JPH1133746A - Joining method of metallic member - Google Patents

Joining method of metallic member

Info

Publication number
JPH1133746A
JPH1133746A JP18487497A JP18487497A JPH1133746A JP H1133746 A JPH1133746 A JP H1133746A JP 18487497 A JP18487497 A JP 18487497A JP 18487497 A JP18487497 A JP 18487497A JP H1133746 A JPH1133746 A JP H1133746A
Authority
JP
Japan
Prior art keywords
metal
members
metallic glass
glass member
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18487497A
Other languages
Japanese (ja)
Inventor
Seiichi Hata
誠一 秦
Norihiro Yamada
典弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Yuasa Shoji Co
Original Assignee
Yuasa Shoji Co
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Shoji Co, Olympus Optical Co Ltd filed Critical Yuasa Shoji Co
Priority to JP18487497A priority Critical patent/JPH1133746A/en
Publication of JPH1133746A publication Critical patent/JPH1133746A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the method for joining the metallic member firmly together by preventing the metallic glass from being crystallized. SOLUTION: Superimposed are not less than two metallic members at least one of which is a metallic glass member 2 made of the amorphous alloy having the supercooled liquid area. The superimposed metallic members 5 are heated to the supercooled liquid area of the metallic glass member 2 and joined mutually together by pressing at least the metallic glass member 2 by a pressing means 1 and the joined metallic member 5 are cooled. The metallic glass member 2 and a metallic member are joined firmly by pressing them in the heated condition, and the crystallization of the metallic glass is prevented by cooling afterwards.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2以上の金属部材
を接合する方法に関する。
The present invention relates to a method for joining two or more metal members.

【0002】[0002]

【従来の技術】金属部材の接合においては、過冷却液体
域を有する非晶質合金(金属ガラス)を使用することが
従来よりなされている。特開平5−131279号公報
に開示された従来の方法は、接合する金属の間に金属ガ
ラスを介在させ、この金属ガラスが過冷却液体域△Tx
(△Tx=Tx(結晶化開始温度)−Tg(ガラス遷移
温度)で定義される温度領域)で変形抵抗が減少する粘
性流動を生じる温度に加熱するものである。そして、こ
の加熱後、接合する金属を介して金属ガラスを加圧する
ことにより、金属ガラス表面のミクロな凹凸が接合する
金属表面の凹凸に応じて変形する。この変形により、金
属と金属ガラスとが面接触の状態となり、この状態をそ
のまま保持することにより、低温で拡散を進行させ、金
属と金属ガラスとを接合する。
2. Description of the Related Art Conventionally, in joining metal members, an amorphous alloy (metallic glass) having a supercooled liquid region has been used. In the conventional method disclosed in Japanese Patent Application Laid-Open No. 5-131279, a metallic glass is interposed between metals to be joined, and the metallic glass is in a supercooled liquid region ΔTx.
(ΔTx = Tx (crystallization start temperature) −Tg (glass transition temperature)) and heats to a temperature at which a viscous flow occurs in which the deformation resistance decreases. Then, after this heating, by pressing the metallic glass through the metal to be joined, the micro unevenness on the surface of the metallic glass is deformed according to the unevenness on the surface of the metal to be joined. Due to this deformation, the metal and the metallic glass are brought into a state of surface contact. By maintaining this state as it is, diffusion proceeds at a low temperature and the metal and the metallic glass are joined.

【0003】[0003]

【発明が解決しようとする課題】上述した方法では接合
メカニズムとして拡散を積極的に利用しているため、過
冷却液体域に加熱した後、金属ガラスを比較的長時間
(数100分程度)保持する必要がある。ところが、こ
のように過冷却液体域に比較的長時間、等温保持された
金属ガラスは、温度や合金組成によっても異なるが、概
ね数十分で結晶化する。
In the above-mentioned method, since diffusion is actively used as a bonding mechanism, the metallic glass is held for a relatively long time (about several hundred minutes) after heating to a supercooled liquid region. There is a need to. However, the metallic glass kept isothermally for a relatively long time in the supercooled liquid region as described above generally crystallizes in several tens of minutes, though it varies depending on the temperature and the alloy composition.

【0004】一般的に、金属ガラスは、結晶粒界が存在
しないため、同組成の結晶合金よりはるかに高い機械的
強度を示す。このため、結晶化すると金属ガラスは、機
械的強度が低下し、高強度、高破壊靭性等の特徴が失わ
れる。従って、拡散現象を進行させるために接合する金
属間に挿入され、長時間、過冷却液体域に加熱・等温保
持された金属ガラスは、結晶化によってそれ自体が脆弱
な接合中間層となり、接合強度が低下する問題が生じ
る。
In general, metallic glasses exhibit much higher mechanical strength than crystalline alloys of the same composition due to the absence of grain boundaries. For this reason, when crystallized, the metallic glass loses its mechanical strength and loses characteristics such as high strength and high fracture toughness. Therefore, the metallic glass inserted between the metals to be joined in order to progress the diffusion phenomenon and heated and kept isothermally in the supercooled liquid region for a long time itself becomes a brittle joining intermediate layer by crystallization, and the joining strength Is reduced.

【0005】本発明は、上記問題点に鑑みてなされたも
のであり、金属ガラスを使用し、金属ガラスの高い強度
を保ったまま、金属ガラス部材同士、或いは金属ガラス
部材と他の金属部材との接合を行うことが可能な金属部
材の接合方法を提供することを目的とする。
The present invention has been made in view of the above problems, and uses metallic glass and maintains the high strength of metallic glass while maintaining the high strength of metallic glass with each other or between metallic glass members and other metallic members. It is an object of the present invention to provide a joining method of a metal member capable of joining the metal members.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、少なくとも一体が過冷却液体域
を有する非晶質合金からなる金属ガラス部材である二体
以上の金属部材を重ね合わせる工程と、重ね合わせた金
属部材を前記金属ガラス部材の過冷却液体域まで加熱す
る工程と、重ね合わせた金属部材の内、少なくとも金属
ガラス部材を押圧手段により押圧して金属部材を相互に
接合する工程と、接合した金属部材を冷却する工程と、
を有することを特徴とする。
In order to achieve the above object, an object of the present invention is to provide two or more metal members which are metal glass members at least integrally formed of an amorphous alloy having a supercooled liquid region. The step of superimposing, the step of heating the superimposed metal member to a supercooled liquid region of the metal glass member, and pressing at least the metal glass member of the superimposed metal members by pressing means to mutually move the metal members. Joining, and cooling the joined metal members,
It is characterized by having.

【0007】請求項2の発明は、少なくとも二体の金属
部材を接合する金属部材の接合方法において、過冷却液
体域を有する非晶質合金からなる金属ガラス部材である
一方の金属部材を他方の金属部材と重ね合わせる工程
と、金属ガラス部材である一方の金属部材に所定の温度
に加熱された加熱手段を接触させることにより、重ね合
わせた金属部材を前記金属ガラス部材の過冷却液体域ま
で加熱する工程と、他方の金属部材側から押圧手段によ
り押圧して金属部材を相互に接合する工程と、接合した
金属部材を冷却する工程と、を有することを特徴とす
る。
According to a second aspect of the present invention, there is provided a method of joining metal members for joining at least two metal members, wherein one of the metallic glass members made of an amorphous alloy having a supercooled liquid region is replaced with the other metallic member. Heating the superposed metal member to a supercooled liquid region of the metal glass member by bringing the heating means heated to a predetermined temperature into contact with the one metal member which is the metal glass member; And bonding the metal members to each other by pressing from the other metal member side by pressing means, and cooling the bonded metal members.

【0008】請求項3の発明は、請求項1又は2記載の
発明であって、前記金属ガラス部材と接合する金属部材
は、金属ガラス部材と接する側に凹凸部が形成されてい
ることを特徴とする。
A third aspect of the present invention is the invention according to the first or second aspect, wherein the metal member to be joined to the metallic glass member has an uneven portion on a side in contact with the metallic glass member. And

【0009】請求項4の発明は、異なる過冷却液体域を
有する少なくとも二体の非晶質合金からなる金属ガラス
部材を結晶化開始温度順に重ね合わせる工程と、最も高
い結晶化開始温度を有する金属ガラス部材側から順に金
属ガラス部材の過冷却液体域まで加熱する工程と、最も
低い結晶化開始温度を有する金属ガラス部材側から押圧
手段によって押圧し、重ね合わせた金属ガラス部材を接
合する工程と、接合した金属部材を冷却する工程と、を
有することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of superposing metallic glass members made of at least two amorphous alloys having different supercooled liquid regions in the order of crystallization start temperature, A step of heating the supercooled liquid region of the metallic glass member in order from the glass member side, and a step of pressing the metallic glass member having the lowest crystallization start temperature from the metallic glass member side by pressing means, and joining the superposed metallic glass members, Cooling the joined metal members.

【0010】請求項1〜3の発明では、互いに接合する
二体以上の金属部材の内、少なくとも一体の部材が金属
ガラス(金属ガラス部材)によって構成されている。金
属ガラスは、過冷却液体域まで加熱されると108 〜1
10Pa・s程度の粘性流動を示し、数MPa程度の低
圧力で塑性変形が可能である。
According to the first to third aspects of the present invention, at least one of the two or more metal members joined to each other is formed of metallic glass (metallic glass member). When the metallic glass is heated to the supercooled liquid region, it is 10 8 to 1.
It shows a viscous flow of about 0 10 Pa · s and can be plastically deformed at a low pressure of about several MPa.

【0011】従って、適当な加熱温度、押圧力、雰囲気
等の押圧条件を選定し、金属ガラス部材を他方の金属部
材の少なくとも接合面と共に、その過冷却液体域まで加
熱し、金属ガラス部材と他方の金属部材とを押圧手段に
よって押圧することにより、少なくとも金属ガラス部材
には、粘性流動に起因する極めて大きな塑性変形が生じ
る。この塑性変形によって少なくとも金属ガラス部材の
表面は、酸化膜などが破壊されて新生面が露出し、他方
の金属部材の接合面と密着する。
Accordingly, appropriate pressing conditions such as heating temperature, pressing force, atmosphere and the like are selected, and the metallic glass member is heated up to the supercooled liquid region together with at least the joining surface of the other metallic member, and the metallic glass member and the other metallic member are heated. By pressing the metal member with the pressing means, at least the metal glass member undergoes extremely large plastic deformation due to viscous flow. At least the surface of the metallic glass member is destroyed by an oxide film or the like due to the plastic deformation, and a new surface is exposed, so that the metallic glass member comes into close contact with the joining surface of the other metallic member.

【0012】一般に、新生面のような清浄な状態の金属
部材の表面は極めて活性であり、この状態で金属部材の
表面が他方の金属部材の表面に密着すると、接触界面で
原子間の凝着が生じて接合が行われる。特に、少なくと
も一方の金属部材が金属ガラス部材であると、過冷却液
体域で大きな粘性流動が生じるため、他方の金属部材の
接合面に原子オーダで密着し、互いの新生面の接合が促
進される。
In general, the surface of a metal member in a clean state such as a new surface is extremely active. In this state, if the surface of the metal member comes into close contact with the surface of the other metal member, adhesion between atoms at the contact interface will occur. The resulting bonding occurs. In particular, if at least one of the metal members is a metal glass member, a large viscous flow occurs in the supercooled liquid region, so that the metal members adhere to the bonding surface of the other metal member in the atomic order, and the bonding of the new surfaces to each other is promoted. .

【0013】本発明では、金属ガラスの粘性流動によっ
て新生面が露出することにより、活性な金属ガラス部材
の表面と他方の金属部材の表面との金属原子同士が結合
することを応用している。接合に要する時間は、接合に
用いる金属ガラスおよび他方の金属の組成、接合温度、
押圧力によって異なるが、上述したように接合界面の極
めて限られた範囲での接合メカニズムであるため、拡散
現象を主に利用した従来の接合法に比べ、数十秒〜数分
の短い時間で接合が完了する。
The present invention uses the fact that the surface of the active metallic glass member and the surface of the other metallic member are bonded to each other by exposing the new surface by viscous flow of the metallic glass. The time required for joining depends on the composition of the metallic glass and the other metal used for joining, the joining temperature,
Although it depends on the pressing force, as described above, since it is a bonding mechanism in a very limited range of the bonding interface, it takes several tens of seconds to several minutes compared to the conventional bonding method mainly using the diffusion phenomenon. Joining is completed.

【0014】さらに接合後、接合された金属部材を冷却
するにより、金属ガラスの結晶化、脆化を防止して金属
ガラス本来の高強度、硬度を低下させずに接合を完了す
る。特に、接合に伴う金属ガラスの結晶化が生じても、
結晶化率を70%以下に抑制することにより、金属ガラ
ス部材の極端な機械的強度の低下を防止することができ
る。
After the joining, the joined metal members are cooled to prevent crystallization and embrittlement of the metallic glass, thereby completing the joining without lowering the original high strength and hardness of the metallic glass. In particular, even if crystallization of metallic glass due to joining occurs,
By suppressing the crystallization ratio to 70% or less, it is possible to prevent an extreme decrease in mechanical strength of the metallic glass member.

【0015】重ね合わされた金属部材を過冷却液体域ま
で加熱し、押圧する手段としては、金属ガラス部材側に
配置されたモータとボールネジとからなる直動機構等の
公知の駆動手段に接続された加熱部材を、抵抗ヒータ、
輻射ヒータ等の公知の加熱手段により金属ガラス部材の
過冷却液体域+50Kを上限とする温度に加熱し、駆動
手段によって加熱部材を金属ガラス部材に接触させ、加
熱部材からの熱伝導により金属ガラス部材を加熱するこ
とによって行うことができる。これにより、金属ガラス
部材は過冷却液体域の所定の接合温度まで速やかに加熱
され、ガラス遷移温度から接合温度までの加熱に要する
時間を最小とすることができ、過冷却液体域における加
熱、接合による結晶化を最小限とすることができる。こ
のため、金属ガラス部材の結晶化による強度低下を防止
できる。
As means for heating and pressing the superposed metal member to the supercooled liquid region, it is connected to a known driving means such as a linear motion mechanism comprising a motor and a ball screw disposed on the metal glass member side. Heating member, resistance heater,
A known heating means such as a radiant heater is used to heat the metal glass member to a temperature having an upper limit of +50 K in the supercooled liquid region, and the driving member brings the heating member into contact with the metal glass member. Can be performed by heating. As a result, the metallic glass member is quickly heated to the predetermined joining temperature in the supercooled liquid region, and the time required for heating from the glass transition temperature to the joining temperature can be minimized. Crystallization can be minimized. For this reason, a decrease in strength due to crystallization of the metallic glass member can be prevented.

【0016】金属ガラス部材が過冷却液体域の接合温度
に加熱された後、他方の金属部材側に配置された押圧手
段により、金属部材と金属ガラス部材とを押圧成形し、
接合する。金属ガラス部材を押圧成形して接合した後、
加熱部材を駆動手段によって金属ガラス部材から退避さ
せることにより、速やかに金属ガラス部材を冷却するこ
とができるため、金属ガラス部材の結晶化を防止するこ
とができる。
After the metal glass member is heated to the joining temperature of the supercooled liquid region, the metal member and the metal glass member are pressed and formed by pressing means disposed on the other metal member side,
Join. After pressing and joining metal glass members,
By retreating the heating member from the metallic glass member by the driving means, the metallic glass member can be cooled quickly, so that crystallization of the metallic glass member can be prevented.

【0017】請求項3の発明では、接合される金属部材
の金属ガラス部材と接する面に凹凸部が形成されてい
る。即ち、金属ガラス部材と重ね合わせられる金属部材
の接合面の形状を、過冷却液体域に加熱して生じる金属
ガラス部材の粘性流動を利用して押圧により充填される
凹凸部とするものであり、これにより、機械的な締結作
用を行うことができる。このように、機械的な締結作用
を利用することにより、接合できる部材の材質選択を大
幅に広げることができる。
According to the third aspect of the present invention, the metal member to be joined has an uneven portion on the surface in contact with the metal glass member. That is, the shape of the joining surface of the metal member to be superimposed on the metal glass member is to be an uneven portion filled by pressing utilizing the viscous flow of the metal glass member generated by heating the supercooled liquid region, Thereby, a mechanical fastening operation can be performed. As described above, by utilizing the mechanical fastening action, the selection of materials for the members that can be joined can be greatly expanded.

【0018】請求項4の発明では、過冷却液体域の温度
域が異なる金属ガラス部材同士を接合している。過冷却
液体域の温度域が異なる金属ガラス部材同士を接合する
際、各金属ガラス部材を結晶化開始温度の順に重ね合わ
せ、結晶化開始温度が最も高い金属ガラス部材側に加熱
手段を配置する。加熱手段としては輻射加熱、高周波加
熱、抵抗加熱など公知の加熱手段が用いられる。そし
て、各部材の厚さおよび加熱速度、加熱雰囲気を適当に
調整することにより、加熱の温度勾配を生じさせ、各金
属ガラス部材を同時に過冷却液体域に加熱した後、最も
結晶化開始温度の低い金属ガラス部材側に配置された押
圧手段によって押圧することにより金属ガラス部材を接
合する。
According to the fourth aspect of the invention, the metallic glass members having different temperature ranges of the supercooled liquid region are joined to each other. When joining metal glass members having different temperature ranges of the supercooled liquid region, the metal glass members are superimposed in the order of the crystallization start temperature, and the heating means is arranged on the side of the metal glass member having the highest crystallization start temperature. Known heating means such as radiation heating, high-frequency heating, and resistance heating are used as the heating means. Then, by appropriately adjusting the thickness, heating rate, and heating atmosphere of each member, a heating temperature gradient is generated, and after simultaneously heating each metallic glass member to the supercooled liquid region, the crystallization start temperature is the highest. The metallic glass members are joined by being pressed by a pressing means arranged on the lower metallic glass member side.

【0019】[0019]

【発明の実施の形態】 (実施の形態1)図1及び図2は、本発明の実施の形態
1の接合に使用される装置を示し、固定治具4、4が左
右に離れた状態で真空チャンバー7内に配置されてい
る。固定治具4、4の対向する側の上面には段部4a、
4aが形成されていると共に、それぞれの固定治具4、
4の上面には押え板3、3が重ねられるようになってい
る。固定治具4、4の段部4a、4aには、重ね合わさ
れた板状の金属部材2、5の両端部が支持され、この支
持状態でネジ3a、3aによって押え板3、3を固定す
ることにより、金属部材2、5を固定部材4、4及び押
さえ板3、3で挟持することができる。
(Embodiment 1) FIGS. 1 and 2 show an apparatus used for bonding according to Embodiment 1 of the present invention, in which fixing jigs 4, 4 are separated from each other left and right. It is arranged in a vacuum chamber 7. On the upper surface on the opposite side of the fixing jigs 4, 4, a step 4a,
4a are formed, and each fixing jig 4,
Pressing plates 3 and 3 are arranged on the upper surface of 4. The stepped portions 4a, 4a of the fixing jigs 4, 4 support both ends of the superposed plate-shaped metal members 2, 5, and fix the holding plates 3, 3 by screws 3a, 3a in this supported state. Thus, the metal members 2 and 5 can be sandwiched between the fixing members 4 and 4 and the holding plates 3 and 3.

【0020】上側の金属部材2の上方には、押圧手段と
しての押圧ポンチ1が配置されている。押圧ポンチ1
は、図示を省略したサーボモータとボールネジからなる
直動機構及びロードセルに接続されており、真空チャン
バー7の上部を貫通して垂下することにより金属部材2
の上方に臨んでいる。
A pressing punch 1 as a pressing means is disposed above the upper metal member 2. Pressing punch 1
Is connected to a linear motion mechanism including a servomotor and a ball screw (not shown) and a load cell, and penetrates through the upper portion of the vacuum chamber 7 to hang down.
Facing upwards.

【0021】これに対し、下側の金属部材5の下方に
は、加熱手段としての輻射ヒータ6が配置されている。
輻射ヒータ6は、金属部材5の下面に接触する熱電対8
を有したPID温度調節器9に接続されており、熱電対
8とPID温度調節器9とによって加熱温度が制御され
る。これにより、金属部材5の表面温度を所定の範囲に
制御することができる。
On the other hand, below the lower metal member 5, a radiation heater 6 as heating means is disposed.
The radiant heater 6 includes a thermocouple 8 in contact with the lower surface of the metal member 5.
The heating temperature is controlled by the thermocouple 8 and the PID temperature controller 9. Thereby, the surface temperature of the metal member 5 can be controlled within a predetermined range.

【0022】この実施の形態では、上側の金属部材2と
して、ガラス遷移温度(Tg)が420℃、結晶化開始
温度(Tx)が504℃、過冷却液体域(△Tx)が8
4℃のZr系金属ガラスZr55Cu30Al10Ni5 (添
字は原子%)が使用されている。以下、金属部材2を金
属ガラス部材2と記する。この金属ガラス部材2の寸法
は、30×15×1mmの板状となっている。一方、下
側の金属部材5として、寸法30×15×2mmの板状
のAl合金A2701が使用される。
In this embodiment, the upper metal member 2 has a glass transition temperature (Tg) of 420 ° C., a crystallization start temperature (Tx) of 504 ° C., and a supercooled liquid region (ΔTx) of 8
4 ° C. Zr-based metallic glass Zr 55 Cu 30 Al 10 Ni 5 (subscript: atomic%) is used. Hereinafter, the metal member 2 is referred to as a metal glass member 2. The size of the metallic glass member 2 is a plate of 30 × 15 × 1 mm. On the other hand, as the lower metal member 5, a plate-shaped Al alloy A2701 having a size of 30 × 15 × 2 mm is used.

【0023】図1に示すように、合金からなる金属部材
5を下にして、これらの部材2,5を重ね合わせ、固定
治具4,4の段部4a,4aに載置する。そして、金属
ガラス部材2の上面を押え板3,3で押え、ネジ3a、
3aを螺合させることにより、これらを挟持して固定す
る。そして、加熱時の各部材の酸化を防止するため、図
示しない排気装置により真空チャンバー7内の雰囲気を
10-2Pa程度の真空とする。
As shown in FIG. 1, these members 2 and 5 are superposed on each other with the metal member 5 made of an alloy facing downward, and placed on the steps 4 a and 4 a of the fixing jigs 4 and 4. Then, the upper surface of the metallic glass member 2 is pressed by the holding plates 3 and 3, and the screws 3a and
By screwing 3a, these are pinched and fixed. Then, in order to prevent oxidation of each member at the time of heating, the atmosphere in the vacuum chamber 7 is evacuated to about 10 −2 Pa by an exhaust device (not shown).

【0024】チャンバー7内が上述した真空度に達した
後、輻射ヒータ6により金属部材5を、平均加熱速度1
5℃/分で温度470℃まで加熱した。金属部材5の温
度が470℃±2℃に安定した後、押圧ポンチ1を下降
させ、重ね合わせた部材2、5を100秒間、押圧す
る。この時、金属ガラス部材2の温度は過冷却液体域内
の450℃であった。
After the inside of the chamber 7 reaches the above-mentioned degree of vacuum, the metal member 5 is heated by the radiation heater 6 at an average heating rate of 1 mm.
Heated to 470 ° C at 5 ° C / min. After the temperature of the metal member 5 is stabilized at 470 ° C. ± 2 ° C., the pressing punch 1 is lowered, and the stacked members 2 and 5 are pressed for 100 seconds. At this time, the temperature of the metallic glass member 2 was 450 ° C. in the supercooled liquid region.

【0025】過冷却液体域に加熱された金属ガラス部材
2はニュートン粘性流動特性を示し、金属部材5も加熱
により軟化しているため、図2に示すように凹形状に変
形する。特に、金属ガラス部材2は、押圧ポンチ1の押
圧力と金属部材5の弾性力により圧縮変形し、押圧ポン
チ1との当接部を中心に金属金部材5に密着する。さら
に、金属ガラス部材2および金属部材5が変形すること
により、これらが当接している接触界面では、酸化膜な
どが寸断され新生面が露出する。この新生面が圧縮変形
で密着することにより、金属原子の相互の凝着力により
接合される。
The metallic glass member 2 heated to the supercooled liquid region has a Newtonian viscous flow characteristic, and the metallic member 5 is also softened by heating, so that it is deformed into a concave shape as shown in FIG. In particular, the metal glass member 2 is compressed and deformed by the pressing force of the pressing punch 1 and the elastic force of the metal member 5, and is brought into close contact with the metal metal member 5 around the contact portion with the pressing punch 1. Furthermore, when the metallic glass member 2 and the metallic member 5 are deformed, an oxide film or the like is cut off at a contact interface where they are in contact, and a new surface is exposed. When this new surface comes into close contact by compression deformation, it is joined by mutual adhesion of metal atoms.

【0026】本実施の形態の場合、ポンチストロークを
7mmすなわち押圧ポンチ1を金属ガラス部材2と接触
した位置から7mm下降した位置で押圧力が一定となる
ようにロードセルで制御し、この状態で50℃/分の初
期冷却速度で冷却後、真空チャンバー7から取り出し
た。金属ガラス部材2の結晶化率は20%以下であり、
接合された部材の接合面の剪断強度は金属部材5の80
%程度であった。
In the case of the present embodiment, the punch stroke is controlled by a load cell so that the pressing force is constant at a position of 7 mm, that is, a position at which the pressing punch 1 is lowered by 7 mm from a position where the pressing punch 1 comes into contact with the metallic glass member 2. After cooling at an initial cooling rate of ° C./min, it was taken out of the vacuum chamber 7. The crystallization ratio of the metallic glass member 2 is 20% or less,
The shear strength of the joining surface of the joined members is 80
%.

【0027】このように本実施の形態では、金属ガラス
自体を金属部材として、他方の金属部材と共に過冷却液
体域まで加熱後、短時間で押圧接合するため、金属ガラ
ス部材の結晶化を防止でき、金属部材の強固な接合が可
能となっている。
As described above, in the present embodiment, since the metallic glass itself is used as the metallic member and the other metallic member is heated to the supercooled liquid region and then pressed and joined in a short time, the crystallization of the metallic glass member can be prevented. Thus, the metal member can be firmly joined.

【0028】(実施の形態2)図3及び図4は、実施の
形態2に使用する装置を示し、図1及び図2と同一の要
素は同一の符号を付して対応させてある。この装置にお
いては、下側の金属部材15の下方に、SUS420J
2によってブロック状に成形された加熱体12が加熱手
段として配置されている。加熱体12は、PID温度調
節器9にそれぞれ接続されている抵抗加熱ヒータ13及
び熱電対8を内蔵しており、熱電対8及びPID温度調
節器9によって抵抗加熱ヒータ13の温度を調整するこ
とにより、加熱体12の温度が制御可能となっている。
(Embodiment 2) FIGS. 3 and 4 show an apparatus used in Embodiment 2, and the same elements as those in FIGS. 1 and 2 are denoted by the same reference numerals and correspond to each other. In this device, SUS420J is provided below the lower metal member 15.
The heating element 12 formed into a block shape by the heating unit 2 is disposed as a heating unit. The heating element 12 has a built-in resistance heater 13 and a thermocouple 8 connected to the PID temperature controller 9, respectively. The temperature of the resistance heater 13 is adjusted by the thermocouple 8 and the PID temperature controller 9. Thereby, the temperature of the heating body 12 can be controlled.

【0029】さらに、加熱体12は、断熱シャフト14
によって支持されている。断熱シャフト14は、図示を
省略したサーボモータ及びボールネジからなる直動機構
に接続されて上下動し、この上下動によって加熱体12
が上下動して金属部材15に対して接近及び離反するこ
とができる。
Further, the heating element 12 includes a heat insulating shaft 14.
Supported by The heat insulating shaft 14 is connected to a linear motion mechanism including a servomotor and a ball screw (not shown) and moves up and down.
Can move up and down to approach and separate from the metal member 15.

【0030】この実施の形態では、重ね合わされる金属
部材11、15の双方を金属ガラスとするものであり、
下側の金属部材15としては、ガラス遷移温度(Tg)
が420℃、結晶化開始温度(Tx)が504℃、過冷
却液体域(△Tx)が84℃のZr系金属ガラスZr55
Cu30Al10Ni5 (添字は原子%)からなる30×1
5×1mmの寸法の板材が使用されている。又、上側の
金属部材11としては、ガラス遷移温度(Tg)が36
7℃、結晶化開始温度(Tx)が467℃、過冷却液体
域(△Tx)が100℃のZr系金属ガラスZr65Cu
27.5Al7.5 (添字は原子%)からなる30×15×1
mmの寸法の板材が使用されている。以下、金属部材1
1、15を金属ガラス部材11、15と記する。
In this embodiment, both the metal members 11 and 15 to be superposed are made of metallic glass.
As the lower metal member 15, the glass transition temperature (Tg)
Zr-based metallic glass Zr 55 having a temperature of 420 ° C., a crystallization start temperature (Tx) of 504 ° C., and a supercooled liquid region (ΔTx) of 84 ° C.
30 × 1 made of Cu 30 Al 10 Ni 5 (subscript is atomic%)
A plate having a size of 5 × 1 mm is used. The upper metal member 11 has a glass transition temperature (Tg) of 36.
Zr-based metallic glass Zr 65 Cu having a temperature of 7 ° C., a crystallization start temperature (Tx) of 467 ° C., and a supercooled liquid region (ΔTx) of 100 ° C.
30 × 15 × 1 made of 27.5 Al 7.5 (subscript is atomic%)
A plate having a size of mm is used. Hereinafter, metal member 1
Reference numerals 1 and 15 are referred to as metallic glass members 11 and 15.

【0031】図3に示すように、これらの金属ガラス部
材11、15を重ね合わせて、固定治4、4の段部4
a、4aに金属ガラス部材15を下にして載置し、金属
ガラス部材11の上面を押え板3、3で押え、ネジ3
a、3aを螺合することにより固定治具4、4と押え板
3、3とによって金属ガラス部材11、15を挟持した
状態で固定する。そして、加熱時の各部材11、15の
酸化を防止するため、図示しない排気装置により、真空
チャンバー7内の雰囲気を10-2Pa程度の真空とし
た。
As shown in FIG. 3, these metallic glass members 11 and 15 are overlapped and
a, 4a, the metallic glass member 15 is placed downward, and the upper surface of the metallic glass member 11 is
The metallic glass members 11 and 15 are clamped and fixed by the fixing jigs 4 and 4 and the holding plates 3 and 3 by screwing a and 3a. Then, in order to prevent the members 11 and 15 from being oxidized during heating, the atmosphere in the vacuum chamber 7 was evacuated to about 10 −2 Pa by an exhaust device (not shown).

【0032】チャンバー7内が上述した真空度に達した
後、抵抗加熱ヒータ13により470℃まで加熱された
加熱体12を、断熱シャフト14を直動機構で上昇させ
ることにより、下側の金属ガラス部材15の下面に当接
させる。加熱体12の当接により金属ガラス部材15は
急速に過冷却液体域まで加熱されるが、加熱体12と金
属ガラス部材15との熱伝導抵抗により、金属ガラス部
材15の温度は約450℃で安定する。
After the inside of the chamber 7 reaches the above-mentioned degree of vacuum, the heating element 12 heated to 470 ° C. by the resistance heater 13 is raised by the linear motion mechanism of the heat insulating shaft 14, so that the lower metallic glass It is brought into contact with the lower surface of the member 15. The metallic glass member 15 is rapidly heated to the supercooled liquid region by the contact of the heating body 12, but the temperature of the metallic glass member 15 is about 450 ° C. due to the heat conduction resistance between the heating body 12 and the metallic glass member 15. Stabilize.

【0033】さらに金属ガラス部材15の上面に重ね合
わせた金属ガラス部材11は、同じく金属ガラス部材1
5との熱伝導抵抗と、金属ガラス部材15内に生じる熱
勾配により、約430℃で安定する。そして、各金属ガ
ラス部材11,15の温度が安定した後、押圧ポンチ1
を下降させ、重ね合わせた金属ガラス部材11,15を
押圧する。さらに、ロードセルにより押圧ポンチ1の押
圧力が一定となるように制御しながら、一定形状に重ね
た部材を成形できるように断熱シャフト14を下降させ
る。
Further, the metallic glass member 11 superposed on the upper surface of the metallic glass member 15
5 and a thermal gradient generated in the metallic glass member 15, the temperature is stabilized at about 430 ° C. After the temperatures of the metallic glass members 11 and 15 are stabilized, the pressing punch 1
Is lowered, and the superposed metallic glass members 11 and 15 are pressed. Further, while controlling the pressing force of the pressing punch 1 to be constant by the load cell, the heat insulating shaft 14 is lowered so that the members stacked in a predetermined shape can be formed.

【0034】これにより過冷却液体域に加熱された金属
ガラス部材15,11は、図4に示すように凹形状に変
形する。この圧縮変形により押圧ポンチ1の当接部を中
心に、金属ガラス部材15,11が密着する。さらに、
重ね合わせた金属ガラス部材11,15が変形すること
により、これらが当接している接触界面では、酸化膜等
が寸断されて新生面が露出される。この新生面が圧縮変
形によって相互に密着することにより、金属原子の相互
の凝着力により接合される。
Thus, the metallic glass members 15, 11 heated to the supercooled liquid region are deformed into a concave shape as shown in FIG. Due to the compression deformation, the metallic glass members 15 and 11 are brought into close contact with each other around the contact portion of the pressing punch 1. further,
When the superposed metallic glass members 11 and 15 are deformed, an oxide film or the like is cut off at the contact interface where they are in contact, and a new surface is exposed. The new surfaces come into close contact with each other by compressive deformation, and are joined by mutual adhesion of metal atoms.

【0035】本実施の形態の場合、押圧圧力30MPa
で、毎秒0.1mmの速度で断熱シャフト14を押圧ポ
ンチ1の押圧方向すなわち下方向に駆動しながら、10
0秒間押圧後、50℃/分の初期冷却速度で冷却後、真
空チャンバー7から取り出した。金属ガラス部材15お
よび11の結晶化率は20%以下であり、接合された部
材の接合面の剪断強度は金属ガラス部材15の母材の7
0%程度であった。
In the case of this embodiment, the pressing pressure is 30 MPa
While driving the heat insulating shaft 14 at a speed of 0.1 mm per second in the pressing direction of the pressing punch 1, that is, in the downward direction,
After pressing for 0 second, the mixture was cooled at an initial cooling rate of 50 ° C./min, and then taken out of the vacuum chamber 7. The crystallization ratio of the metallic glass members 15 and 11 is not more than 20%, and the shear strength of the joining surface of the joined members is 7% of the base material of the metallic glass member 15.
It was about 0%.

【0036】このような実施の形態では、押圧ポンチ1
と加熱体12とにより、接合する部材に押圧力を加える
ため、金属ガラス部材同士の接合など、接合時の変形抵
抗が小さく、充分な押圧力を接合する部材に作用させる
ことができない場合に有効である。また、加熱体を金型
として使用することにより、接合した部材の両面を所定
の形状に成形することができるメリットがある。
In such an embodiment, the pressing punch 1
Since the pressing force is applied to the members to be joined by the heating member 12 and the heating member 12, it is effective when the deformation resistance at the time of joining is small and sufficient pressing force cannot be applied to the members to be joined, such as when joining metallic glass members. It is. Further, by using the heating element as a mold, there is an advantage that both surfaces of the joined members can be formed into a predetermined shape.

【0037】本実施の形態では、結晶化開始温度が異な
る2体の金属ガラス部材の接合について説明したが、3
体以上の結晶化開始温度が異なる金属ガラス部材を同様
にして接合することができる。例えば過冷却液体域の温
度領域が適度に異なるZr系金属ガラスZr55Cu30
10Ni5 (添字は原子%、ガラス遷移温度(Tg)4
20℃、結晶化開始温度(Tx)504℃、過冷却液体
域(△Tx)84℃)と、Zr65Cu27.5Al7.5 (添
字は原子%、ガラス遷移温度(Tg)367℃、結晶化
開始温度(Tx,467℃、過冷却液体域(△Tx)1
00℃)と、Pd系非晶質合金Pd40Cu30Ni1020
(添字は原子%、ガラス遷移温度(Tg)302℃、結
晶化開始温度(Tx)397℃、過冷却液体域(△T
x)95℃とからなる金属ガラス部材も同様にして接合
できる。
In this embodiment, the joining of two metallic glass members having different crystallization start temperatures has been described.
Metallic glass members having different crystallization initiation temperatures higher than the body can be similarly joined. For example, a Zr-based metallic glass Zr 55 Cu 30 A in which the temperature region of the supercooled liquid region is appropriately different.
l 10 Ni 5 (subscript is atomic%, glass transition temperature (Tg) 4
20 ° C., crystallization start temperature (Tx) 504 ° C., supercooled liquid region (ΔTx) 84 ° C.), Zr 65 Cu 27.5 Al 7.5 (subscripts are atomic%, glass transition temperature (Tg) 367 ° C., crystallization start) Temperature (Tx, 467 ° C, supercooled liquid area (△ Tx) 1
00 ° C.) and a Pd-based amorphous alloy Pd 40 Cu 30 Ni 10 P 20
(Subscripts are atomic%, glass transition temperature (Tg) 302 ° C., crystallization onset temperature (Tx) 397 ° C., supercooled liquid region (ΔT
x) A metallic glass member having a temperature of 95 ° C. can be similarly joined.

【0038】(実施の形態3)図5及び図6は、実施の
形態3に使用される装置を示し、図3及び図4と同一の
装置となっている。この実施の形態では、金属部材15
及び20を接合するものであり、下側の金属部材15と
しては、ガラス遷移温度(Tg)が420℃、結晶化開
始温度(Tx)が504℃、過冷却液体域(△Tx)が
84℃のZr系金属ガラスZr55Cu30Al10Ni
5 (添字は原子%)からなる30×15×1mmの寸法
の板材が使用されている(以下、金属ガラス部材と記す
る。)。また、上側の金属部材20としては、寸法が3
0×15×1mmのSUS304からなるステンレス鋼
板材が使用されている。この金属部材20における金属
ガラス部材15と接する面には、幅0.5mm、深さ
0.5mmの溝部20aが0.5mmピッチで刻まれて
いる。
(Embodiment 3) FIGS. 5 and 6 show an apparatus used in Embodiment 3, which is the same apparatus as FIGS. 3 and 4. FIG. In this embodiment, the metal member 15
And the lower metal member 15 has a glass transition temperature (Tg) of 420 ° C., a crystallization start temperature (Tx) of 504 ° C., and a supercooled liquid region (ΔTx) of 84 ° C. the Zr-based metallic glass Zr 55 Cu 30 Al 10 Ni
5 (subscript is atomic%) and a plate material of 30 × 15 × 1 mm is used (hereinafter referred to as a metallic glass member). The upper metal member 20 has a size of 3
A stainless steel plate made of SUS304 having a size of 0 × 15 × 1 mm is used. On the surface of the metal member 20 which is in contact with the metal glass member 15, grooves 20a having a width of 0.5 mm and a depth of 0.5 mm are formed at a pitch of 0.5 mm.

【0039】これらの部材15、20を重ね合わせ、金
属ガラス部材15を下にして固定治具4,4の段部4
a,4aに載置する。そして、上側の金属部材20の上
面を押え板3,3で押え、ネジ3a、3aを螺合するこ
とにより、部材15,20を固定治具4,4と押え板
3,3とによって挟持した状態で固定する。そして、加
熱時の各部材15、20の酸化を防止するため、図示し
ない排気装置により真空チャンバー7内の雰囲気を10
-2Pa程度の真空とした。
The members 15 and 20 are overlapped, and the metal glass member 15 is turned down, and the step portions 4 of the fixing jigs 4 and 4 are placed.
a, 4a. Then, the upper surfaces of the upper metal members 20 are pressed by the holding plates 3 and 3, and the screws 3a and 3a are screwed together, so that the members 15 and 20 are sandwiched between the fixing jigs 4 and 4 and the holding plates 3 and 3. Fix in state. Then, in order to prevent the members 15 and 20 from being oxidized during heating, the atmosphere in the vacuum chamber 7 is reduced to 10 by an exhaust device (not shown).
The vacuum was set to about -2 Pa.

【0040】この真空度にチャンバー7内が達した後、
抵抗加熱ヒータ13により470℃まで加熱された加熱
体12を、断熱シャフト14を直動機構で上昇させるこ
とにより、下側の金属ガラス部材15の下面に当接させ
る。加熱体12の当接により金属ガラス部材15は急速
に過冷却体域まで加熱されるが、加熱体12と金属ガラ
ス部材15との熱伝導抵抗により、金属ガラス部材15
の温度は約450℃で安定する。
After the inside of the chamber 7 reaches this degree of vacuum,
The heating body 12 heated to 470 ° C. by the resistance heater 13 is brought into contact with the lower surface of the lower metallic glass member 15 by raising the heat insulating shaft 14 by a linear motion mechanism. The metallic glass member 15 is rapidly heated to the supercooled body region by the contact of the heating body 12, but the metallic glass member 15 is heated due to the heat conduction resistance between the heating body 12 and the metallic glass member 15.
Is stable at about 450 ° C.

【0041】そして、金属ガラス部材15の温度が安定
した後、押圧ポンチ1を下降させ、重ね合わせた部材2
0,15を押圧する。さらに、押圧ポンチ1に接続され
たロードセルによって、押圧力が一定となるように押圧
ポンチ1を制御しながら、重ねた部材15、20を一定
形状に成形できるように断熱シャフト14を下降させ
る。これにより過冷却液体域に加熱された金属ガラス部
材15と、ステンレス鋼からなる金属部材20は、図6
に示すように凹形状に変形する。
After the temperature of the metallic glass member 15 is stabilized, the pressing punch 1 is lowered, and
Press 0,15. Further, while controlling the pressing punch 1 so that the pressing force is constant by the load cell connected to the pressing punch 1, the heat insulating shaft 14 is lowered so that the stacked members 15, 20 can be formed into a predetermined shape. As a result, the metallic glass member 15 heated to the supercooled liquid region and the metallic member 20 made of stainless steel are shown in FIG.
As shown in FIG.

【0042】この圧縮変形により、押圧ポンチ1の当接
部を中心に、金属ガラス部材15と、金属部材20が密
着する。さらに、金属ガラス部材15および金属部材2
0が変形することにより、金属ガラス部材15の一部1
5aが金属部材20の溝部20aに入り込む。この入り
込みでは、機械的な締結作用により主に接合される。
By this compressive deformation, the metallic glass member 15 and the metallic member 20 come into close contact with each other around the contact portion of the pressing punch 1. Further, the metallic glass member 15 and the metallic member 2
0 is deformed, so that part 1 of the metallic glass member 15
5a enters the groove 20a of the metal member 20. In this intrusion, they are mainly joined by a mechanical fastening action.

【0043】本実施の形態の場合、50MPaの押圧圧
力で断熱シャフト14を毎秒0.2mmの速度で、押圧
ポンチ1の押圧方向すなわち下方向に駆動しながら60
秒間押圧後、50℃/分の初期冷却速度で冷却後、真空
チャンバー7から取り出した。金属ガラス部材15の結
晶化率は20%以下であり、接合された部材の接合面の
剪断強度はステンレス鋼部材20の95%程度であっ
た。
In the case of the present embodiment, the heat insulating shaft 14 is driven at a speed of 0.2 mm per second at a pressing pressure of 50 MPa while being driven in the pressing direction of the pressing punch 1, that is, in the downward direction.
After pressing for 2 seconds, it was cooled at an initial cooling rate of 50 ° C./min, and then taken out of the vacuum chamber 7. The crystallization ratio of the metallic glass member 15 was 20% or less, and the shear strength of the joined surface of the joined members was about 95% of that of the stainless steel member 20.

【0044】このような本実施の形態では、金属部材2
0に形成した溝部20aに金属ガラス部材15が入り込
むことによる機械的な結合力によって、金属ガラス部材
15と金属部材20とが接合される。このため、金属ガ
ラスとの接合性の低い金属材料であっても接合できる。
従って、接合する材料選択の幅が広がる効果がある。
In this embodiment, the metal member 2
The metallic glass member 15 and the metallic member 20 are joined by the mechanical coupling force caused by the metallic glass member 15 entering the groove 20a formed at zero. For this reason, it is possible to join even a metal material having a low joining property with the metallic glass.
Therefore, there is an effect that the range of selection of materials to be joined is widened.

【0045】(実施の形態4)図7〜図10は、実施の
形態4を示す。図7は、フェースを接合する前のゴルフ
クラブヘッドの正面図であり、64チタン合金を鋳造お
よび機械加工により加工した金属部材である成形部材の
構造を示し、図8は、図7のA−A断面図である。
(Fourth Embodiment) FIGS. 7 to 10 show a fourth embodiment. FIG. 7 is a front view of the golf club head before the face is joined, and shows the structure of a molded member that is a metal member obtained by casting and machining a 64 titanium alloy. FIG. It is A sectional drawing.

【0046】図7において、64チタン合金製のゴルフ
クラブヘッド成形部材30は、ロストワックス法により
鋳造された部材に、機械加工によってフェース取り付け
面31と、溝部32を機械加工した。図8に示すように
溝部32は、断面が楔形状に加工されており、加工に用
いる異形フライスは、図7に示すように導入部32aか
らフェース取り付け面31内部に導入し、機械加工を施
した。
In FIG. 7, a golf club head molding member 30 made of a 64 titanium alloy is formed by machining a face mounting surface 31 and a groove 32 by machining a member cast by a lost wax method. As shown in FIG. 8, the groove 32 has a wedge-shaped cross section, and a deformed milling cutter used for processing is introduced into the face mounting surface 31 from the introduction portion 32a as shown in FIG. did.

【0047】図9及び図10は、この実施の形態に使用
される装置であり、図3及び図4と同一の要素は同一の
符号により対応させてある。図9における金属ガラス部
材34は、ゴルフクラブヘッドのフェースを構成するも
のであり、図7に示すゴルフクラブヘッド成形部材30
のフェース取り付け面31に対応するような厚さ3mm
の板状に機械加工されている。この金属ガラス部材34
の材質しては、ガラス遷移温度(Tg)が420℃、結
晶化開始温度(Tx)が504℃、過冷却液体域(△T
x)が84℃であるZr系金属ガラスZr55Cu30Al
10Ni5 が使用されている。
FIGS. 9 and 10 show an apparatus used in this embodiment, and the same elements as those in FIGS. 3 and 4 are assigned the same reference numerals. The metal glass member 34 in FIG. 9 constitutes the face of the golf club head, and the golf club head forming member 30 shown in FIG.
3mm thick corresponding to the face mounting surface 31 of
It is machined into a plate shape. This metallic glass member 34
The glass transition temperature (Tg) is 420 ° C., the crystallization start temperature (Tx) is 504 ° C., and the supercooled liquid region (ΔT
x) Zr-based metallic glass Zr 55 Cu 30 Al having a temperature of 84 ° C.
10 Ni 5 is used.

【0048】フェース取り付け面31を下にして金属ガ
ラス部材34に当接させる成形部材30の上方すなわち
金属部材側には、図示しないサーボモータとボールネジ
とから直動機構およびロードセルに接続された押圧手段
としての押圧ポンチ1が配置されている。押圧ポンチ1
の下端には、成形部材30を保持するための固定治具3
5が取り付けられている。
A pressing means connected to a linear motion mechanism and a load cell from a servo motor and a ball screw (not shown) is provided above the forming member 30 which is brought into contact with the metal glass member 34 with the face mounting surface 31 down. The pressing punch 1 is arranged. Pressing punch 1
A fixing jig 3 for holding the molded member 30 is provided at the lower end of the
5 is attached.

【0049】金属ガラス部材34の下方には、抵抗加熱
ヒータ13および熱電対8を内蔵した加熱手段としての
SUS420J2製の加熱体33が配置されている。加
熱体33の上面には、成形部材30のフェース取り付け
面31の形状に対応した溝状の受け部36が形成されて
いると共に、金属ガラス部材34を保持するための複数
のプランジャ37,37が設けられている。プランジャ
37内には図示しない弾性部材としてのスプリングが設
けられており、常にプランジャ37の先端に上向きの力
が作用するようになっている。
Below the metallic glass member 34, a heater 33 made of SUS420J2 is disposed as heating means incorporating the resistance heater 13 and the thermocouple 8. On the upper surface of the heating body 33, a groove-shaped receiving portion 36 corresponding to the shape of the face mounting surface 31 of the molding member 30 is formed, and a plurality of plungers 37 for holding the metal glass member 34 are provided. Is provided. A spring (not shown) as an elastic member is provided in the plunger 37 so that an upward force always acts on the tip of the plunger 37.

【0050】なお、抵抗加熱ヒータ13および熱電対8
が、PID温度調節器9にそれぞれ接続されることによ
り、加熱体33の温度制御が可能となっている。又、加
熱体33は、図示しないサーボモータとボールネジとか
らなる直動機構に接続されたセラミック製の断熱シャフ
ト14に保持されることにより、上下動可能となってい
る。図9の状態では、加熱時の各部材の酸化を防止する
ために、図示しない排気装置により真空チャンバー7内
の雰囲気を10-2Pa程度の真空とした。
The resistance heater 13 and the thermocouple 8
Are connected to the PID temperature controller 9, respectively, so that the temperature of the heating body 33 can be controlled. The heating body 33 can be moved up and down by being held by a ceramic heat insulating shaft 14 connected to a linear motion mechanism composed of a servo motor and a ball screw (not shown). In the state of FIG. 9, the atmosphere in the vacuum chamber 7 is evacuated to about 10 −2 Pa by an exhaust device (not shown) in order to prevent oxidation of each member during heating.

【0051】この真空度にチャンバー7内が達した後、
抵抗加熱ヒータ13により470℃まで加熱された加熱
体33を、断熱シャフト14を直動機構で上昇させるこ
とにより、金属ガラス部材34の下面に当接させる。こ
のとき、プランジャ37内のスプリングが圧縮され、加
熱体33の受け部36が金属ガラス部材34の下面に当
接する。
After the inside of the chamber 7 reaches this degree of vacuum,
The heating body 33 heated to 470 ° C. by the resistance heater 13 is brought into contact with the lower surface of the metallic glass member 34 by raising the heat insulating shaft 14 by a linear motion mechanism. At this time, the spring in the plunger 37 is compressed, and the receiving portion 36 of the heating element 33 contacts the lower surface of the metallic glass member 34.

【0052】加熱体33の当接により、金属ガラス部材
34は急速に過冷却体域まで加熱されるが、加熱体33
と金属ガラス部材34との熱伝導抵抗により、金属ガラ
ス部材34の温度は約450℃で安定する。そして、金
属ガラス部材34の温度が安定した後、押圧ポンチ1を
下降させ、固定治具35を介して成形部材30を過冷却
体域に加熱されている金属ガラス部材34に押圧する。
The metal glass member 34 is rapidly heated to the supercooled body region by the contact of the heating body 33.
The temperature of the metal glass member 34 is stabilized at about 450 ° C. due to the heat conduction resistance between the metal glass member 34 and the metal glass member 34. Then, after the temperature of the metal glass member 34 is stabilized, the pressing punch 1 is lowered, and the forming member 30 is pressed via the fixing jig 35 against the metal glass member 34 heated in the supercooled body region.

【0053】この圧縮変形により、金属ガラス部材34
に当接した成形部材30のフェース部31が、金属ガラ
ス部材34に押圧されて成形され、溝部32に金属ガラ
ス部材34が噛み合うことにより、強固な機械的結合が
行われる。この時、加熱体33の受け部36は、金属ガ
ラス部材34が押圧されて成形される際にフェース取り
付け面31からはみ出すことを防止すると共に、フェー
スである金属ガラス部材34のフェイス面38の周囲の
外観を同時に成形する。
By this compression deformation, the metallic glass member 34
The face portion 31 of the molding member 30 that is in contact with the metal member is pressed and molded by the metallic glass member 34, and the metallic glass member 34 is engaged with the groove portion 32, whereby a strong mechanical connection is performed. At this time, the receiving portion 36 of the heating body 33 prevents the metal glass member 34 from protruding from the face mounting surface 31 when the metal glass member 34 is pressed and formed, and also surrounds the face surface 38 of the metal glass member 34 as a face. Molding at the same time.

【0054】フェイス面38が成形部材30と接合され
て成形された後、断熱シャフト14を下方に駆動して、
フェイス面38から加熱体33を分離し、金属ガラス部
材34を急速に冷却する。
After the face surface 38 is joined to the molding member 30 and molded, the heat insulating shaft 14 is driven downward to
The heating body 33 is separated from the face surface 38, and the metallic glass member 34 is rapidly cooled.

【0055】本実施の形態の場合、フェース取り付け面
31での換算押圧力を50MPaとして200秒間押圧
後、50℃/分の初期冷却速度で100℃まで冷却後、
真空チャンバー7から取り出した。金属ガラス部材34
の結晶化率は20%以下であった。
In the case of the present embodiment, pressing is performed for 200 seconds at a converted pressing force of 50 MPa on the face mounting surface 31, and after cooling to 100 ° C. at an initial cooling rate of 50 ° C./min,
It was taken out of the vacuum chamber 7. Metal glass member 34
Was 20% or less.

【0056】このような本実施の形態では、成形された
比較的複雑な形状を有する部材と、金属ガラス部材との
接合を行うことができ、ゴルフクラブヘッドのような中
空の部品を製造することができる。
In the present embodiment, a molded member having a relatively complicated shape can be joined to a metallic glass member, and a hollow component such as a golf club head can be manufactured. Can be.

【0057】以上の実施の形態から、本発明の金属部材
の接合方法では、金属ガラスを使用した接合手段を用い
ることにより、金属ガラスの高い強度を保ったまま、金
属ガラス部材同士又は金属ガラス部材と他の金属部材と
の接合を行うことができ、しかも、強度に優れ、形状精
度の良好な接合金属部材を成形することができる。さら
には、金属ガラスが有している高耐食性、高反発力、高
硬度などの機能を他の金属部材に付加することが可能の
ため、各種の機能性材料を製造できる。なお、金属ガラ
スとしては、実施の形態以外の他の金属ガラス、例えば
La55Al25Ni20(ガラス遷移点(Tg)=200
℃、結晶化開始温度(Tx)=275℃)、その他のも
のを用いることができる。
According to the above embodiments, in the method for joining metal members of the present invention, by using the joining means using metallic glass, it is possible to maintain the high strength of metallic glass while maintaining the high strength of metallic glass members or metallic glass members. And other metal members can be joined, and a joined metal member having excellent strength and good shape accuracy can be formed. Furthermore, since various functions, such as high corrosion resistance, high repulsion, and high hardness, of the metal glass can be added to other metal members, various functional materials can be manufactured. In addition, as the metallic glass, other metallic glass than the embodiment, for example, La 55 Al 25 Ni 20 (glass transition point (Tg) = 200)
° C, crystallization start temperature (Tx) = 275 ° C), and others.

【0058】[0058]

【発明の効果】以上説明したように、請求項1の発明に
よれば、金属ガラス部材を加熱して押圧し、その後、冷
却するため、金属ガラス部材の結晶化を防止でき、強固
な金属部材の接合を行うことができる。
As described above, according to the first aspect of the present invention, since the metallic glass member is heated and pressed, and then cooled, the crystallization of the metallic glass member can be prevented, and the strong metallic member can be prevented. Can be joined.

【0059】請求項2の発明によれば、加熱手段を接触
させて加熱するため、金属ガラス部材の加熱を短時間で
行うことができる。
According to the second aspect of the present invention, since the heating means is brought into contact with and heated, the metallic glass member can be heated in a short time.

【0060】請求項3の発明によれば、凹凸部を介して
接合するため、物理的な接合ができ、接合する部材の材
質の選択の自由度が増大する。
According to the third aspect of the present invention, since the bonding is performed via the uneven portions, physical bonding can be performed, and the degree of freedom in selecting the material of the members to be bonded is increased.

【0061】請求項4の発明によれば、金属ガラス部材
同士の接合であっても、金属ガラス部材の結晶化を防止
し、強固な金属部材の接合を行うことができる。
According to the fourth aspect of the present invention, even when joining metallic glass members, crystallization of the metallic glass members can be prevented, and strong joining of metallic members can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の接合前の状態を示す断
面図である。
FIG. 1 is a cross-sectional view showing a state before bonding according to a first embodiment of the present invention.

【図2】実施の形態1の押圧時の状態を示す断面図であ
る。
FIG. 2 is a sectional view showing a state at the time of pressing in the first embodiment.

【図3】実施の形態2の接合前の状態を示す断面図であ
る。
FIG. 3 is a sectional view showing a state before bonding according to a second embodiment.

【図4】実施の形態2の押圧時の状態を示す断面図であ
る。
FIG. 4 is a sectional view showing a state at the time of pressing according to a second embodiment.

【図5】実施の形態3の接合前の状態を示す断面図であ
る。
FIG. 5 is a sectional view showing a state before bonding according to a third embodiment.

【図6】実施の形態3の押圧時の状態を示す断面図であ
る。
FIG. 6 is a sectional view showing a state at the time of pressing in the third embodiment.

【図7】実施の形態4によって製造される成形部品の断
面図である。
FIG. 7 is a sectional view of a molded part manufactured according to a fourth embodiment.

【図8】図7のA−A線断面図である。FIG. 8 is a sectional view taken along line AA of FIG. 7;

【図9】実施の形態4の接合前の状態を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing a state before bonding according to a fourth embodiment.

【図10】実施の形態4の押圧時の状態を示す断面図で
ある。
FIG. 10 is a cross-sectional view illustrating a state of the fourth embodiment when pressed.

【符号の説明】[Explanation of symbols]

1 押圧ポンチ 2 金属ガラス部材 3 押さえ板 4 固定治具 5 金属部材 6 輻射ヒータ 7 真空チャンバー 8 熱電対 9 PID温度調節器 REFERENCE SIGNS LIST 1 pressing punch 2 metal glass member 3 holding plate 4 fixing jig 5 metal member 6 radiant heater 7 vacuum chamber 8 thermocouple 9 PID temperature controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一体が過冷却液体域を有する
非晶質合金からなる金属ガラス部材である二体以上の金
属部材を重ね合わせる工程と、 重ね合わせた金属部材を前記金属ガラス部材の過冷却液
体域まで加熱する工程と、 重ね合わせた金属部材の内、少なくとも金属ガラス部材
を押圧手段により押圧して金属部材を相互に接合する工
程と、 接合した金属部材を冷却する工程と、 を有することを特徴とする金属部材の接合方法。
1. A step of superposing two or more metal members, at least one of which is a metal glass member made of an amorphous alloy having a supercooled liquid region, and supercooling the superimposed metal member on the metal glass member A step of heating to a liquid region, a step of pressing at least a metal glass member of the superposed metal members by pressing means to join the metal members to each other, and a step of cooling the joined metal members. A method for joining metal members.
【請求項2】 少なくとも二体の金属部材を接合する金
属部材の接合方法において、 過冷却液体域を有する非晶質合金からなる金属ガラス部
材である一方の金属部材を他方の金属部材と重ね合わせ
る工程と、 金属ガラス部材である一方の金属部材に所定の温度に加
熱された加熱手段を接触させることにより、重ね合わせ
た金属部材を前記金属ガラス部材の過冷却液体域まで加
熱する工程と、 他方の金属部材側から押圧手段により押圧して金属部材
を相互に接合する工程と、 接合した金属部材を冷却する工程と、 を有することを特徴とする金属部材の接合方法。
2. A method for joining at least two metal members, the method comprising joining one metal member, which is a metal glass member made of an amorphous alloy having a supercooled liquid region, with the other metal member. Heating the superposed metal member to a supercooled liquid region of the metal glass member by bringing a heating means heated to a predetermined temperature into contact with one of the metal members being a metal glass member; 2. A method for joining metal members, comprising: a step of pressing the metal members from each other by pressing the metal members from the metal member side; and a step of cooling the joined metal members.
【請求項3】 前記金属ガラス部材と接合する金属部材
は、金属ガラス部材と接する側に凹凸部が形成されてい
ることを特徴とする請求項1または2記載の金属部材の
接合方法。
3. The method for joining metal members according to claim 1, wherein the metal member joined to the metal glass member has an uneven portion formed on a side in contact with the metal glass member.
【請求項4】 異なる過冷却液体域を有する少なくとも
二体の非晶質合金からなる金属ガラス部材を結晶化開始
温度順に重ね合わせる工程と、 最も高い結晶化開始温度を有する金属ガラス部材側から
順に金属ガラス部材の過冷却液体域まで加熱する工程
と、 最も低い結晶化開始温度を有する金属ガラス部材側から
押圧手段によって押圧し、重ね合わせた金属ガラス部材
を接合する工程と、 接合した金属部材を冷却する工程と、を有することを特
徴とする金属部材の接合方法。
4. A step of superposing metallic glass members made of at least two amorphous alloys having different supercooled liquid regions in the order of the crystallization start temperature, in order from the metallic glass member having the highest crystallization start temperature. A step of heating the metal glass member to the supercooled liquid region, a step of pressing the metal glass member having the lowest crystallization start temperature from the side of the metal glass member by pressing means, and joining the superposed metal glass members; And a step of cooling.
JP18487497A 1997-07-10 1997-07-10 Joining method of metallic member Withdrawn JPH1133746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18487497A JPH1133746A (en) 1997-07-10 1997-07-10 Joining method of metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18487497A JPH1133746A (en) 1997-07-10 1997-07-10 Joining method of metallic member

Publications (1)

Publication Number Publication Date
JPH1133746A true JPH1133746A (en) 1999-02-09

Family

ID=16160832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18487497A Withdrawn JPH1133746A (en) 1997-07-10 1997-07-10 Joining method of metallic member

Country Status (1)

Country Link
JP (1) JPH1133746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body
JP2009276703A (en) * 2008-05-19 2009-11-26 Canon Inc Optical element and method of manufacturing the same
WO2010110405A1 (en) * 2009-03-25 2010-09-30 国立大学法人 熊本大学 Method of designing welding method, method of welding and weld joint
EP2479309A1 (en) 2004-03-25 2012-07-25 Topy Kogyo Kabushiki Kaisha Metallic glass laminates, production methods and applications thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479309A1 (en) 2004-03-25 2012-07-25 Topy Kogyo Kabushiki Kaisha Metallic glass laminates, production methods and applications thereof
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body
JP2009276703A (en) * 2008-05-19 2009-11-26 Canon Inc Optical element and method of manufacturing the same
WO2010110405A1 (en) * 2009-03-25 2010-09-30 国立大学法人 熊本大学 Method of designing welding method, method of welding and weld joint
US8944307B2 (en) 2009-03-25 2015-02-03 National University Corporation Kumamoto University Method of welding method, welding method and welded joint body

Similar Documents

Publication Publication Date Title
EP1684933B1 (en) Method for controlling pressure through a compliant element in reactive multilayer joining
JP5287866B2 (en) Electric contact manufacturing method and electric contact manufacturing apparatus
US7967182B2 (en) Dissimilar metal joint product and joining method therefor
US9108279B2 (en) Method of assembling a part
KR20130087505A (en) Method for bonding components of a sputtering target, a bonded assembly of sputtering target components and the use thereof
JP7262144B2 (en) Dissimilar material solid phase bonding method and dissimilar material solid phase bonding structure
JPH1133746A (en) Joining method of metallic member
CA1326115C (en) Rarefield or controlled atmosphere furnace soldering process
JP3862799B2 (en) Composite member manufacturing method and composite member
JPH028364A (en) Sputtering target and its production
JPH07164157A (en) Method of welding solid copper piece
JPH05131279A (en) Joining method for metal by using amorphous metal
US6257481B1 (en) Metal bonding
JPH10217257A (en) Mold and manufacture thereof
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
US11872651B2 (en) Dissimilar material solid phase bonding method, dissimilar material solid phase bonded structure, and dissimilar material solid phase bonding device
US4072817A (en) Method of making semi-conductor mounts
JPS62269721A (en) Device for bonding end face of filter element
JP3346920B2 (en) Optical disk molding equipment
JP2001105054A (en) Joining method of metal members
JP4859041B2 (en) Mold equipment
JPH0677829B2 (en) Manufacturing method of sliding parts
JPH09142948A (en) Method for joining ceramic structure
JPS61289964A (en) Brazing method
JP2543976B2 (en) Brazing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005