. J78-B-II No. 4 pp. 231-23
9 April 1995

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため、複数の従局が衛星回線を通じて周波数分割多
元接続方式により相互に通信を行う際に、前記衛星回線
に接続された主局が前記従局からの要求にもとづいて前
記従局間の通信のための周波数帯域を前記従局に割り当
てる制御方法であって、前記従局は、主局に対して、複
数の回線設定条件と、各回線設定条件ごとの許容範囲
と、各回線設定条件の優先度とを含む回線設定要求情報
を通知し、主局は、前記従局から通知された前記回線設
定要求情報にもとづき、通信周波数帯域が、現時点で存
在する連続空き周波数帯域内に収まるように、優先度の
高い回線設定条件ほど好条件に選定して回線設定条件を
許容範囲内で調節し、調節後の回線設定条件で通信可能
な周波数帯域幅およびその中心周波数を、調節後の回線
設定条件と共に前記従局に通知することを特徴とする。
According to the present invention, when a plurality of slave stations communicate with each other by a frequency division multiple access system via a satellite line, a master station connected to the satellite line is used. A control method for allocating a frequency band for communication between the slave stations to the slave station based on a request from the slave station, wherein the slave station has a plurality of line setting conditions and each line setting condition for a master station. The master station notifies the line setting request information including the permissible range for each of the lines and the priority of each line setting condition, and based on the line setting request information notified from the slave station, the master station The higher the priority, the better the line setting conditions are, and the line setting conditions are adjusted within the allowable range so as to be within the continuous available frequency band. Yo The center frequency, and notifies the slave station with the line setting conditions after adjustment.

【0007】また、本発明は、複数の従局が衛星回線を
通じて周波数分割多元接続方式により相互に通信を行う
際に、前記衛星回線に接続された主局が前記従局からの
要求にもとづいて前記従局間の通信のための周波数帯域
を前記従局に割り当てる制御システムであって、前記従
局は、主局に対して、複数の回線設定条件と、各回線設
定条件ごとの許容範囲と、各回線設定条件の優先度とを
含む回線設定要求情報を通知する回線設定要求手段を含
み、主局は、前記従局から通知された前記回線設定要求
情報にもとづき、通信周波数帯域が、現時点で存在する
連続空き周波数帯域内に収まるように、優先度の高い回
線設定条件ほど好条件に選定して回線設定条件を許容範
囲内で調節し、調節後の回線設定条件で通信可能な周波
数帯域幅およびその中心周波数を、調節後の回線設定条
件と共に前記従局に通知する帯域割当制御手段を含むこ
とを特徴とする。
Further, according to the present invention, when a plurality of slave stations communicate with each other by a frequency division multiple access system via a satellite line, a master station connected to the satellite line receives the slave station based on a request from the slave station. A control system for allocating a frequency band for communication between the slave stations, wherein the slave station has a plurality of line setting conditions, an allowable range for each line setting condition, And the line setting request means for notifying the line setting request information including the priority of the communication station.The master station, based on the line setting request information notified from the slave station, determines that the communication frequency band is a continuously available frequency band currently existing. Line setting conditions with higher priorities are selected as favorable conditions so that they fall within the band, and the line setting conditions are adjusted within an allowable range. The center frequency, characterized in that it comprises a band allocation control means for notifying the slave station with the line setting conditions after adjustment.

【0008】本発明では、従局が主局に対して複数の回
線設定条件と、各回線設定条件ごとの許容範囲と、各回
線設定条件の優先度とを含む回線設定要求情報を通知
し、これに対して主局は、まず、従局から通知された回
線設定要求情報にもとづき、通信周波数帯域が、現時点
で存在する連続空き周波数帯域内に収まるように、優先
度の高い回線設定条件ほど好条件に選定して回線設定条
件を許容範囲内で調節する。そして、調節後の回線設定
条件で通信可能な周波数帯域幅およびその中心周波数
を、調節後の回線設定条件と共に従局に通知する。
In the present invention, the slave station notifies the master station of line setting request information including a plurality of line setting conditions, an allowable range for each line setting condition, and a priority of each line setting condition. On the other hand, based on the line setting request information notified from the slave station, the master station first determines that the higher the priority of the line setting condition, the better the line setting condition so that the communication frequency band falls within the continuous available frequency band existing at the present time. And adjust the line setting conditions within the allowable range. Then, the slave station is notified of the communicable frequency bandwidth and the center frequency thereof under the adjusted line setting conditions, together with the adjusted line setting conditions.

【0009】したがって、本発明では、狭帯域呼の散発
的な発生により全周波数帯域中に端数効果が生じていて
も、新規呼、特に広帯域呼に対して、従局があらかじめ
提示した回線設定条件の許容範囲と優先度とに従って帯
域幅を調節し、端数効果によって歯抜け状態になってい
る空き帯域の中からその帯域幅分の帯域を確保して回線
設定を行うことができる。その結果、新規呼、特に広帯
域呼の呼損率が低減して通信システムの稼動効率および
回線能率が向上する。
Therefore, according to the present invention, even if a fractional effect occurs in the entire frequency band due to sporadic occurrence of a narrowband call, a new station, in particular, a wideband call, has a line setting condition presented in advance by a slave station. The bandwidth can be adjusted according to the allowable range and the priority, and a band corresponding to the bandwidth can be secured from among the unoccupied bands that are missing due to the fractional effect, and the line can be set. As a result, the call loss rate of a new call, especially a broadband call, is reduced, and the operation efficiency and line efficiency of the communication system are improved.

【0010】また、本発明では、回線設定条件に許容範
囲だけでなく、個々の条件に優先度を設けてその優先度
に応じた条件パラメタの調節を行うので、存在する空き
帯域幅に最も適合する帯域幅を従局の要求に沿って算出
することができる。したがって従局が提示した最高条件
では帯域幅を確保できない場合でも、従局にとってでき
る限り好ましい条件で回線を設定することができ、従局
は可能な範囲で最良の状態で通信を行うことができる。
Further, according to the present invention, not only a permissible range but also a priority is set for each condition and the condition parameter is adjusted in accordance with the priority. The required bandwidth can be calculated according to the request of the slave station. Therefore, even if the bandwidth cannot be ensured under the highest conditions presented by the slave station, the line can be set under the best conditions possible for the slave station, and the slave station can communicate in the best possible state.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態例につい
て図面を参照して説明する。図1は本発明による衛星回
線の制御システムを含む衛星通信システムの一例を示す
構成図、図2は同概略構成図であり、以下では図1、図
2に示した衛星通信システムを例に本発明の衛星回線の
制御システムおよび衛星回線の制御方法の実施の形態例
について説明する。図2に示した衛星通信システムは、
周波数多元接続(FDMA)方式による通信システムの
基本的な構成を有し、特に要求割当接続(DAMA)方
式による帯域割当制御を行う通信システムとして、図2
に示したように、中心となる一つの主局2と、主局2に
従属する多数の従局3が、衛星1を介して制御回線(衛
星回線)4で接続された構成となっている。そして、主
局2および従局3は衛星通信システムを構成すると同時
に本実施の形態例の衛星回線の制御システムを構成して
いる。なお、図2では簡単のため2つの従局3a、3b
のみが示されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a satellite communication system including a satellite channel control system according to the present invention, and FIG. 2 is a schematic configuration diagram showing the same. In the following, the satellite communication system shown in FIGS. An embodiment of a satellite link control system and a satellite link control method according to the present invention will be described. The satellite communication system shown in FIG.
FIG. 2 shows a communication system having a basic configuration of a communication system based on a frequency division multiple access (FDMA) system and performing band allocation control based on a demand allocation connection (DAMA) system.
As shown in FIG. 1, one main station 2 serving as a center and many slave stations 3 subordinate to the main station 2 are connected via a control line (satellite line) 4 via a satellite 1. The master station 2 and the slave station 3 constitute a satellite communication system, and at the same time constitute a satellite channel control system of the present embodiment. In FIG. 2, two slave stations 3a and 3b are provided for simplicity.
Only shown.

【0012】主局2は全衛星回線の制御局として機能
し、従局3は実際のデータ伝送を行う衛星回線の端局と
して機能する。主局2および従局3を接続する制御回線
4は固定帯域を使用した時分割多元接続チャネルであ
り、主局2から各従局3への送信には大電力の放送型チ
ャネルが常時設定され、各従局3から主局2への送信に
は複数の従局3のデータバーストを多元接続する共有型
チャネルが常時設定される。
The master station 2 functions as a control station for all satellite links, and the slave station 3 functions as a terminal station of a satellite link that actually performs data transmission. The control line 4 connecting the master station 2 and the slave stations 3 is a time-division multiple access channel using a fixed band, and a high power broadcast type channel is always set for transmission from the master station 2 to each slave station 3. For transmission from the slave station 3 to the master station 2, a shared channel for multiple connection of a plurality of data bursts of the slave stations 3 is always set.

【0013】これに対して、地上回線からのデータの送
受信には、各従局3間で個別に確立するデータ回線(衛
星回線)5が伝送路として使用される。このデータ回線
5は、後述するように、地上回線と連携するために必要
な回線速度と回線品質から計算された帯域幅の周波数帯
域を占有し、呼発生毎に割り当てられた帯域で設定され
る。
On the other hand, a data line (satellite line) 5 individually established between the slave stations 3 is used as a transmission line for transmitting and receiving data from the terrestrial line. As will be described later, this data line 5 occupies a frequency band of a bandwidth calculated from the line speed and line quality required for coordination with the terrestrial line, and is set with a band allocated every time a call is generated. .

【0014】主局2について詳しく説明すると、図1に
示したように、主局2にはアンテナ6などの屋外装置7
の他に屋内装置8が装備されており、屋内装置8は衛星
1への信号波送信および衛星1からの信号波受信を制御
するRF装置9と、送信信号を地上系信号波から搬送波
を含めた衛星系信号波へ変調し、逆に受信信号を衛星系
信号波から地上系信号波へ復調するモデム装置11と、
各従局3からのデータ回線設定要求に対して必要な周波
数帯域の割当制御を行うPDC(Primary DA
MA Controller)装置10(本発明に係わ
る帯域割当制御手段として機能する)とにより構成され
ている。PDC10は衛星1で利用可能な全周波数帯域
を管理しており、ある従局から要求されたデータ回線の
確立に必要な帯域幅を計算し、全帯域の中からその帯域
幅分の空き帯域を検索して、割り当て制御を行う機能を
有している。
The main station 2 will be described in detail. As shown in FIG.
In addition to the above, an indoor device 8 is provided. The indoor device 8 includes an RF device 9 for controlling transmission of a signal wave to the satellite 1 and reception of a signal wave from the satellite 1 and a transmission signal including a carrier wave from a terrestrial signal wave. A modem device 11 that modulates the received signal into a satellite signal wave and conversely demodulates a received signal from a satellite signal wave to a terrestrial signal wave;
PDC (Primary DA) for performing allocation control of a necessary frequency band in response to a data line setting request from each slave station 3
MA controller (functions as a band allocation control unit according to the present invention). The PDC 10 manages the entire frequency band available on the satellite 1, calculates the bandwidth required for establishing a data line requested by a certain slave station, and searches the free band for the bandwidth from the entire band. And has a function of performing assignment control.

【0015】従局3について詳しく説明すると、図1に
示したように、従局3も主局2と同様にアンテナ12な
どの屋外装置13の他に屋内装置14が装備されてお
り、複数の地上回線18を通じて送受信されるデータ
は、モデム装置17で地上系信号波から搬送波を含めた
衛星系信号波に変復され、また衛星系信号波から地上系
信号波に復調されてRF装置15により衛星1を介して
送受信される。
The slave station 3 will be described in detail. As shown in FIG. 1, similarly to the master station 2, the slave station 3 is equipped with an indoor unit 14 in addition to an outdoor unit 13 such as an antenna 12, and a plurality of ground lines. Data transmitted / received through 18 is converted from a terrestrial signal wave into a satellite signal wave including a carrier wave by the modem device 17, and is demodulated from the satellite signal wave into a terrestrial signal wave. Sent and received via

【0016】また、屋内装置14にはSDC(Seco
ndary DAMA Controller)装置1
6(本発明に係わる回線設定要求手段として機能する)
がモデム装置17と連携して装備されている。SDC1
6は、接続する各地上回線18からのデータ送信要求に
対し、そのデータ伝送に必要な周波数帯域の割当および
衛星回線(データ回線)の設定指示を主局2のPDC1
0に要求し、折り返しPDC10から通知される回線設
定指示に従って対局となる従局との間にデータ回線を設
定する。
The indoor unit 14 has an SDC (Seco
ndary DAMA Controller) Device 1
6 (functions as a line setting request unit according to the present invention)
Is provided in cooperation with the modem device 17. SDC1
In response to a data transmission request from each terrestrial line 18 to be connected, the PDC 1 of the main station 2 issues an assignment of a frequency band necessary for the data transmission and a setting instruction of a satellite line (data line).
0, and a data line is set up with a slave station to be played according to the line setting instruction notified from the return PDC 10.

【0017】図3は、従局間にデータ回線5を設定する
際の回線設定基本シーケンスを示すシーケンス図であ
る。従局3aのSDC16は地上回線18を常時監視し
ており、同回線から対局3bへの送信データを検出する
と、地上回線18の回線速度および回線品質の条件を含
めたデータ回線設定要求をPDC10へ送信する(図3
のA)。
FIG. 3 is a sequence diagram showing a basic line setting sequence when setting a data line 5 between slave stations. The SDC 16 of the slave station 3a constantly monitors the terrestrial line 18. When detecting transmission data from the line to the opposite station 3b, the SDC 16 transmits a data line setting request including the line speed and line quality conditions of the terrestrial line 18 to the PDC 10. (Figure 3
A).

【0018】PDC10は、この回線設定要求で通知さ
れた回線速度と回線品質の条件をもとに、要求されるデ
ータ回線を設定するのに必要な周波数帯域幅を算出し、
管理する全周波数帯域の中からその帯域幅分の空き帯域
を検索する。そして、空き帯域があればその中心周波数
と帯域幅などの周波数情報を従局3aのSDC16およ
び従局3bのSDC16に回線設定指示として通知する
(B)。従局3aおよび従局3bは通知された周波数帯
域情報をもとに信号波の送受信を開始し(C)、データ
回線を確立してそれぞれ地上回線との間におけるデータ
送受信を制御する(D)。
The PDC 10 calculates a frequency bandwidth required for setting a required data line based on the line speed and line quality conditions notified by the line setting request,
An empty band corresponding to the bandwidth is searched from all the frequency bands to be managed. Then, if there is a free band, frequency information such as the center frequency and the bandwidth is notified to the SDC 16 of the slave station 3a and the SDC 16 of the slave station 3b as a line setting instruction (B). The slave stations 3a and 3b start transmitting and receiving signal waves based on the notified frequency band information (C), establish data lines, and control data transmission and reception with the terrestrial lines (D).

【0019】次に、PDC10の構成について説明す
る。図4はPDCの機能的な構成を示すブロック図であ
る。図4に示したように、PDC10は帯域割当制御手
段100を構成し、帯域割当制御手段100は機能的に
条件設定手段101、帯域幅算出手段102、帯域検索
手段103、ならびに条件調節制御手段104を含んで
いる。条件設定手段101は、複数の回線設定条件の中
でもっとも優先度の低い回線設定条件から順番に許容範
囲内で順次、条件水準を低下させて回線設定条件を設定
し、帯域幅算出手段102は、条件設定手段101が設
定した回線設定条件にもとづいて、その回線設定条件で
通信可能な周波数帯域幅を算出する。
Next, the configuration of the PDC 10 will be described. FIG. 4 is a block diagram showing a functional configuration of the PDC. As shown in FIG. 4, the PDC 10 constitutes a band allocation control unit 100, and the band allocation control unit 100 functionally sets a condition setting unit 101, a bandwidth calculation unit 102, a band search unit 103, and a condition adjustment control unit 104. Contains. The condition setting means 101 sets the line setting conditions by sequentially lowering the condition level within the allowable range in order from the line setting condition having the lowest priority among the plurality of line setting conditions, and the bandwidth calculating means 102 Then, based on the line setting condition set by the condition setting means 101, a frequency bandwidth in which communication is possible under the line setting condition is calculated.

【0020】そして、帯域検索手段103は、帯域幅算
出手段102が算出した周波数帯域幅以上の連続空き周
波数帯域が存在するか否かを調べ、条件調節制御手段1
04は、帯域検索手段103による連続空き周波数帯域
の検索の結果、帯域幅算出手段102が算出した周波数
帯域幅以上の連続空き周波数帯域が存在しなかった場合
は、条件設定手段101に次の設定を行わせ、一方、上
記連続空き周波数帯域が存在した場合は、回線設定条件
の調節が完了したとする。
The band searching means 103 checks whether or not there is a continuous free frequency band equal to or larger than the frequency bandwidth calculated by the bandwidth calculating means 102.
04, if the result of the search for the continuous free frequency band by the band search means 103 shows that there is no continuous free frequency band equal to or greater than the frequency bandwidth calculated by the bandwidth calculation means 102, the next setting is made to the condition setting means 101; If the continuous free frequency band exists, it is assumed that the adjustment of the line setting condition has been completed.

【0021】次に、このように構成された本実施の形態
例の衛星回線の制御システムの動作について説明する。
各地上回線18とデータ回線(衛星回線)5を連携する
ための回線速度および回線品質の条件は各回線単位、す
なわち各呼によって異なるため、PDC10が導出する
帯域幅は各呼によって異なる。回線速度の低い、或いは
回線品質をさほど問わない場合は比較的狭い帯域幅を使
用する狭帯域呼となり、逆に回線速度の高い、或いは回
線品質の良いデータ回線を必要とする場合には広帯域呼
となる。
Next, the operation of the thus-configured satellite channel control system of this embodiment will be described.
Since the line speed and line quality conditions for linking each terrestrial line 18 and data line (satellite line) 5 are different for each line, that is, for each call, the bandwidth derived by the PDC 10 is different for each call. When the line speed is low or the line quality is not critical, a narrowband call using a relatively narrow bandwidth is used. Conversely, when a high line speed or a data line with good line quality is required, a wideband call is used. Becomes

【0022】このように、各従局から要求されるデータ
回線の帯域幅は様々であり、かつ各呼の存続時間は不定
であるから、PDC10が管理する全周波数帯域は図5
の説明図に示すように狭帯域呼と広帯域呼が不連続に帯
域を占有するような端数効果が常に生じていることにな
る。図5は従局3a、3bが相互に通信を行う場合を示
し、従局3a、3bは上述のようにデータ回線5により
接続され、一方、主局2とは制御回線4により接続され
ている。そして、Aは制御回線の固定帯域を示し、本実
施の形態例ではデータ回線の全周波数帯域Eの外側で同
帯域より低い周波数帯に設定されている。全周波数帯域
EにおいてCは割当中の帯域を示し、割当中の帯域C以
外の帯域Dが空き帯域となっている。
As described above, since the bandwidth of the data line required from each slave station is various and the duration of each call is undefined, the entire frequency band managed by the PDC 10 is shown in FIG.
As shown in FIG. 2, a fractional effect such that a narrow-band call and a wide-band call discontinuously occupy a band always occurs. FIG. 5 shows the case where the slave stations 3a and 3b communicate with each other. The slave stations 3a and 3b are connected by the data line 5 as described above, while being connected to the master station 2 by the control line 4. A indicates a fixed band of the control line, and in this embodiment, it is set to a frequency band lower than the same band outside the entire frequency band E of the data line. In the entire frequency band E, C indicates a band being allocated, and a band D other than the band C being allocated is an empty band.

【0023】図3の回線設定基本シーケンスにおいて、
PDC10が要求された回線速度および回線品質に相当
する帯域幅分の連続空き帯域を確保できれば問題ない
が、図5に示したような端数効果によってそのような連
続空き帯域が存在しない場合、その呼は損失呼となっ
て、折り返し要求元の従局3aに対して回線不確立処理
を行うことになる。このような端数効果による空き帯域
の断片化が多くなると、最も広帯域を要する呼から次第
に呼損率が増加していき、結局システムの稼動効率が低
下することになる。
In the basic line setting sequence shown in FIG.
There is no problem if the PDC 10 can secure a continuous free bandwidth for the bandwidth corresponding to the requested line speed and line quality. However, if such a continuous free bandwidth does not exist due to the fractional effect as shown in FIG. Is a lost call, and a line non-establishment process is performed for the slave station 3a that is the return request source. When the fragmentation of the available bandwidth due to the fractional effect increases, the call loss rate gradually increases from the call requiring the widest bandwidth, and eventually the operation efficiency of the system decreases.

【0024】しかし、本実施の形態例では以下に説明す
るような回線制御によりこの問題が解決される。図6は
この回線制御を示すフローチャートであり、以下では図
6も適宜参照する。従局3aのSDC16は回線速度お
よび回線品質の条件を一意に限定せず、地上回線18と
の連携が可能な範囲でこれらの条件に許容範囲を設け、
その許容範囲内で得られる最高の回線速度および最高の
回線品質のデータ回線設定をPDC10に要求する。ま
た、従局3aのSDC16は、様々な条件のうち、どの
条件が最も優先して満たされる必要があるかを示すた
め、各条件に優先度を設定し、設定した優先度をPDC
10に通知する。
However, in the present embodiment, this problem is solved by the line control described below. FIG. 6 is a flowchart showing this line control, and FIG. The SDC 16 of the slave station 3a does not uniquely limit the conditions of the line speed and the line quality, and establishes an allowable range for these conditions as long as it can cooperate with the ground line 18.
It requests the PDC 10 for a data line setting with the highest line speed and the highest line quality obtained within the allowable range. Also, the SDC 16 of the slave station 3a sets a priority for each condition to indicate which of the various conditions needs to be satisfied with the highest priority, and sets the set priority to the PDC.
Notify 10.

【0025】そして、主局2側では、PDC10による
帯域割当制御手段100(図4)の条件設定手段101
が、SDC16により提示された回線速度および回線品
質の条件の許容範囲のうち、まず、最も高速度および最
も高品質の回線が得られる回線設定条件を設定する(ス
テップS1)。これに対して帯域幅算出手段102は、
条件設定手段101が設定した回線設定条件にもとづい
て、その回線設定条件で通信可能な周波数帯域幅を算出
する(ステップS2)。つづいて、帯域検索手段103
は、帯域幅算出手段102が算出した周波数帯域幅以上
の連続空き周波数帯域が全周波数帯域E(図5)中に存
在するか否かを調べる(ステップS3)。そして、条件
調節制御手段104は、帯域検索手段103による連続
空き周波数帯域の検索の結果、帯域幅算出手段102が
算出した周波数帯域幅以上の連続空き周波数帯域が存在
しなかった場合は(ステップS4でNO)、条件設定手
段101に次の設定を行わせる。
On the main station 2 side, the condition setting means 101 of the band allocation control means 100 (FIG. 4) by the PDC 10 is used.
First, among the permissible ranges of the line speed and line quality conditions presented by the SDC 16, first, line setting conditions for obtaining the highest speed and highest line quality are set (step S1). On the other hand, the bandwidth calculation means 102
Based on the line setting conditions set by the condition setting means 101, a communicable frequency bandwidth is calculated under the line setting conditions (step S2). Subsequently, the band search means 103
Checks whether or not a continuous free frequency band equal to or greater than the frequency bandwidth calculated by the bandwidth calculating means 102 exists in the entire frequency band E (FIG. 5) (step S3). Then, as a result of the search for the continuous free frequency band by the band search means 103, the condition adjustment control means 104 determines that there is no continuous free frequency band equal to or larger than the frequency bandwidth calculated by the bandwidth calculation means 102 (step S4). NO), and makes the condition setting means 101 perform the following setting.

【0026】これにより条件設定手段101は、複数の
回線設定条件の中でもっとも優先度の低い回線設定条件
から順番に許容範囲内で順次、条件水準を低下させ、帯
域幅が狭くなるように回線設定条件を設定する。例え
ば、回線速度が最も優先度の低い条件として指定されて
いる場合は、回線速度が低くなるように調節する。その
後、帯域幅算出手段102は上述の場合と同様に帯域幅
を算出し、帯域検索手段103は全周波数帯域Eを再度
検索し、つづいて条件調節制御手段104は、帯域幅算
出手段102が算出した周波数帯域幅以上の連続空き周
波数帯域が存在しなかった場合は、条件設定手段101
にさらに次の設定を行わせ、以降、同様の動作がくり返
さえる。そして、ある条件に調節して算出した周波数帯
域幅以上の連続空き周波数帯域が存在した場合、条件調
節制御手段104は回線設定条件の調節が完了したとす
る(ステップS4でYES)。
Thus, the condition setting means 101 sequentially lowers the condition level within the allowable range in order from the line setting condition having the lowest priority among the plurality of line setting conditions, so that the line width is reduced. Set the setting conditions. For example, if the line speed is specified as the condition with the lowest priority, the line speed is adjusted to be lower. Thereafter, the bandwidth calculation means 102 calculates the bandwidth in the same manner as described above, the band search means 103 searches the entire frequency band E again, and then the condition adjustment control means 104 makes the calculation by the bandwidth calculation means 102. If there is no continuous free frequency band equal to or greater than the set frequency bandwidth, the condition setting means 101
, And the same operation is repeated thereafter. If there is a continuous free frequency band equal to or larger than the frequency bandwidth calculated by adjusting to a certain condition, the condition adjustment control unit 104 determines that the adjustment of the line setting condition has been completed (YES in step S4).

【0027】その結果、PDC10は、帯域幅算出手段
102が算出した帯域幅およびその中心周波数、ならび
に条件設定手段101が設定し回線設定条件を従局3
a、3bの各SDC16に通知し、回線設定を指示す
る。これにより従局3a、3bのSDC16は、PDC
10から指示された周波数情報でデータ回線を設定し
て、地上回線との間でデータ送受信を開始し、また通知
された回線設定条件のパラメタ値にもとづいて地上回線
18とデータ回線5とが正しく連携するようデータ送受
信を制御する。
As a result, the PDC 10 sets the bandwidth calculated by the bandwidth calculating means 102 and its center frequency, and the line setting conditions set by the condition setting means 101 to the slave station 3.
a, 3b, and instructs line setting. As a result, the SDCs 16 of the slave stations 3a and 3b
The data line is set with the frequency information specified by 10 and data transmission / reception with the terrestrial line is started, and the terrestrial line 18 and the data line 5 are correctly connected based on the parameter value of the notified line setting condition. Control data transmission / reception to cooperate.

【0028】次に、図3に示したように従局3aが対局
となる従局3bに向けてデータ回線5を設定する場合を
例に、さらに具体的に説明する。従局3aがPDC10
に要求する回線設定条件は、回線速度、回線品質に相当
するFEC(Forward Error Corre
ction)符号化速度、ならびに変復調方式の3種類
を含むものとし、それぞれは[表1]のようなパラメタ
として許容範囲および優先度が設定されているものとす
る。
Next, the case where the slave station 3a sets the data line 5 toward the slave station 3b which is the opposite station as shown in FIG. 3 will be described more specifically. Slave station 3a has PDC10
The line setting conditions required for FEC (Forward Error Corere) correspond to line speed and line quality.
ction) An encoding range and three types of modulation and demodulation schemes are included, and each of them has an allowable range and a priority set as parameters as shown in [Table 1].

【0029】[0029]

【表1】 [Table 1]

【0030】なお、[表1]中、BPSKは2相位相変
調方式(Binary PhaseShift Key
ing)を表し、QPSKは4相位相変調方式(Qua
driphase Phase Shift Keyi
ng)を表している。
In Table 1, BPSK is a binary phase shift keying method (Binary Phase Shift Key).
), and QPSK is a four-phase modulation scheme (Qua).
driphase Phase Shift Keyi
ng).

【0031】従局3aのSDC16が[表1]のような
条件で回線設定要求を送出すると、PDC10はこの回
線設定要求を受信し、PDC10が構成する帯域割当制
御手段100のの条件設定手段101は、まず、許容範
囲内で最高の条件となるようなパラメタ、すなわち回線
速度9600bps、FEC符号化速度1/2、変復調
方式QPSKを選択する。そして、帯域幅算出手段10
2は、これらの条件から必要となる周波数帯域幅を算出
し、帯域検索手段103は全周波数帯域の中からこの帯
域幅分の連続空き帯域を検索する。
When the SDC 16 of the slave station 3a sends a line setting request under the conditions shown in Table 1, the PDC 10 receives the line setting request, and the condition setting means 101 of the band allocation control means 100 constituted by the PDC 10 First, the parameters that satisfy the highest conditions within the allowable range, that is, the line speed of 9600 bps, the FEC encoding speed of 、, and the modulation / demodulation method QPSK are selected. Then, the bandwidth calculating means 10
2 calculates the required frequency bandwidth from these conditions, and the band search means 103 searches the continuous frequency band for this bandwidth from all the frequency bands.

【0032】もし、この条件の帯域幅分の空きがない場
合は、条件調節制御手段104は再度、条件設定手段1
01を起動し、その結果、条件設定手段101は[表
1]の条件の中で最も優先度の低い回線速度を選択し、
この回線速度を7200bpsに調節する。そして、帯
域幅算出手段102は新たに設定された条件で帯域幅を
算出し、帯域検索手段103は、帯域幅算出手段102
が算出した帯域幅分の連続空き帯域が存在するかどうか
再検索する。以下同様の手順で回線速度が低下する方向
に調節し、回線速度を2400bpsまで調節しても連
続空き帯域が確保できない場合は、条件設定手段101
は、次に優先度が低い条件であるFEC符号化速度、さ
らには変復調方式の順に条件パラメタを調節していく。
今、仮に回線速度2400bps、FEC符号化速度3
/4、変復調方式QPSKの条件で算出される帯域幅分
の空き帯域が存在し、その帯域を確保できた場合、条件
調節制御手段104は回線設定条件の調節が完了したと
する。
If there is no free space for the bandwidth of this condition, the condition adjustment control means 104 again sends the condition setting means 1
01, and as a result, the condition setting means 101 selects the line speed with the lowest priority among the conditions in [Table 1],
This line speed is adjusted to 7200 bps. Then, the bandwidth calculating means 102 calculates the bandwidth under the newly set conditions, and the bandwidth searching means 103
Is searched again to determine whether there is a continuous free bandwidth for the bandwidth calculated by. In the same manner, the line speed is adjusted in a decreasing direction. If a continuous free band cannot be secured even if the line speed is adjusted to 2400 bps, the condition setting means 101
Adjusts the condition parameters in the order of the FEC encoding speed, which is the next lowest priority condition, and then the modulation / demodulation method.
Now, suppose that the line speed is 2400 bps and the FEC encoding speed is 3
/ 4, if there is an available bandwidth corresponding to the bandwidth calculated under the conditions of the modulation / demodulation method QPSK, and the bandwidth can be secured, the condition adjustment control unit 104 assumes that the adjustment of the line setting condition has been completed.

【0033】その結果、PDC10は、帯域幅算出手段
102が算出した帯域幅およびその中心周波数、ならび
に上記帯域幅の算出のもとになった回線設定条件を従局
3a、3bの各SDC16に通知し、回線設定を指示す
る。これにより従局3a、3bのSDC16は、通知さ
れた条件をもとに地上回線18と衛星回線5とを連携さ
せ、指示された周波数で衛星系信号波の送受信を開始し
て、データの送受信を制御する。
As a result, the PDC 10 notifies the SDC 16 of each of the slave stations 3a and 3b of the bandwidth calculated by the bandwidth calculating means 102, the center frequency thereof, and the line setting conditions based on which the bandwidth is calculated. , And instruct line setting. Thereby, the SDCs 16 of the slave stations 3a and 3b cooperate with the terrestrial line 18 and the satellite line 5 based on the notified conditions, start transmission and reception of satellite signal waves at the designated frequency, and transmit and receive data. Control.

【0034】次に、回線設定条件の調節についてさらに
詳しく説明する。複数ある回線設定条件の優先度がすべ
て異なる場合は、優先度の最も低い条件から順に調節し
ていくことになる。今、回線設定条件の種類がN個あ
り、それぞれの条件のパラメタをxn(n=1,
2,..,N)とし、その集合をX={x1
2,..,xN}とすれば、帯域幅BはXの要素を変数
とする[数1]の関数で求められる。
Next, the adjustment of the line setting condition will be described in more detail. When the priorities of a plurality of line setting conditions are all different, the conditions are adjusted in order from the condition with the lowest priority. Now, there are N types of line setting conditions, and the parameters of each condition are x n (n = 1,
2,. . , N), and the set is X = {x 1 ,
x 2 ,. . , X N }, the bandwidth B is obtained by the function of [Equation 1] using the element of X as a variable.

【0035】[0035]

【数1】B=F(x1,x2,..,xN) ただし、関数FはXのすべての要素が同時に従属する関
数、つまりx1,..,xNのすべてが同時に変化する関
数ではない。Xの要素のうち、x1を最も優先度の低い
条件のパラメタ変数、xNを最も優先度の高い条件のパ
ラメタ変数とすれば、xi−1が最小値をとる場合にの
みxiを調節することができるような関数であり、それ
は[数2]のような関数Fiで表わされる。
B = F (x 1 , x 2 ,..., X N ) where function F is a function in which all the elements of X are simultaneously dependent, that is, x 1 ,. . , X N are not simultaneously changing functions. Of X elements, the lowest priority condition parameter variable x 1, if the parameter variable high condition most priority x N, the x i only if x i -1 is a minimum value This is a function that can be adjusted, and is represented by a function F i such as [Equation 2].

【0036】[0036]

【数2】F=Fi(Min(x1),..,Min(x
i-1),xi,Max(xi+1),..,Max(xN)) ここで、Min(x)は変数xのとりうる最小値、Ma
x(x)は変数xの最大値を表している。
## EQU2 ## F = F i (Min (x 1 ),..., Min (x
i-1), x i, Max (x i + 1) ,. . , Max (x N )) where Min (x) is the minimum possible value of the variable x, Ma
x (x) represents the maximum value of the variable x.

【0037】同一優先度の条件が幾つかある場合は、そ
れらの条件パラメタとなる変数を同時に調節して帯域幅
Bを算出する。優先度段階k(kは整数)が1からKま
であって1が最も低い優先度である場合、それぞれの優
先度段階kに属するMk(Mk≦N)個の条件のパラメタ
変数の集合Xk={xk1,xk2,..,xkMk}(Xk
X;1≦k≦K)の要素で定義される関数
When there are several conditions having the same priority, the variables serving as the condition parameters are simultaneously adjusted to calculate the bandwidth B. If the priority level k (k is an integer) is from 1 to K and 1 is the lowest priority, a set of M k (M k ≦ N) condition parameter variables belonging to each priority level k X k = {x k1 , x k2,. . , X kMk } (X k
X; function defined by the elements of 1 ≦ k ≦ K)

【0038】[0038]

【数3】yk=Gk(xk1,xk2,..,xkMk) によって帯域幅Bは次のように算出されることになる。## EQU3 ## According to y k = G k (x k1 , x k2 ,..., X kMk ), the bandwidth B is calculated as follows.

【0039】[0039]

【数4】B=F’(y1,y2,..,yK)=F’(G1
(x11,..x1M1),..,GK(xK1,..
KMK)) ここで関数F’は関数Fと同じく[数2]の特性を持つ
関数であるが、関数Gkは関数Fと違って、変数となる
すべてのxkm(1≦m≦Mk)が同時従属する関数、す
なわちすべての変数が同時に変化して値が定まる関数で
ある。
B = F ′ (y 1 , y 2 ,..., Y K ) = F ′ (G 1
(X 11 ,... X 1M1 ),. . , G K (x K1 ,.
x KMK )) Here, the function F ′ is a function having the characteristic of [ Equation 2] like the function F, but the function G k is different from the function F in that all functions x km (1 ≦ m ≦ M k ) is a function that is simultaneously dependent, that is, a function in which all variables change simultaneously and their values are determined.

【0040】[表1]の回線設定条件を例にとると、こ
の場合はすべての回線設定条件の優先度が異なることか
ら、[数1]および[数4]においてK=N=3、M1
=M2=M3=1となって、
Taking the line setting conditions in Table 1 as an example, in this case, since all the line setting conditions have different priorities, K = N = 3 and M in [Equation 1] and [Equation 4]. 1
= M 2 = M 3 = 1,

【0041】[0041]

【数5】 B=F’(y1,y2,y3)=F(x1,x2,x3) によって帯域幅Bは求められる。すなわち、上述した関
数Fの特性により優先度の低いものから順にパラメタと
なる変数を調節して帯域幅Bを算出することになる。
[表1]のすべての回線設定条件の優先度が同じ場合
は、[数1]および[数4]においてK=1、M1=N
=3となって、
Equation 5] B = F '(y 1, y 2, y 3) = F (x 1, x 2, x 3) bandwidth by B is determined. In other words, the bandwidth B is calculated by adjusting the parameter variables in order from the one with the lowest priority according to the characteristics of the function F described above.
If the priority of all the line setting conditions in Table 1 is the same, K = 1 and M 1 = N in [Equation 1] and [Equation 4].
= 3,

【0042】[0042]

【数6】B=F’(y1)=F’(G1(x1,x2
3))=G(x1,x2,x3) によって帯域幅Bは求められる。ここで関数Gは上述の
関数Gkと同等の関数になる。すなわち、関数Gの特性
により、優先度に関係なくすべての条件パラメタとなる
変数を同時に調節して帯域幅Bを算出することになる。
B = F ′ (y 1 ) = F ′ (G 1 (x 1 , x 2 ,
x 3 )) = G (x 1 , x 2 , x 3 ) to determine the bandwidth B. Here, the function G is a function equivalent to the function Gk described above. That is, the bandwidth B is calculated by simultaneously adjusting all the parameters serving as the condition parameters irrespective of the priority according to the characteristics of the function G.

【0043】さらに、表1の3つの回線設定条件のう
ち、回線速度とFEC符号化速度が同一の優先度であ
り、変復調方式の条件が最も優先度が高い場合は、[数
1]および[数4]においてK=2、M1=2、M2
1、N=3となって、
Further, among the three line setting conditions in Table 1, when the line speed and the FEC encoding speed have the same priority and the modulation / demodulation system condition has the highest priority, [Equation 1] and [Equation 1] K = 2, M 1 = 2, M 2 =
1, N = 3,

【0044】[0044]

【数7】 B=F’(y1,y2)=F’(G1(x1,x2),x3) となり、関数F’および関数Gの特性より、最初に回線
速度とFEC符号化速度の条件パラメタx1とx2を同時
に調節して帯域幅Bを算出し、x1=Min(x1)、x
2=Min(x2)まで調節して算出した帯域幅Bでも、
この帯域幅分の連続空き帯域が存在しない場合は、さら
に変復調方式の条件パラメタx3を調節して帯域幅Bを
算出するといった手順になる。このように、PDC10
は複数の回線設定条件のパラメタを順次調節してデータ
回線の設定に必要な帯域幅を徐々に減少させていき、算
出される帯域幅分の空き帯域が検索できれば、その帯域
を確保して各従局にデータ回線設定指示と帯域を算出し
たときの条件パラメタを通知する。もし、PDC10が
すべての条件のパラメタを提示される許容範囲内で最小
になるように調節して算出した帯域幅でも、その帯域幅
分の連続空き帯域が存在しない場合は、要求元の従局の
SDCに対して回線不確立の旨の通知を発行して呼損と
する。
B = F ′ (y 1 , y 2 ) = F ′ (G 1 (x 1 , x 2 ), x 3 ). From the characteristics of the function F ′ and the function G, first, the line speed and the FEC The condition parameters x 1 and x 2 of the coding rate are simultaneously adjusted to calculate the bandwidth B, and x 1 = Min (x 1 ), x
Even with the bandwidth B calculated by adjusting up to 2 = Min (x 2 ),
If the contiguous free band of the band width of does not exist, the procedure such calculates the bandwidth B further by adjusting the condition parameters x 3 modulation and demodulation scheme. Thus, PDC10
Sequentially adjusts the parameters of multiple line setting conditions to gradually reduce the bandwidth required for data line setting, and if a free bandwidth for the calculated bandwidth can be searched, secure that bandwidth and The slave station is notified of a data line setting instruction and a condition parameter when the bandwidth is calculated. Even if the bandwidth calculated by the PDC 10 by adjusting the parameters of all the conditions so as to be minimized within the presented allowable range, if there is no continuous free bandwidth for the bandwidth, the requesting slave station's A notification indicating that the line is not established is issued to the SDC to determine a call loss.

【0045】以上説明したように、本実施の形態例で
は、狭帯域呼の散発的な発生により全周波数帯域中に端
数効果が生じていても、新規呼、特に広帯域呼に対し
て、従局があらかじめ提示した回線設定条件の許容範囲
と優先度とに従って帯域幅を調節し、端数効果によって
歯抜け状態になっている空き帯域の中からその帯域幅分
の帯域を確保して回線設定を行うことができる。その結
果、新規呼、特に広帯域呼の呼損率が低減して通信シス
テムの稼動効率および回線能率が向上する。
As described above, in the present embodiment, even if a fractional effect occurs in the entire frequency band due to the sporadic occurrence of a narrowband call, the slave station can respond to a new call, especially a wideband call. Adjusting the bandwidth according to the allowable range and priority of the line setting conditions presented in advance, and setting up the line by securing the bandwidth for that bandwidth from the empty bands that are missing due to the fractional effect Can be. As a result, the call loss rate of a new call, especially a broadband call, is reduced, and the operation efficiency and line efficiency of the communication system are improved.

【0046】また、本実施の形態例では、上述のように
回線設定条件に許容範囲だけでなく、個々の条件に優先
度を設けてその優先度に応じた条件パラメタの調節を行
うので、存在する空き帯域幅に最も適合する帯域幅を従
局の要求に沿って算出することができる。したがって従
局が提示した最高条件では帯域幅を確保できない場合で
も、従局にとってできる限り好ましい条件で回線を設定
することができ、従局は可能な範囲で最良の状態で通信
を行うことができる。
In this embodiment, not only the allowable range of the line setting condition but also the priority of each condition and the adjustment of the condition parameter according to the priority are performed as described above. The bandwidth that best fits the available free bandwidth can be calculated according to the request of the slave station. Therefore, even if the bandwidth cannot be ensured under the highest conditions presented by the slave station, the line can be set under the best conditions possible for the slave station, and the slave station can communicate in the best possible state.

【0047】以上、本発明について実施の形態例をもと
に説明したが、これはあくまでも一例であり、本発明は
この例に限定されることなく種々の形態で実施すること
ができる。例えば、上記実施の形態例では条件設定手段
101が条件を設定して帯域幅算出手段102が帯域幅
を算出するごとに、その帯域幅以上の連続空き周波数帯
域が存在するか否かを帯域検索手段103が調べるとし
たが、まず最初に現時点で存在する連続空き帯域のうち
で最大帯域幅を持つ空き帯域を検索しておく構成とする
ことも可能である。
As described above, the present invention has been described based on the embodiment. However, this is merely an example, and the present invention can be implemented in various forms without being limited to this example. For example, in the above embodiment, each time the condition setting unit 101 sets a condition and the bandwidth calculation unit 102 calculates a bandwidth, a band search is performed to determine whether or not there is a continuous free frequency band equal to or greater than the bandwidth. Although the means 103 checks, it is also possible to adopt a configuration in which a vacant band having the maximum bandwidth is first searched out of the continuous vacant bands existing at the present time.

【0048】すなわち、PDC10は従局3aのSDC
16が要求する回線設定条件の許容範囲から、まず、最
高の条件となる条件パラメタ値で帯域幅を算出する。こ
の帯域幅で割当可能な空き帯域が存在しない場合、各条
件の優先度に従って条件パラメタを調節する前に、その
時点で存在する連続空き帯域のうちで最大帯域幅を持つ
空き帯域をあらかじめ検索しておく。そして、この空き
帯域の帯域幅に最も近似する帯域幅が算出できるよう、
各条件パラメタ値を優先度に従って調節する。すなわ
ち、[数1]〜[数6]の各関数において、帯域幅Bの
値が指定されたときに、各回線設定条件がその許容範囲
と優先度において最高の条件となるよう、N個の変数x
n(1≦n≦N)を最適化する。あらかじめ検索してお
いた最大空き帯域の帯域幅に対して各条件パラメタ値を
最適化できた場合は、この空き帯域を確保し、この帯域
を以って回線設定を行うよう各従局のSDCに指示す
る。このような構成では、回線設定条件の調節による帯
域幅算出ごとの空き帯域検索処理を必要としないため、
PDC10が回線設定処理に要する時間を短縮できると
いう新たな効果が得られる。
That is, the PDC 10 is the SDC of the slave station 3a.
First, the bandwidth is calculated with the condition parameter value that is the highest condition from the allowable range of the line setting condition required by the device 16. If there is no vacant band that can be allocated with this bandwidth, before adjusting the condition parameters according to the priority of each condition, a vacant band with the maximum bandwidth is searched in advance among the continuous vacant bands existing at that time. Keep it. Then, to calculate the bandwidth closest to the bandwidth of this free bandwidth,
Each condition parameter value is adjusted according to the priority. That is, in each of the functions [Equation 1] to [Equation 6], when the value of the bandwidth B is specified, the N number of line setting conditions are set so as to be the highest conditions in the allowable range and the priority. Variable x
Optimize n (1 ≦ n ≦ N). If each condition parameter value can be optimized with respect to the bandwidth of the maximum vacant band that has been searched in advance, the SDC of each slave station must secure this vacant band and set the line using this band. To instruct. In such a configuration, it is not necessary to perform a free bandwidth search process for each bandwidth calculation by adjusting the line setting conditions.
A new effect is obtained in that the time required for the PDC 10 to perform the line setting process can be reduced.

【0049】[0049]

【発明の効果】以上説明したように本発明では、従局が
主局に対して複数の回線設定条件と、各回線設定条件ご
との許容範囲と、各回線設定条件の優先度とを含む回線
設定要求情報を通知し、これに対して主局は、まず、従
局から通知された回線設定要求情報にもとづき、通信周
波数帯域が、現時点で存在する連続空き周波数帯域内に
収まるように、優先度の高い回線設定条件ほど好条件に
選定して回線設定条件を許容範囲内で調節する。そし
て、調節後の回線設定条件で通信可能な周波数帯域幅お
よびその中心周波数を、調節後の回線設定条件と共に従
局に通知する。
As described above, according to the present invention, the slave station sets a plurality of line setting conditions for the master station, the allowable range for each line setting condition, and the priority of each line setting condition. In response to the request information, the master station first determines the priority of the communication frequency band based on the line setting request information notified from the slave station so that the communication frequency band falls within the continuous available frequency band existing at the present time. A higher line setting condition is selected as a better condition, and the line setting condition is adjusted within an allowable range. Then, the slave station is notified of the communicable frequency bandwidth and the center frequency thereof under the adjusted line setting conditions, together with the adjusted line setting conditions.

【0050】したがって、本発明では、狭帯域呼の散発
的な発生により全周波数帯域中に端数効果が生じていて
も、新規呼、特に広帯域呼に対して、従局があらかじめ
提示した回線設定条件の許容範囲と優先度とに従って帯
域幅を調節し、端数効果によって歯抜け状態になってい
る空き帯域の中からその帯域幅分の帯域を確保して回線
設定を行うことができる。その結果、新規呼、特に広帯
域呼の呼損率が低減して通信システムの稼動効率および
回線能率が向上する。
Therefore, according to the present invention, even if a fractional effect occurs in the entire frequency band due to sporadic occurrence of a narrowband call, a new station, in particular, a wideband call, has a line setting condition previously presented by a slave station. The bandwidth can be adjusted according to the allowable range and the priority, and a band corresponding to the bandwidth can be secured from among the unoccupied bands that are missing due to the fractional effect, and the line can be set. As a result, the call loss rate of a new call, especially a broadband call, is reduced, and the operation efficiency and line efficiency of the communication system are improved.

【0051】また、本発明では、回線設定条件に許容範
囲だけでなく、個々の条件に優先度を設けてその優先度
に応じた条件パラメタの調節を行うので、存在する空き
帯域幅に最も適合する帯域幅を従局の要求に沿って算出
することができる。したがって従局が提示した最高条件
では帯域幅を確保できない場合でも、従局にとってでき
る限り好ましい条件で回線を設定することができ、従局
は可能な範囲で最良の状態で通信を行うことができる。
Further, according to the present invention, not only the allowable range of the line setting condition but also the priority of each condition is set, and the condition parameter is adjusted according to the priority. The required bandwidth can be calculated according to the request of the slave station. Therefore, even if the bandwidth cannot be ensured under the highest conditions presented by the slave station, the line can be set under the best conditions possible for the slave station, and the slave station can communicate in the best possible state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による衛星回線の制御システムを含む通
信システムの一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a communication system including a satellite channel control system according to the present invention.

【図2】図1の通信システムを示す概略構成図である。FIG. 2 is a schematic configuration diagram showing the communication system of FIG. 1;

【図3】従局間にデータ回線を設定する際の回線設定基
本シーケンスを示すシーケンス図である。
FIG. 3 is a sequence diagram showing a basic line setting sequence when setting a data line between slave stations.

【図4】PDCの機能的な構成を示すブロック図であ
る。
FIG. 4 is a block diagram showing a functional configuration of a PDC.

【図5】DAMA方式による周波数帯域割当の端数効果
を示す説明図である。
FIG. 5 is an explanatory diagram showing a fractional effect of frequency band allocation by the DAMA method.

【図6】図1の衛星通信システムにおける回線割当制御
に関する動作を示すフローチャートである。
FIG. 6 is a flowchart showing an operation related to channel assignment control in the satellite communication system of FIG. 1;

【符号の説明】[Explanation of symbols]

1……通信衛星、2……主局、3……従局、4……制御
回線、5……データ回線、6……アンテナ、7……屋外
装置、8……屋内装置、9……RF装置、10……PD
C、11……モデム、12……アンテナ、13……屋外
装置、14……屋内装置、15……RF装置、16……
SDC、17……モデム、18……地上回線、100…
…帯域割当制御手段、101……条件設定手段、102
……帯域幅算出手段、103……帯域検索手段、104
……条件調節制御手段。
1 communication satellite, 2 master station, 3 slave station, 4 control line, 5 data line, 6 antenna, 7 outdoor equipment, 8 indoor equipment, 9 RF Device, 10 PD
C, 11 ... modem, 12 ... antenna, 13 ... outdoor equipment, 14 ... indoor equipment, 15 ... RF equipment, 16 ...
SDC, 17 Modem, 18 Ground line, 100
... band allocation control means, 101 ... condition setting means, 102
... bandwidth calculating means 103 bandwidth searching means 104
... Condition adjustment control means.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 複数の従局が衛星回線を通じて周波数分
割多元接続方式により相互に通信を行う際に、前記衛星
回線に接続された主局が前記従局からの要求にもとづい
て前記従局間の通信のための周波数帯域を前記従局に割
り当てる制御方法であって、 前記従局は、主局に対して、複数の回線設定条件と、各
回線設定条件ごとの許容範囲と、各回線設定条件の優先
度とを含む回線設定要求情報を通知し、 主局は、 前記従局から通知された前記回線設定要求情報にもとづ
き、通信周波数帯域が、現時点で存在する連続空き周波
数帯域内に収まるように、優先度の高い回線設定条件ほ
ど好条件に選定して回線設定条件を許容範囲内で調節
し、 調節後の回線設定条件で通信可能な周波数帯域幅および
その中心周波数を、調節後の回線設定条件と共に前記従
局に通知する、 ことを特徴とする衛星回線の制御方法。
When a plurality of slave stations communicate with each other by a frequency division multiple access system via a satellite line, a master station connected to the satellite line communicates with the slave station based on a request from the slave station. A control method of allocating a frequency band for the slave station, wherein the slave station has a plurality of line setting conditions for the master station, an allowable range for each line setting condition, and a priority of each line setting condition. The master station, based on the line setting request information notified from the slave station, based on the line setting request information, so that the communication frequency band falls within the continuous free frequency band existing at the present time, The higher the line setting conditions are, the better the conditions are selected and the line setting conditions are adjusted within the allowable range, and the communicable frequency bandwidth and its center frequency under the adjusted line setting conditions are shared with the adjusted line setting conditions. The method of satellite link, characterized in that, notifying the slave station.
【請求項2】 前記現時点で存在する連続空き周波数帯
域は現時点で存在する最大の連続空き周波数帯域である
ことを特徴とする請求項1記載の衛星回線の制御方法。
2. The satellite link control method according to claim 1, wherein said continuous free frequency band presently present is a maximum continuous free frequency band presently present.
【請求項3】 主局は、回線設定条件を調節する際、 複数の回線設定条件の中でもっとも優先度の低い回線設
定条件から順番に許容範囲内で順次、条件水準を低下さ
せ、 条件水準を低下させるごとにその回線設定条件で通信可
能な周波数帯域幅を算出し、 算出した周波数帯域幅以上の連続空き周波数帯域が存在
するか否かを調べ、 算出した周波数帯域幅以上の連続空き周波数帯域が存在
するとき回線設定条件の調節を完了とする、 ことを特徴とする請求項1記載の衛星回線の制御方法。
3. The main station, when adjusting the line setting conditions, sequentially lowers the condition levels within a permissible range in order from the line setting condition having the lowest priority among the plurality of line setting conditions, Every time the frequency is reduced, calculate the communicable frequency bandwidth under the line setting conditions, check whether there is a continuous vacant frequency band equal to or greater than the calculated frequency bandwidth, and check the continuous vacant frequency equal to or greater than the calculated frequency bandwidth. 2. The method according to claim 1, wherein the adjustment of the line setting condition is completed when the band exists.
【請求項4】 主局は、回線設定条件を調節する際、ま
ず、現時点で存在する最大の連続空き周波数帯域を検索
し、その後、検索した連続空き周波数帯域内に収まるよ
うに、優先度の高い回線設定条件ほど好条件に選定して
回線設定条件を許容範囲内で調節することを特徴とする
請求項1記載の衛星回線の制御方法。
4. The main station, when adjusting the line setting condition, first searches for the largest continuous available frequency band existing at the present time, and then adjusts the priority so as to fall within the searched continuous available frequency band. 2. The satellite line control method according to claim 1, wherein the higher the line setting condition is, the better the condition is selected and the line setting condition is adjusted within an allowable range.
【請求項5】 回線設定条件は、回線速度、FEC符号
化速度、ならびに変調方式のうちのいずれか1つまたは
複数または全部を含むことを特徴とする請求項1記載の
衛星回線の制御方法。
5. The method according to claim 1, wherein the line setting condition includes one or more or all of a line speed, an FEC encoding speed, and a modulation method.
【請求項6】 回線設定条件は、回線速度、FEC符号
化速度、ならびに変調方式を含み、前記従局は回線速度
の優先度をもっとも低く設定し、変調方式の優先度をも
っとも高く設定することを特徴とする請求項1記載の衛
星回線の制御方法。
6. The line setting conditions include a line speed, an FEC encoding speed, and a modulation method, and the slave station sets the priority of the line speed to the lowest and sets the priority of the modulation method to the highest. The method according to claim 1, wherein
【請求項7】 複数の従局が衛星回線を通じて周波数分
割多元接続方式により相互に通信を行う際に、前記衛星
回線に接続された主局が前記従局からの要求にもとづい
て前記従局間の通信のための周波数帯域を前記従局に割
り当てる制御システムであって、 前記従局は、主局に対して、複数の回線設定条件と、各
回線設定条件ごとの許容範囲と、各回線設定条件の優先
度とを含む回線設定要求情報を通知する回線設定要求手
段を含み、 主局は、前記従局から通知された前記回線設定要求情報
にもとづき、通信周波数帯域が、現時点で存在する連続
空き周波数帯域内に収まるように、優先度の高い回線設
定条件ほど好条件に選定して回線設定条件を許容範囲内
で調節し、調節後の回線設定条件で通信可能な周波数帯
域幅およびその中心周波数を、調節後の回線設定条件と
共に前記従局に通知する帯域割当制御手段を含む、 ことを特徴とする衛星回線の制御システム。
7. When a plurality of slave stations communicate with each other by a frequency division multiple access system via a satellite line, a master station connected to the satellite line communicates with the slave station based on a request from the slave station. A control system for allocating a frequency band for the slave station for the, the slave station, for the master station, a plurality of line setting conditions, an allowable range for each line setting condition, the priority of each line setting condition and The main station, based on the line setting request information notified from the slave station, causes the communication frequency band to fall within a continuous free frequency band existing at the present time. In this way, the higher the line setting conditions, the better the conditions are selected, and the line setting conditions are adjusted within an allowable range, and the communicable frequency bandwidth and its center frequency are adjusted under the adjusted line setting conditions. With line setting conditions after adjusting including band allocation control means for notifying the slave station, a satellite line control system, characterized in that.
【請求項8】 前記現時点で存在する連続空き周波数帯
域は現時点で存在する最大の連続空き周波数帯域である
ことを特徴とする請求項7記載の衛星回線の制御システ
ム。
8. The control system for a satellite link according to claim 7, wherein said continuous free frequency band presently present is the largest continuous free frequency band presently present.
【請求項9】 前記帯域割当制御手段は、 複数の回線設定条件の中でもっとも優先度の低い回線設
定条件から順番に許容範囲内で順次、条件水準を低下さ
せて回線設定条件を設定する条件設定手段と、 前記条件設定手段が回線設定条件を設定するごとにその
回線設定条件で通信可能な周波数帯域幅を算出する帯域
幅算出手段と、 前記帯域幅算出手段が算出した周波数帯域幅以上の連続
空き周波数帯域が存在するか否かを全周波数帯域内で検
索する帯域検索手段と、 帯域検索手段による連続空き周波数帯域の検索の結果、
前記帯域幅算出手段が算出した周波数帯域幅以上の連続
空き周波数帯域が存在しなかった場合は、前記条件設定
手段に次の設定を行わせ、一方、前記連続空き周波数帯
域が存在した場合は、回線設定条件の調節が完了したと
する条件調節制御手段と、 を含むことを特徴とする請求項7記載の衛星回線の制御
システム。
9. A condition for setting a line setting condition by sequentially lowering the condition level within an allowable range in order from the line setting condition having the lowest priority among a plurality of line setting conditions. Setting means, each time the condition setting means sets a line setting condition, a bandwidth calculating means for calculating a communicable frequency bandwidth under the line setting condition, and a frequency bandwidth not less than the frequency bandwidth calculated by the bandwidth calculating means. A band search means for searching in all frequency bands whether or not a continuous free frequency band exists; and a search result of the continuous free frequency band by the band search means,
When there is no continuous free frequency band equal to or more than the frequency bandwidth calculated by the bandwidth calculation means, the following setting is made to the condition setting means, while, when the continuous free frequency band exists, The control system for a satellite line according to claim 7, further comprising: condition adjustment control means for determining that adjustment of the line setting condition has been completed.
【請求項10】 前記帯域割当制御手段は、回線設定条
件を調節する際、まず、現時点で存在する最大の連続空
き周波数帯域を検索し、その後、検索した連続空き周波
数帯域内に収まるように、優先度の高い回線設定条件ほ
ど好条件に選定して回線設定条件を許容範囲内で調節す
ることを特徴とする請求項7記載の衛星回線の制御シス
テム。
10. The bandwidth allocation control means, when adjusting a line setting condition, first searches for a maximum continuous free frequency band existing at the present time, and thereafter, searches for a maximum available free frequency band within the searched continuous free frequency band. 8. The satellite line control system according to claim 7, wherein a line setting condition having a higher priority is selected as a favorable condition and the line setting condition is adjusted within an allowable range.
【請求項11】 回線設定条件は、回線速度、FEC符
号化速度、ならびに変調方式のうちのいずれか1つまた
は複数または全部を含むことを特徴とする請求項7記載
の衛星回線の制御システム。
11. The satellite line control system according to claim 7, wherein the line setting condition includes any one or more or all of a line speed, an FEC encoding speed, and a modulation method.
【請求項12】 回線設定条件は、回線速度、FEC符
号化速度、ならびに変調方式を含み、前記従局は回線速
度の優先度をもっとも低く設定し、変調方式の優先度を
もっとも高く設定することを特徴とする請求項7記載の
衛星回線の制御システム。
12. The line setting conditions include a line speed, an FEC encoding speed, and a modulation method, and the slave station sets the priority of the line speed to the lowest and sets the priority of the modulation method to the highest. The satellite line control system according to claim 7, wherein:
JP15861298A 1998-05-21 1998-05-21 Satellite link control method and system Expired - Fee Related JP3119353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15861298A JP3119353B2 (en) 1998-05-21 1998-05-21 Satellite link control method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15861298A JP3119353B2 (en) 1998-05-21 1998-05-21 Satellite link control method and system

Publications (2)

Publication Number Publication Date
JPH11340891A true JPH11340891A (en) 1999-12-10
JP3119353B2 JP3119353B2 (en) 2000-12-18

Family

ID=15675522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15861298A Expired - Fee Related JP3119353B2 (en) 1998-05-21 1998-05-21 Satellite link control method and system

Country Status (1)

Country Link
JP (1) JP3119353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513553A (en) * 2003-12-08 2007-05-24 テレント ゲーエムベーハー Physical transmission mode adaptive selection
JP2007251773A (en) * 2006-03-17 2007-09-27 Toshiba Corp Transmission system, and transmitting device and receiving device thereof
JP2013085282A (en) * 2012-12-18 2013-05-09 Mitsubishi Electric Corp Frequency band allocation apparatus and frequency band allocation method
JP2013175940A (en) * 2012-02-24 2013-09-05 Advanced Telecommunication Research Institute International Communication device, communication method and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513553A (en) * 2003-12-08 2007-05-24 テレント ゲーエムベーハー Physical transmission mode adaptive selection
JP4750715B2 (en) * 2003-12-08 2011-08-17 エリクソン エービー Physical transmission mode adaptive selection
JP2007251773A (en) * 2006-03-17 2007-09-27 Toshiba Corp Transmission system, and transmitting device and receiving device thereof
JP2013175940A (en) * 2012-02-24 2013-09-05 Advanced Telecommunication Research Institute International Communication device, communication method and program
JP2013085282A (en) * 2012-12-18 2013-05-09 Mitsubishi Electric Corp Frequency band allocation apparatus and frequency band allocation method

Also Published As

Publication number Publication date
JP3119353B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
US8874114B2 (en) Mobile communications system, mobile station and base station
US7529548B2 (en) Method and system for adapting a wireless link to achieve a desired channel quality
JP5819086B2 (en) Apparatus and method for controlling transmission of communication system
US9025570B2 (en) System and method for fast dynamic link adaptation
US7065051B2 (en) Management and scheduling of data that is wirelessly transmitted between a base transceiver station and subscriber units
KR101014940B1 (en) Wireless base station
US20020183010A1 (en) Wireless communication systems with adaptive channelization and link adaptation
US20070178840A1 (en) Base station apparatus, wireless communication system and frequency assignment method
KR100621953B1 (en) Communication channel setting method, communication controller, and radio communication system
US6836664B2 (en) System and method of achieving dynamic channel bandwidth
KR20070001019A (en) Method and system for initial procedure in a frequency overlay communication system
US20070149232A1 (en) Information transmission with energy budget management
US7555063B2 (en) Mobile terminal and data reception method for the same
JP3119353B2 (en) Satellite link control method and system
US7512411B2 (en) Radio communication system, radio network controller, mobile station and down link transmission power control method
AU695338B2 (en) Data communication system using spectral overlay
US6778522B1 (en) Bandwidth optimizer dynamically operating in connections relating to radiocommunications, particularly for DECT systems
JP3472824B2 (en) Wireless channel allocation method, wireless base station apparatus and mobile station apparatus
JP3197736B2 (en) Wireless communication system
EP1244231A1 (en) Hybrid frequency band system architecture for terrestrial wireless broadband access applications
JP6077688B1 (en) Control station, base station, communication system, and handover method
JP2934610B2 (en) Communication channel control method
JPH057174A (en) Radio communication line changeover method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071013

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees