JPH11335737A - Production of grain oriented silicon steel sheet excellent in magnetic characteristics - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic characteristics

Info

Publication number
JPH11335737A
JPH11335737A JP10144232A JP14423298A JPH11335737A JP H11335737 A JPH11335737 A JP H11335737A JP 10144232 A JP10144232 A JP 10144232A JP 14423298 A JP14423298 A JP 14423298A JP H11335737 A JPH11335737 A JP H11335737A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
strain
recystallization
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10144232A
Other languages
Japanese (ja)
Inventor
Mitsumasa Kurosawa
光正 黒沢
Yasuyuki Hayakawa
康之 早川
Kenichi Sadahiro
健一 定広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10144232A priority Critical patent/JPH11335737A/en
Publication of JPH11335737A publication Critical patent/JPH11335737A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon steel sheet excellent in core loss and magnetic characteristics by locally introducing a plastic strain to the steel sheet in a high temp. region of a latter half stage of continuous annealing. SOLUTION: For reducing fine grains after secondary recystallization and annealing by continuous annealing, in a high temp. region where the secondary recystallization is nearly progressed, a local strain by means of a projection roll etc., arranged in a continuous annaling furnace is introduced, the subsequent strain removal is executed in the same line to maintain good secondary recystallization grain orientation and to secure the perfectress of a secondary recystallization structure. Further, the work strain to be introduced is not only to effectively function as driving force to remove secondary recystallization growth or residual dislocation during the high temp. annealing but has a magnetic domain fining effect depending on a grooved shape remained later. Further, a continuous annealing line for the secondary recystallization is, because a passing speed is not so fast as a flattening annealing line, that the introduction processing speed of a fine strain can sufficiently follow up the passing speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性電磁鋼板
を製造する方法に関し、連続焼鈍により鋼板の結晶粒を
二次再結晶させて良好な磁気特性を安定して得ようとす
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, and aims at obtaining good magnetic properties stably by continuously recrystallizing crystal grains of the steel sheet by continuous annealing. .

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器その
他の電気機器の鉄心材料として使用され、磁束密度が高
く、鉄損が低い等の磁気的性質に優れることが要求され
る。このような方向性電磁鋼板の従来の製造方法では、
Siを含み、かつ、二次再結晶時にいわゆるゴス方位の結
晶粒を選択的に成長させるためのインヒビター成分を含
有する鋼素材に、熱間圧延及び冷間圧延を施して最終板
厚とした後、脱炭焼鈍、次いで二次再結晶と純化を兼ね
た高温焼鈍を施すのが一般的である。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic properties such as high magnetic flux density and low iron loss. In the conventional manufacturing method of such a grain-oriented electrical steel sheet,
After containing steel, and at the time of secondary recrystallization, a steel material containing an inhibitor component for selectively growing crystal grains having a so-called Goss orientation, subjected to hot rolling and cold rolling to a final thickness. In general, decarburizing annealing is performed, followed by high-temperature annealing for secondary recrystallization and purification.

【0003】この二次再結晶のための焼鈍は通常、良好
な磁気特性の製品を得るために箱焼鈍により行われてい
て、かかる箱焼鈍法によれば、例えば板厚0.23mmにおい
て800A/mで磁化したときの磁束密度B8で1.90 T以上、商
用周波数50Hz、磁束密度1.7T における鉄損W17/50で0.9
0W/kg以下のレベルに到達する優れた製品も実用化され
ている。
[0003] This annealing for secondary recrystallization is usually performed by box annealing to obtain a product having good magnetic properties. According to the box annealing method, for example, 800 A / m2 at a plate thickness of 0.23 mm. in magnetized magnetic flux density B 8 in 1.90 T or more when, commercial frequency 50 Hz, in the iron loss W 17/50 at magnetic flux density 1.7 T 0.9
Excellent products reaching the level of 0W / kg or less have also been put to practical use.

【0004】その一方で、箱焼鈍により二次再結晶させ
る一般的な方法では、コイル状にした鋼板を箱焼鈍炉内
で高温、長時間保持する必要があるため、投入エネルギ
ーが嵩み、製造コストを引き上げているばかりでなく、
電磁鋼板の生産性が悪いという不利があった。しかも、
この箱焼鈍によれば、特有の形状欠陥が鋼板に生じるこ
とが避け難く、平坦化焼鈍などの工程の増加を余儀なく
されていた。このため、方向性電磁鋼板の製造分野で
は、二次再結晶焼鈍を連続焼鈍により可能とすることが
長らく望まれていた。
On the other hand, in a general method of performing secondary recrystallization by box annealing, it is necessary to maintain a coiled steel sheet at a high temperature and for a long time in a box annealing furnace. Not only are they raising costs,
There was a disadvantage that the productivity of electrical steel sheets was poor. Moreover,
According to this box annealing, it is inevitable that a specific shape defect is generated in the steel sheet, and the number of steps such as flattening annealing must be increased. For this reason, in the field of production of grain-oriented electrical steel sheets, it has long been desired to enable secondary recrystallization annealing by continuous annealing.

【0005】かかる要望に応えるべく、特開昭49−9
816号公報、特開昭49−97821号公報では、95
0 〜1200℃で10分以内の範囲で連続的に二次再結晶をさ
せる方向性電磁鋼板の製造方法が提案されている。これ
らの製造方法によれば、B8の値で1.85 T以下程度の磁気
特性が得られるとされている。しかし、これらの公報に
開示された方法は、長時間の箱焼鈍とは異なり短時間の
焼鈍であるために、二次再結晶に必要な多量の析出物が
純化できず鋼中に残留してしまう。それ故、鉄損、特に
履歴損が増大することから、実際にはこれらの方法によ
る製品は市場には供給されていない。
To meet such a demand, Japanese Patent Laid-Open Publication No.
816 and JP-A-49-97821 disclose 95
There has been proposed a method for producing a grain-oriented electrical steel sheet in which secondary recrystallization is continuously performed at a temperature of 0 to 1200 ° C. within 10 minutes. According to these manufacturing methods, the magnetic properties of the extent 1.85 T or less by the value of B 8 is to be obtained. However, the methods disclosed in these publications are short-time annealing unlike long-time box annealing, so that a large amount of precipitates required for secondary recrystallization cannot be purified and remain in steel. I will. Therefore, products by these methods are not actually supplied to the market due to an increase in iron loss, particularly hysteresis loss.

【0006】ところで近年では、方向性電磁鋼板の更な
る低鉄損化のために、特公平3−69968号公報、特
開昭61−117218号公報等に開示されているよう
に、鋼板表面に線状及び/又は点状の溝よりなる刻み目
を導入し、製品の磁区幅を物理的手法で狭くすることに
よる磁区細分化技術の適用が実現してきている。しかし
ながら、これらの磁区細分化方法は、従来の製造工程に
加えて、溝形成のための高価な付加設備を必要とし、製
造コストの大幅な上昇を招くため、一部の高級品への適
用に止まっている。
In recent years, in order to further reduce the iron loss of grain-oriented electrical steel sheets, as disclosed in Japanese Patent Publication No. 3-69968 and Japanese Patent Laid-Open Publication No. The application of magnetic domain refining technology by introducing notches formed of linear and / or point-like grooves and reducing the magnetic domain width of a product by a physical method has been realized. However, these magnetic domain refining methods require expensive additional equipment for forming grooves in addition to the conventional manufacturing process, and significantly increase the manufacturing cost. At rest.

【0007】このため、特開昭60−96719号公報
には、上述のような磁区細分化処理を既存の連続ライン
へ組み入れ、製造コストの低下を図ることが提案され、
具体的には平坦化ラインを経た鋼板の冷却後、巻取直前
の位置に突起ロールを配することで該鋼板表面に連続的
に微小歪を導入し鉄損の改善を試みている。とはいえ、
平坦化処理時の鋼板の通板速度は比較的高速であるた
め、結局のところ微小歪の導入処理速度が通板速度に追
従できず、実際の操業には、導入されていないのが現状
である。
For this reason, Japanese Patent Application Laid-Open No. 60-96819 proposes that the above-described magnetic domain segmentation processing be incorporated into an existing continuous line to reduce the manufacturing cost.
Specifically, after cooling a steel sheet that has passed through a flattening line, a projecting roll is arranged at a position immediately before winding, thereby continuously introducing micro-strain on the surface of the steel sheet to improve iron loss. Although,
Since the passing speed of the steel sheet during the flattening process is relatively high, the introduction speed of the micro strain cannot follow the passing speed after all, and it is not introduced into the actual operation at present. is there.

【0008】更に、特公平4−37144号公報、特開
昭63−42331号公報、特開平3−138318号
公報には、500 〜1000℃といった熱間で鋼板に塑性歪を
付与する磁区細分化処理方法が提案されているが、いず
れの方法も塑性歪を付与するための鋼板としては、通常
の箱焼鈍により仕上焼鈍した鋼板を想定しており、後述
するような、この発明とは基本的に異なる技術思想のも
のである。
Further, Japanese Patent Publication No. Hei 4-37144, Japanese Patent Application Laid-Open No. 63-42331 and Japanese Patent Application Laid-Open No. Hei 3-138318 disclose magnetic domain refinement for applying plastic strain to a steel sheet at a temperature of 500 to 1000 ° C. Although treatment methods have been proposed, both methods assume that the steel sheet for imparting plastic strain is a steel sheet that has been finish-annealed by ordinary box annealing. Are of different technical ideas.

【0009】[0009]

【発明が解決しようとする課題】方向性電磁鋼板の製造
分野においては、多大なエネルギーと時間を必要とし、
また、鋼板の形状を矯正する必要のある箱焼鈍法による
二次再結晶に代わって、連続焼鈍法による二次再結晶す
ることが望まれていた。それを現実のものとするために
は、連続焼鈍法により良好な磁気特性を有する方向性電
磁鋼板を製造できることが必要となる。
In the field of production of grain-oriented electrical steel sheets, enormous energy and time are required,
Further, instead of the secondary recrystallization by the box annealing method, which needs to correct the shape of the steel sheet, it has been desired to perform the secondary recrystallization by the continuous annealing method. To make it a reality, it is necessary to be able to manufacture a grain-oriented electrical steel sheet having good magnetic properties by a continuous annealing method.

【0010】そこで、この発明は、連続焼鈍により二次
再結晶させる方法で方向性電磁鋼板を製造するに当た
り、従来よりも鉄損特性に優れ、かつ、安価で実際の操
業に適用可能な方法を提案するものである。
Accordingly, the present invention provides a method for producing grain-oriented electrical steel sheets by a method of performing secondary recrystallization by continuous annealing, which is more inexpensive than conventional methods, and which is inexpensive and applicable to actual operation. It is a suggestion.

【0011】[0011]

【課題を解決するための手段】発明者らは、連続焼鈍に
より方向性電磁鋼板の二次再結晶をさせた場合の鉄損特
性の改善方法について鋭意検討すべく、まず、連続焼鈍
で二次再結晶させた場合に、製品の磁気特性が劣化する
根本原因の究明を試みた。その結果、従来知られている
ような、二次再結晶焼鈍後の鋼中に析出物が残存して履
歴損が劣化することも原因の一つではあるが、それが主
原因ではなく、むしろ二次再結晶組織中にはコロニー状
の微細粒が、二次再結晶粒に完全に蚕食されきれずに残
存し、このコロニー状の微細粒が鉄損特性を極端に劣化
させていることを知見した。
SUMMARY OF THE INVENTION The inventors of the present invention have eagerly studied a method of improving iron loss characteristics when a secondary recrystallization of a grain-oriented electrical steel sheet is performed by continuous annealing. We tried to find the root cause of the deterioration of the magnetic properties of the product when recrystallized. As a result, as is conventionally known, it is one of the causes that the precipitates remain in the steel after the secondary recrystallization annealing and the hysteresis loss deteriorates, but that is not the main cause, but rather In the secondary recrystallized structure, colony-like fine particles remained without being completely eaten by the secondary recrystallized particles, and it was confirmed that these colony-like fine particles extremely deteriorated iron loss characteristics. I learned.

【0012】これまで、二次再結晶焼鈍後の鋼中に微細
粒が残存することは、渦電流損の改善に寄与するので好
適であるという考えもあったが、連続焼鈍による二次再
結晶組織に見られるような局所的に板厚全体にわたって
残存する微細粒の場合、その鉄損劣化に及ぼす影響は極
めて大きいことが、発明者らの研究により初めて明らか
となった。
It has been thought that the fine particles remaining in the steel after the secondary recrystallization annealing are preferable because they contribute to the improvement of the eddy current loss, but the secondary recrystallization by continuous annealing has been considered. For the first time, the inventors of the present invention have clarified that in the case of fine particles locally remaining over the entire plate thickness as seen in the structure, the effect on iron loss deterioration is extremely large.

【0013】そこで発明者らは、この点に着眼し、連続
焼鈍による二次再結晶焼鈍後の微細粒低減を目的に焼鈍
中の二次再結晶を促進するという観点から、二次再結晶
がほぼ進行した高温域において、連続焼鈍炉内に配置し
た突起ロール等の歪導入手段による局所歪の導入と、そ
れに引き続く加工歪除去を同一のラインで実施すること
によって、良好な二次再結晶粒方位を維持したまま二次
再結晶組織の完全性を確保することが可能であることを
見い出したものである。更に、導入した加工歪は、高温
焼鈍中に二次再結晶成長、あるいは残留転位除去の駆動
力として有効に作用するばかりでなく、後に残った溝形
状によってはその溝が磁区細分化効果を有することが明
らかとなった。しかも、二次再結晶のための連続焼鈍ラ
インは、平坦化焼鈍ラインほど通板速度が速くないた
め、微小歪の導入処理速度は通板速度に十分に追従可能
であることも判明した。
Accordingly, the present inventors have focused on this point, and from the viewpoint of promoting secondary recrystallization during annealing for the purpose of reducing fine grains after secondary recrystallization annealing by continuous annealing, secondary recrystallization has been considered. In the almost advanced high temperature region, the introduction of local strain by the strain introducing means such as a projection roll arranged in the continuous annealing furnace and the subsequent removal of the processing strain are carried out on the same line, so that good secondary recrystallized grains can be obtained. It has been found that it is possible to ensure the integrity of the secondary recrystallized structure while maintaining the orientation. Furthermore, the introduced processing strain not only effectively acts as a driving force for secondary recrystallization growth or residual dislocation removal during high-temperature annealing, but also has a magnetic domain refining effect depending on the remaining groove shape. It became clear. In addition, since the continuous annealing line for the secondary recrystallization has a lower passing speed than the flattening annealing line, it has been found that the processing speed for introducing the micro-strain can sufficiently follow the passing speed.

【0014】この発明は上記知見に立脚するものであ
る。すなわち、この発明は、方向性電磁鋼板用素材の二
次再結晶を連続焼鈍により行う方向性電磁鋼板の製造方
法であって、この連続焼鈍の後半段階の高温域で、該鋼
板に塑性歪を局所的に導入することを特徴とする磁気特
性に優れる方向性電磁鋼板の製造方法である。
The present invention is based on the above findings. That is, the present invention is a method for producing a grain-oriented electrical steel sheet in which secondary recrystallization of a material for a grain-oriented electrical steel sheet is performed by continuous annealing, and a plastic strain is applied to the steel sheet in a high-temperature region in the latter half of the continuous annealing. This is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties characterized by being locally introduced.

【0015】この発明の、より好適な実施態様は、鋼板
に塑性歪を局所的に導入して、鋼板表面に線状及び又は
線状の溝を形成させることである。この発明における、
連続焼鈍の後半段階の高温域とは、連続焼鈍中、二次再
結晶粒の選択が終了し、かつ鋼板温度が加工歪回復温度
以上になった時点以降で、冷却過程以前の温度域をい
う。
A more preferred embodiment of the present invention is to locally introduce plastic strain into a steel sheet to form linear and / or linear grooves on the surface of the steel sheet. In the present invention,
The high temperature range in the second half of continuous annealing refers to the temperature range before the cooling process, after the selection of secondary recrystallized grains is completed during continuous annealing, and after the steel sheet temperature becomes equal to or higher than the work strain recovery temperature. .

【0016】[0016]

【発明の実施の形態】以下、この発明の特徴である高温
域での局所歪の導入による鉄損改善策について、実験デ
ータを交えながらより具体的に説明する。 (実験1)C:0.06wt%、Si:3.35wt%、Mn:0.070 wt
%、Se:0.016 wt%、Sb:0.025wt%、Al:0.023 wt
%、N:0.0072wt%を含有する鋼スラブを、1400℃で再
加熱後、熱間圧延して板厚2.0 mmに仕上げ、次いで1150
℃で熱延板焼鈍し、引き続き急冷、酸洗した後、250 〜
300 ℃の温間圧延を含む1 回の冷間圧延により板厚0.35
mmに仕上げた。その後、鋼板に850 ℃で5 分間湿水素中
で脱炭焼鈍してから、1100℃で5 分の連続二次再結晶焼
鈍を施した。このとき、連続焼鈍炉の炉内各所に突起ロ
ールを配し、鋼板表面に深さ15μm の点状溝をランダム
に施し、歪導入処理温度と鉄損低減効果を調査した。図
1に連続焼鈍炉内における加工歪の導入温度と鋼板の磁
気特性との関係を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a measure for improving iron loss by introducing local strain in a high temperature range, which is a feature of the present invention, will be described more specifically with experimental data. (Experiment 1) C: 0.06 wt%, Si: 3.35 wt%, Mn: 0.070 wt%
%, Se: 0.016 wt%, Sb: 0.025 wt%, Al: 0.023 wt%
%, N: 0.0072 wt%, after reheating at 1400 ° C., hot rolling to a thickness of 2.0 mm, and then 1150
After hot-rolled sheet annealing at ℃, followed by rapid cooling and pickling,
0.35 sheet thickness by one cold rolling including 300 ° C warm rolling
mm. Then, the steel sheet was decarburized and annealed in wet hydrogen at 850 ° C for 5 minutes, and then subjected to continuous secondary recrystallization annealing at 1100 ° C for 5 minutes. At this time, protruding rolls were arranged at various points in the furnace of the continuous annealing furnace, and dot-like grooves having a depth of 15 μm were randomly formed on the surface of the steel sheet, and the strain introduction temperature and the iron loss reduction effect were investigated. FIG. 1 shows the relationship between the temperature at which processing strain is introduced in the continuous annealing furnace and the magnetic properties of the steel sheet.

【0017】図1より、二次再結晶開始前である均熱前
に歪導入を行った場合は、二次再結晶が起こらず、微細
粒を含む方位の悪い正常粒成長組織に終わった。また、
二次再結晶開始直後の均熱入側に歪導入を行った場合で
は、二次再結晶は進行したものの、方位の悪い二次再結
晶組織となり磁気特性は不十分であった。更に、冷却途
中で歪導入を行った場合は、加工歪が十分回復せず、鉄
損の改善は得られなかった。これに対して、均熱の中盤
あるいは終盤に歪導入を行った場合は良好な磁気特性の
製品が得られた。すなわち、連続焼鈍の高温域での歪導
入処理による二次再結晶促進技術は、優先成長する二次
再結晶粒が選択された後に歪を導入することにより、効
果的な成長促進が発現されることが明らかになった。こ
のため二次再結晶粒が十分選択されたと判断されるB8
1.80 Tとなる温度域で歪導入を施すことが有効である。
As shown in FIG. 1, when strain was introduced before soaking, which was before the start of secondary recrystallization, secondary recrystallization did not occur, resulting in a normal grain growth structure having fine grains and poor orientation. Also,
When strain was introduced on the soaking side immediately after the start of the secondary recrystallization, the secondary recrystallization proceeded, but the secondary recrystallized structure had a poor orientation and magnetic properties were insufficient. Furthermore, when strain was introduced during cooling, the work strain was not sufficiently recovered, and no improvement in iron loss was obtained. On the other hand, when strain was introduced in the middle or late stage of soaking, a product with good magnetic properties was obtained. In other words, the secondary recrystallization promotion technique by the strain introduction treatment in the high temperature region of the continuous annealing is effective in promoting the growth by introducing the strain after the secondary recrystallized grains to be preferentially grown are selected. It became clear. B 8 ≧ this for secondary recrystallized grains is determined to be sufficiently selected
It is effective to introduce strain in the temperature range of 1.80 T.

【0018】(実験2)実験1と同一素材、工程を用い
て、板厚0.27mmの脱炭焼鈍板を得た。その後、1050℃で
10分の連続二次再結晶焼鈍を施すにあたり、均熱帯後段
に配した突起ロール形状を変えて歪を導入し、鋼板表面
に形成させる溝の間隔と深さを種々に変化させた。この
ような溝の形成による磁区細分化の条件と磁区細分化に
よる鉄損低減効果との関係を調査し、その結果を図2に
示す。
(Experiment 2) A decarburized annealed sheet having a thickness of 0.27 mm was obtained using the same material and process as in Experiment 1. Then at 1050 ° C
In performing the continuous secondary recrystallization annealing for 10 minutes, distortion was introduced by changing the shape of the protruding roll arranged in the latter part of the soaking zone, and the spacing and depth of the grooves formed on the steel sheet surface were variously changed. The relationship between the condition of magnetic domain refinement by the formation of such grooves and the iron loss reduction effect by magnetic domain refinement was investigated, and the results are shown in FIG.

【0019】図2より、磁区細分化条件として溝深さは
板厚の25%以内、溝間隔は10mm以内が好ましいことが明
らかとなった。また、板の通板性についてはロール胴の
軸線方向中央から左右対称のロールパターンが極めて良
好であった。また、磁区細分化を兼ねる線状溝の形状
は、点状、破線状、点線状、波状であっても圧延方向に
ほぼ直角に並んでいれば同等の効果を示すことが確認さ
れている。
From FIG. 2, it is clear that as the magnetic domain refining conditions, the groove depth is preferably within 25% of the plate thickness, and the groove interval is preferably within 10 mm. Regarding the sheet passing property, a roll pattern symmetrical in the left-right direction from the center in the axial direction of the roll drum was very good. In addition, it has been confirmed that even if the shape of the linear groove also serving as the magnetic domain subdivision is a point, a broken line, a dotted line, or a wavy shape, the same effect can be obtained as long as the grooves are substantially perpendicular to the rolling direction.

【0020】次に、この発明において使用される素材鋼
スラブの好適な成分範囲を説明する。 (Si:2.5 〜5.0 wt%)Siは、鋼板の比抵抗を高め、鉄
損の低減に有効に寄与するが、5.0 wt%を超えると冷延
性が損なわれ、一方、2.5 wt%に満たないと比抵抗が低
下するばかりか、最終仕上焼鈍中にα−γ変態により結
晶方位がランダム化し、磁気特性を損なうのでSiは2.5
〜5.0 wt%程度が好ましい。
Next, a preferred component range of the raw steel slab used in the present invention will be described. (Si: 2.5 to 5.0 wt%) Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, if it exceeds 5.0 wt%, the cold-rolling property is impaired, and on the other hand, less than 2.5 wt%. Not only the specific resistance decreases, but also the crystal orientation is randomized by α-γ transformation during the final finish annealing, which impairs the magnetic properties.
About 5.0 wt% is preferable.

【0021】(Mn:0.02〜0.20wt%)Mnは、熱間脆化を
防止するためには少なくとも0.02wt%程度を必要とする
が、インヒビターとしてSe、Sを使用するときは、Mn量
があまりに多すぎるとMnSe、MnS の微細分散を阻害し、
磁気特性を劣化させるので上限は0.20wt%程度が望まし
い。
(Mn: 0.02 to 0.20 wt%) Mn requires at least about 0.02 wt% in order to prevent hot embrittlement, but when Se or S is used as an inhibitor, the amount of Mn is reduced. If it is too much, it inhibits the fine dispersion of MnSe and MnS,
The upper limit is desirably about 0.20% by weight because the magnetic properties deteriorate.

【0022】(Se、Sのうちから選ばれる少なくとも1
種:0.01〜0.04wt%)Se、Sはいずれも方向性電磁鋼板
の二次再結晶を制御するインヒビターとして有力な成分
であり、そのためには少なくとも0.01wt%は必要である
が、0.04wt%を超えると微細析出を制御するのが困難な
ため、0.01〜0.04wt%程度が好ましい。
(At least one selected from Se and S)
Species: 0.01-0.04 wt%) Both Se and S are effective components as inhibitors for controlling the secondary recrystallization of grain-oriented electrical steel sheets. For that purpose, at least 0.01 wt% is necessary, but 0.04 wt%. If it exceeds 300, it is difficult to control fine precipitation, so that about 0.01 to 0.04 wt% is preferable.

【0023】インヒビターには、AlN を用いることがで
き、単独使用あるいはMnSe,MnS系インヒビターとの併用
が可能である。良好な磁気特性の製品を得るためには、
AlN系インヒビターをMnSe,MnS系インヒビターと併用す
ることが好ましい。 (sol.Al:0.01〜0.04wt%、N:0.0050〜0.0120wt%)
インヒビターとしてAl、Nを使用するときは、前述した
Mn、Se、Sと同様に、良好な二次再結晶組織を得るため
には、sol.Al:0.01〜0.04wt%、N:0.0050〜0.0120wt
%の範囲とするのが好ましい。
As the inhibitor, AlN can be used, and it can be used alone or in combination with an MnSe or MnS-based inhibitor. In order to obtain a product with good magnetic properties,
It is preferable to use an AlN-based inhibitor in combination with a MnSe or MnS-based inhibitor. (Sol.Al: 0.01 to 0.04 wt%, N: 0.0050 to 0.0120 wt%)
When using Al and N as inhibitors,
Like Mn, Se and S, in order to obtain a good secondary recrystallized structure, sol.Al: 0.01 to 0.04 wt%, N: 0.0050 to 0.0120 wt%
% Is preferable.

【0024】インヒビター成分としては、上記のMn、S
e、S、Al、Nの他に、Cu、Sn、Sb、Bi、Pb、Te、Nb、
B等も有利に作用するので、これらを併せて含有させる
ことができる。これらの成分の好適範囲は、Cu、Snが0.
05〜0.25wt%、Sb、Bi、Pb、Teが0.01〜0.06wt%、Nb、
Bが0.001 〜0.01wt%であり、1種もしくは2種以上の
複合添加が可能である。
As the inhibitor component, the above-mentioned Mn, S
e, S, Al, N, Cu, Sn, Sb, Bi, Pb, Te, Nb,
B and the like also act advantageously, so that they can be contained together. The preferred ranges of these components are Cu and Sn of 0.
05-0.25wt%, Sb, Bi, Pb, Te 0.01-0.06wt%, Nb,
B is 0.001 to 0.01% by weight, and one or more kinds of composite addition are possible.

【0025】次に、上記のような組成を有する素材に施
す各工程条件について説明する。上記の各成分を有する
スラブは、従来公知の熱間圧延方法により板厚1.5 〜3.
5 mm程度の熱延板とし、必要に応じて900 〜1200℃の熱
延板焼鈍を施す。この熱延工程では、インヒビターとな
るMnSe、MnS 、AlN の微細析出を得るための適正条件を
選択する必要がある。
Next, each process condition applied to the material having the above composition will be described. The slab having each of the above components has a thickness of 1.5 to 3.
Hot rolled sheet of about 5 mm, and if necessary, 900-1200 ° C hot rolled sheet annealing is performed. In this hot rolling step, it is necessary to select appropriate conditions for obtaining fine precipitation of MnSe, MnS, and AlN, which serve as inhibitors.

【0026】その後、1回あるいは中間焼鈍を含む2回
以上の冷間圧延を施し0.15〜0.50mmの最終板厚とする。
この中間焼鈍は900 〜1200℃で行い、組織の均一化を図
るが、このとき軽脱炭や急冷などを組み合わせて一次再
結晶集合組織の制御を行うことが可能であり、製品の磁
気特性を更に向上させることができる。最終冷延圧下率
は良好な磁気特性を得るために、いずれの板厚の場合で
も50〜90%必要である。この最終冷間圧延の際、集合組
織制御のため公知の方法に従い、150 〜400 ℃での温間
圧延を施したり、時効処理等を適宜組み合わせて行うこ
とも好適である。
Thereafter, cold rolling is performed once or twice or more including intermediate annealing to obtain a final thickness of 0.15 to 0.50 mm.
This intermediate annealing is performed at 900 to 1200 ° C to make the structure uniform.At this time, it is possible to control the primary recrystallization texture by combining light decarburization and quenching, etc. It can be further improved. The final cold rolling reduction is required to be 50 to 90% at any thickness in order to obtain good magnetic properties. At the time of the final cold rolling, it is also preferable to perform warm rolling at 150 to 400 ° C. in accordance with a known method for texture control, or to perform aging treatment or the like in an appropriate combination.

【0027】次に、必要に応じて一次再結晶焼鈍を兼ね
た脱炭焼鈍を、雰囲気中の酸素ポテンシャルが PH2O /P
H2で0.3 〜0.6 、焼鈍温度800 〜900 ℃で施した後、連
続二次再結晶焼鈍に供する。また、一時再結晶焼鈍後に
同一ライン内で脱炭を兼ねた連続二次再結晶焼鈍に供す
ることも可能である。
Next, if necessary, decarburization annealing also serving as primary recrystallization annealing is performed by reducing the oxygen potential in the atmosphere to P H2O / P
After applying H2 at 0.3 to 0.6 at an annealing temperature of 800 to 900 ° C, it is subjected to continuous secondary recrystallization annealing. Further, after the temporary recrystallization annealing, it is also possible to perform continuous secondary recrystallization annealing also serving as decarburization in the same line.

【0028】かかる連続二次再結晶焼鈍は、設備上10分
間程度以内の均熱時間とする。かかる均熱時間条件のた
め、1000℃以上で二次再結晶させる方が効率的である
が、1200℃を超えると極端な設備コストの上昇を招く。
なお、このような二次再結晶する温度については、温度
勾配を付与した焼鈍炉で試験片を3 分間均熱処理したと
きに二次再結晶粒の発現する最低温度を二次再結晶温度
とした。この温度を目安に均熱温度を変更した場合、二
次再結晶温度よりも低いと二次再結晶は得られず、高く
なるほど磁束密度は低下する傾向にあり、それは3 〜10
分間の均熱時間内で大きな変化はなかった。ただし、時
間が増すほど鉄損は改善傾向にあった。
The continuous secondary recrystallization annealing has a soaking time of about 10 minutes or less on the equipment. Due to the soaking time conditions, it is more efficient to perform secondary recrystallization at 1000 ° C. or higher, but if it exceeds 1200 ° C., an extreme increase in equipment cost is caused.
The temperature at which such secondary recrystallization occurs is defined as the minimum temperature at which secondary recrystallized grains appear when the specimen is soaked for 3 minutes in an annealing furnace with a temperature gradient. . When the soaking temperature is changed using this temperature as a guide, secondary recrystallization cannot be obtained if the temperature is lower than the secondary recrystallization temperature, and the higher the temperature is, the lower the magnetic flux density tends to be.
There was no significant change within the soak time of one minute. However, the iron loss tended to improve as the time increased.

【0029】かかる連続二次再結晶焼鈍中、二次再結晶
粒の選択が終了した時点で(例えば鋼板の磁束密度B8
1.80 T以上となった時点で)、かつ、鋼板温度が加工歪
回復温度以上になった時点で、該鋼板に塑性歪を局所的
に施すことが、この発明の最も肝要たる技術である。こ
こで、B8の値は二次再結晶の進行程度を示す指標とな
り、1.80 T以上の場合、ほとんど二次再結晶過程が進行
しており、この状態の材料に塑性歪を局所的に施しても
二次再結晶の進行に悪影響を及ぼさず、良好な磁気特性
を与えることができる。一方、磁束密度B8が1.80 T未満
の材料にかかる処理を施すことは、二次再結晶粒の成長
が塑性歪による溝部で停止し、あるいは加工部から方位
の劣った粒が異常成長して磁束密度と鉄損の低下をもた
らすこともあるので好ましくない。したがって、鋼板の
磁束密度B8が1.80 T以上となった後に、塑性歪を局所的
に施すことが好適である。
During the continuous secondary recrystallization annealing, when the selection of the secondary recrystallized grains is completed (for example, the magnetic flux density B 8 of the steel sheet is reduced).
It is the most important technique of the present invention to locally apply plastic strain to the steel sheet when the steel sheet temperature becomes equal to or higher than the work strain recovery temperature (at the time when the temperature exceeds 1.80 T). Here, the value of B 8 is an index indicating the degree of progress of the secondary recrystallization, 1.80 not less than T, and proceeds almost secondary recrystallization process, locally subjected to plastic strain in the material in this state However, it does not adversely affect the progress of the secondary recrystallization and can provide good magnetic properties. Meanwhile, the magnetic flux density B 8 is subjected to such processing the material of less than 1.80 T, the secondary recrystallized grains grow stops at the groove due to plastic distortion, or poor from the processing unit of orientation grains abnormally grow It is not preferable because the magnetic flux density and iron loss may be reduced. Therefore, after the magnetic flux density B 8 of the steel sheet is not less than 1.80 T, it is preferable to apply the plastic strain locally.

【0030】塑性歪を局所的に施す具体的な手段につい
ては、炉内で一対の突起ロール、あるいは突起ロールと
平ロールとを組み合わせたロール対の間に通板する方法
や、ブライドルロールやデフレクタロールに突起ロール
を用い、これらのロールに鋼板を巻きかけて通板する方
法や、通板中の鋼板にレーザー等のエネルギービームを
照射する方法など、鋼板表面に塑性歪を局所的に形成す
ることができる手段であれば、特に限定されない。突起
ロールを用いる場合には、通板性を考慮してロール軸線
方向中央部から左右対称の突起パターンとすることが望
ましい。また、突起ロール材質についても、特に限定し
ないが、高温処理に適する耐熱材料製のロールを用いる
ことは特に好適である。
Specific means for locally applying the plastic strain include a method of passing a plate between a pair of protrusion rolls or a roll pair combining a protrusion roll and a flat roll in a furnace, a bridle roll, a deflector, and the like. Forming plastic strain locally on the steel sheet surface, such as using a projecting roll as the roll, winding a steel sheet around these rolls, and irradiating the steel sheet being passed with an energy beam such as a laser. There is no particular limitation as long as it is a means that can perform this. In the case of using a projection roll, it is preferable that the projection pattern be symmetrical from the center in the roll axis direction in consideration of the sheet passing property. Also, the material of the projection roll is not particularly limited, but it is particularly preferable to use a roll made of a heat-resistant material suitable for high-temperature treatment.

【0031】塑性歪の形状は、点状、線状、破線状、波
状など、特に限定されない。後述する磁区細分化効果も
併せて得ようとする場合には、被処理材の通板方向とほ
ぼ直交する方向に、通板方向に一定の間隔をもって塑性
歪を導入することが望ましい。また、導入する塑性歪量
は、新たな再結晶粒を発生させることが、磁気特性の低
下につながるため、焼鈍均熱温度域で回復することで粒
成長を促進する程度という観点から、板厚の5%以上で
30%以内の圧下量であることが好適である。
The shape of the plastic strain is not particularly limited, such as a point, a line, a broken line, and a wave. When the magnetic domain refining effect to be described later is also to be obtained, it is desirable to introduce plastic strain in a direction substantially perpendicular to the sheet passing direction of the material to be processed and at regular intervals in the sheet passing direction. In addition, the amount of plastic strain to be introduced depends on the thickness of the sheet from the viewpoint of promoting the grain growth by recovering in the annealing and soaking temperature range, because the generation of new recrystallized grains leads to the deterioration of magnetic properties. It is preferable that the reduction amount is 5% or more and 30% or less.

【0032】かかる塑性歪を局所的に導入することによ
り、鋼板表面に線状及び又は線状の溝を形成させて、こ
れにより磁区細分化を図ることもできる。溝の形成によ
る磁区細分化は、製品の磁気特性を改善することができ
るので、より好ましいといえる。かかる溝の深さは、板
厚に依存し、全板厚の5%〜20%が、幅、通板方向の間
隔は、それぞれ、0.1 〜1mm、2〜8mmの範囲が好適で
ある。連続焼鈍による二次再結晶処理後は、常法に従
い、絶縁コートを施して製品とする。
By introducing such plastic strain locally, linear and / or linear grooves can be formed on the surface of the steel sheet, thereby making it possible to achieve magnetic domain refinement. It can be said that magnetic domain segmentation by forming grooves can be more preferable because the magnetic properties of the product can be improved. The depth of such a groove depends on the thickness of the plate, and is preferably 5% to 20% of the total thickness, and the width and the interval in the passing direction are preferably 0.1 to 1 mm and 2 to 8 mm, respectively. After the secondary recrystallization treatment by continuous annealing, an insulation coat is applied according to a conventional method to obtain a product.

【0033】[0033]

【実施例】(実施例1)C:0.075 wt%、Si:3.33wt
%、Mn:0.070 wt%、Se:0.015 wt%、sol.Al:0.022
wt%、N:0.0075wt%及びNi:0.2 wt%を含む鋼を溶製
してスラブとなし、1420℃で30分均熱後、熱間圧延を施
して板厚2.5 mmの熱延板に仕上げた。次いでこの熱延板
に1000℃で熱延板焼鈍、酸洗を施してから、1 回目の冷
間圧延を施した後、1050℃で中間焼鈍し、引き続き冷却
速度40℃/sで急冷した後、200 ℃の温間圧延を含む2 回
目の圧延により圧下率80%で0.35mmに仕上げた。その
後、雰囲気中の酸素ポテンシャルを PH2O /PH2で0.48、
850 ℃で3 分間の脱炭焼鈍を行った。その後1100℃で5
分間の連続二次再結晶焼鈍を施すに当たり、均熱帯後段
に突起間隔3 mmのタングステンカーバイド製の突起ロー
ルを鋼板の上面に配して歪導入処理を兼ねた磁区細分化
処理を施した。更に、リン酸アルミニウムに樹脂を分散
させた歪取り焼鈍に耐える半有機系絶縁コートを施し製
品とした。得られた製品の磁気特性を表1に示す。
EXAMPLES (Example 1) C: 0.075 wt%, Si: 3.33 wt
%, Mn: 0.070 wt%, Se: 0.015 wt%, sol.Al: 0.022
A steel containing wt%, N: 0.0075 wt% and Ni: 0.2 wt% is melted and made into a slab, and is soaked at 1420 ° C for 30 minutes, and then hot-rolled to form a hot-rolled sheet having a thickness of 2.5 mm. Finished. Then, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C, pickling, and then subjected to the first cold rolling, intermediate annealing at 1050 ° C, and then quenched at a cooling rate of 40 ° C / s. The second rolling including warm rolling at 200 ° C. finished to 0.35 mm with a reduction of 80%. Thereafter, 0.48 the oxygen potential in the atmosphere at a P H2O / P H2,
Decarburization annealing was performed at 850 ° C for 3 minutes. Then at 1100 ° C 5
In performing the secondary recrystallization annealing for 2 minutes, a projection roll made of tungsten carbide having a projection interval of 3 mm was arranged on the upper surface of the steel sheet at the latter stage of the soaking zone, and subjected to a magnetic domain refining treatment also serving as a strain introduction treatment. Furthermore, a semi-organic insulating coating which is resistant to strain relief annealing in which a resin is dispersed in aluminum phosphate is applied to obtain a product. Table 1 shows the magnetic properties of the obtained products.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例2)C:0.053 wt%、Si:3.37wt
%、Mn:0.069 wt%、Se:0.015 wt%、sol.Al:0.024
wt%、N:0.0068wt%、Sb:0.038 wt%及びCu:0.07wt
%を含む鋼を溶製してスラブとなし、1420℃で30分均熱
後、熱間圧延により板厚2.8 mmの熱延板に仕上げた。次
いで、この熱延板に1150℃で熱延板焼鈍、引き続く30℃
/sの急冷後、酸洗を施してから、冷間圧延により圧下率
82%で0.50mmに仕上げた。その後、雰囲気中の酸素ポテ
ンシャルを PH2O /PH2で0.50、850 ℃で5 分間の脱炭焼
鈍後、引き続き連続的に1100℃まで昇温し、8 分間の二
次再結晶焼鈍を施すに当たり、均熱帯後段に突起間隔5
mmのタングステンカーバイド製の突起ロールを鋼板の
上、下面に配して歪導入処理を兼ねた磁区細分化処理を
施した。このとき、上ロールは圧延方向からの突起角度
75度、下ロールは蛇行防止のため左右対称パターンのロ
ールを用いた。歪導入処理により鋼板表面に形成された
溝の形状は線状、深さは65mm、幅は0.8 mmであった。二
次再結晶焼鈍後、アクリル・スチレン系樹脂を主成分と
する有機系絶縁コートを施し製品とした。一方、比較の
ために、歪導入処理を兼ねた磁区細分化処理を施さない
以外は同一の条件の製品も作製した。これらの製品の磁
気特性を以下に示す。 処理なし:B8=1.90 T 、W17/50=2.25 W/kg 、…比較例 磁区細分化処理あり:B8=1.88 T 、W17/50=1.65 W/kg 、…発明例
Example 2 C: 0.053 wt%, Si: 3.37 wt
%, Mn: 0.069 wt%, Se: 0.015 wt%, sol.Al: 0.024
wt%, N: 0.0068 wt%, Sb: 0.038 wt% and Cu: 0.07 wt%
% Was melted to form a slab, and was soaked at 1420 ° C. for 30 minutes, followed by hot rolling to finish a hot-rolled sheet having a sheet thickness of 2.8 mm. Next, the hot-rolled sheet was annealed at 1150 ° C, followed by 30 ° C
After rapid cooling at / s, pickling is performed, and then the rolling reduction is performed by cold rolling.
Finished to 0.50mm at 82%. Then, the oxygen potential in the atmosphere was decarbonized at 0.50 with P H2O / P H2 at 850 ° C for 5 minutes, then continuously raised to 1100 ° C and subjected to secondary recrystallization annealing for 8 minutes. Protrusion interval 5 after soaking tropics
A tungsten roll made of tungsten carbide having a thickness of mm was disposed on the upper and lower surfaces of a steel plate, and subjected to a magnetic domain refining process also serving as a strain introducing process. At this time, the upper roll is the projection angle from the rolling direction.
As the lower roll, a roll having a symmetrical pattern was used as the lower roll to prevent meandering. The shape of the groove formed on the steel sheet surface by the strain introduction treatment was linear, the depth was 65 mm, and the width was 0.8 mm. After the secondary recrystallization annealing, an organic insulating coat mainly composed of an acrylic / styrene resin was applied to obtain a product. On the other hand, for comparison, a product was manufactured under the same conditions except that the magnetic domain subdivision processing also serving as the strain introduction processing was not performed. The magnetic properties of these products are shown below. No treatment: B 8 = 1.90 T, W 17/50 = 2.25 W / kg, ... Comparative example With magnetic domain refinement treatment: B 8 = 1.88 T, W 17/50 = 1.65 W / kg, ... Invention example

【0036】(実施例3)C:0.065 wt%、Si:3.30wt
%、Mn:0.070 wt%、sol.Al:0.022 wt%、N:0.0075
wt%、Cu:0.1 wt%及びSn:0.2 wt%を含む鋼を溶製し
てスラブとなし、1200℃で30分均熱後、熱間圧延により
板厚2.6 mmの熱延板に仕上げた。この熱延板に酸洗を施
し、1 回目の冷間圧延をした後1050℃で中間焼鈍し、引
き続き40℃/sの急冷をした後、酸洗を施し、200 ℃の温
間圧延を含む2 回目の圧延により圧下率85%で0.27mmに
仕上げた。その後、雰囲気中の酸素ポテンシャルを P
H2O /P H2で0.48、850 ℃で5 分間の脱炭焼鈍後、引き続
き連続的に1100℃まで2 分で昇温し、5 分間の二次再結
晶焼鈍を施すに当たり、二次再結晶焼鈍均熱帯後段に突
起間隔4 mmで圧延方向に対して80度の突起角度をロール
中央から左右対称に加工したタングステンカーバイド製
の突起ロールを鋼板の下面に配して歪導入処理を兼ねた
磁区細分化処理を施した。歪導入処理により鋼板表面に
形成された溝の形状は点線状、深さは20μm 、幅は0.3
mmであった。また、脱炭焼鈍から2 次再結晶焼鈍の昇温
過程でN:0.0180wt%まで窒化処理をした。二次再結晶
焼鈍後、50%のコロイダルシリカとリン酸マグネシウム
からなる張力コートを施し製品とした。一方、比較のた
めに、歪導入処理を兼ねた磁区細分化処理を施さない以
外は同一の条件の製品も作製した。これらの製品の磁気
特性を以下に示す。 処理なし:B8=1.90 T、W17/50=1.35 W/kg 、…比較例 磁区細分化処理あり:B8=1.90 T、W17/50=0.98 W/kg 、…発明例
(Example 3) C: 0.065 wt%, Si: 3.30 wt%
%, Mn: 0.070 wt%, sol.Al: 0.022 wt%, N: 0.0075
steel containing 0.1 wt%, 0.1 wt% of Cu and 0.2 wt% of Sn
Slab, soak at 1200 ° C for 30 minutes, then hot rolling
The sheet was finished into a hot-rolled sheet having a thickness of 2.6 mm. This hot rolled sheet is pickled.
After the first cold rolling, intermediate annealing at 1050 ° C
After quenching continuously at 40 ° C / s, pickling is performed and the temperature is reduced to 200 ° C.
Second rolling including cold rolling to 0.27mm with 85% reduction
Finished. Then, the oxygen potential in the atmosphere is changed to P
H2O/ P H2After decarburizing annealing at 0.48 at 850 ° C for 5 minutes, continue
The temperature is continuously raised to 1100 ° C in 2 minutes, and secondary resolidification for 5 minutes
During the recrystallization annealing, the second recrystallization annealing
Rolls a projection angle of 80 degrees with respect to the rolling direction at an interval of 4 mm
Made of tungsten carbide processed symmetrically from the center
The protrusion rolls of are arranged on the lower surface of the steel plate and also serve as a strain introduction process.
A magnetic domain refinement treatment was performed. On the steel sheet surface by strain introduction processing
The shape of the formed groove is a dotted line, the depth is 20 μm, and the width is 0.3
mm. In addition, heating from decarburization annealing to secondary recrystallization annealing
In the process, nitriding was performed to N: 0.0180 wt%. Secondary recrystallization
After annealing, 50% colloidal silica and magnesium phosphate
A tension coat consisting of On the other hand,
For this reason, do not perform the magnetic domain subdivision processing that also serves as the strain introduction processing.
Other products under the same conditions were also manufactured. Magnetic of these products
The characteristics are shown below. No processing: B8= 1.90 T, W17/50= 1.35 W / kg …… Comparative example With magnetic domain refinement treatment: B8= 1.90 T, W17/50= 0.98 W / kg …… Example

【0037】(実施例4)C:0.003 wt%、Si:2.85wt
%、Mn:1.5 wt%、sol.Al:0.010 wt%及びN:0.0045
wt%を含む鋼を溶製してスラブとなし、1250℃で30分均
熱後、熱間圧延により板厚2.0 mmの熱延板に仕上げた。
次いでこの熱延板に900 ℃の熱延板焼鈍、酸洗を施し、
冷間圧延により圧下率85%で0.30mmに仕上げた。その
後、880 ℃で1 分間の一次再結晶焼鈍後、1050℃で5 分
間の連続二次再結晶焼鈍を施した。このとき突起間隔3.
5 mmで圧延方向に対し80度の突起角度に加工したタング
ステンカーバイド製の突起ロールを鋼板の上面に配して
歪導入処理を兼ねた磁区細分化処理を施した。歪導入処
理により鋼板表面に形成された溝の形状は線状、深さは
30μm 、幅は0.5 mmであった。二次再結晶焼鈍後、50%
のコロイダルシリカとリン酸マグネシウムからなる張力
コートを施し製品とした。一方、比較のために、歪導入
処理を兼ねた磁区細分化処理を施さない以外は同一の条
件の製品も作製した。これらの製品の磁気特性を以下に
示す。 処理なし:B8=1.86 T、W17/50=1.45 W/kg 、…比較例 磁区細分化処理あり:B8=1.84 T、W17/50=1.10 W/kg 、…発明例
(Example 4) C: 0.003 wt%, Si: 2.85 wt%
%, Mn: 1.5 wt%, sol.Al: 0.010 wt%, and N: 0.0045
A steel containing wt% was melted and formed into a slab. After soaking at 1250 ° C. for 30 minutes, a hot-rolled sheet having a thickness of 2.0 mm was finished by hot rolling.
Next, the hot-rolled sheet is annealed at 900 ° C and pickled.
Finished to 0.30 mm at a rolling reduction of 85% by cold rolling. Then, after primary recrystallization annealing at 880 ° C. for 1 minute, continuous secondary recrystallization annealing was performed at 1050 ° C. for 5 minutes. At this time, the protrusion spacing 3.
A tungsten carbide projection roll processed to a projection angle of 80 degrees with respect to the rolling direction at 5 mm was arranged on the upper surface of the steel sheet and subjected to a magnetic domain refining treatment also serving as a strain introduction treatment. The shape of the groove formed on the steel sheet surface by the strain introduction process is linear, and the depth is
30 μm, width 0.5 mm. 50% after secondary recrystallization annealing
Was subjected to a tension coating consisting of colloidal silica and magnesium phosphate to obtain a product. On the other hand, for comparison, a product was manufactured under the same conditions except that the magnetic domain subdivision processing also serving as the strain introduction processing was not performed. The magnetic properties of these products are shown below. No treatment: B 8 = 1.86 T, W 17/50 = 1.45 W / kg,… Comparative example With magnetic domain refinement treatment: B 8 = 1.84 T, W 17/50 = 1.10 W / kg,… Invention example

【0038】[0038]

【発明の効果】この発明によれば、磁区細分化処理を連
続処理ラインに組み込み、かつ、加工歪を残さない温度
域で処理するため、極めて低コストで低鉄損化が実現で
きる。したがって、これまで商品化不可能であった二次
再結晶後の純化処理を省略した電磁鋼板の鉄損を効果的
に改善することができる。すなわち、この発明の方法は
連続焼鈍による二次再結晶処理材の鉄損改善に好適に作
用する。この効果は、必要に応じて施される製造工程の
改善、あるいは上塗りコートの有無によらず発揮され
る。
According to the present invention, since the magnetic domain refinement process is incorporated into a continuous processing line and is processed in a temperature range where no processing strain remains, extremely low cost and low iron loss can be realized. Therefore, it is possible to effectively improve the iron loss of the electrical steel sheet in which the purification treatment after the secondary recrystallization, which has been impossible to commercialize, has been omitted. That is, the method of the present invention suitably works for improving iron loss of the secondary recrystallization material by continuous annealing. This effect is exhibited irrespective of the improvement of the manufacturing process applied as needed, or the presence or absence of a top coat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続焼鈍炉内における加工歪の導入温度と鋼板
の磁気特性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the temperature at which processing strain is introduced in a continuous annealing furnace and the magnetic properties of a steel sheet.

【図2】溝の形成による磁区細分化の条件と磁区細分化
による鉄損低減効果との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a condition of magnetic domain refinement by forming a groove and an iron loss reducing effect by magnetic domain refinement.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板用素材の二次再結晶を連
続焼鈍により行う方向性電磁鋼板の製造方法であって、 この連続焼鈍の後半段階の高温域で、該鋼板に塑性歪を
局所的に導入することを特徴とする磁気特性に優れる方
向性電磁鋼板の製造方法。
1. A method for producing a grain-oriented electrical steel sheet in which a secondary recrystallization of a material for a grain-oriented electrical steel sheet is performed by continuous annealing, wherein plastic strain is locally applied to the steel sheet in a high-temperature region in the latter half of the continuous annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by being selectively introduced.
【請求項2】 鋼板に塑性歪を局所的に導入して、鋼板
表面に線状及び又は線状の溝を形成させることを特徴と
する請求項1記載の磁気特性に優れる方向性電磁鋼板の
製造方法。
2. The grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein plastic strain is locally introduced into the steel sheet to form linear and / or linear grooves on the surface of the steel sheet. Production method.
JP10144232A 1998-05-26 1998-05-26 Production of grain oriented silicon steel sheet excellent in magnetic characteristics Withdrawn JPH11335737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10144232A JPH11335737A (en) 1998-05-26 1998-05-26 Production of grain oriented silicon steel sheet excellent in magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10144232A JPH11335737A (en) 1998-05-26 1998-05-26 Production of grain oriented silicon steel sheet excellent in magnetic characteristics

Publications (1)

Publication Number Publication Date
JPH11335737A true JPH11335737A (en) 1999-12-07

Family

ID=15357327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10144232A Withdrawn JPH11335737A (en) 1998-05-26 1998-05-26 Production of grain oriented silicon steel sheet excellent in magnetic characteristics

Country Status (1)

Country Link
JP (1) JPH11335737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538859A (en) * 2014-10-15 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538859A (en) * 2014-10-15 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method
US11239012B2 (en) 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip

Similar Documents

Publication Publication Date Title
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2016056501A1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6465049B2 (en) Method for producing grain-oriented electrical steel sheet
KR20210138072A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
KR102437377B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JPH11335737A (en) Production of grain oriented silicon steel sheet excellent in magnetic characteristics
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7463976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH03260022A (en) Method for radiating linear eb
CN117062921A (en) Method for producing oriented electrical steel sheet
CN117203355A (en) Method for producing oriented electrical steel sheet
WO2023129259A1 (en) Improved method for the production of high permeability grain oriented electrical steel containing chromium
CN117355622A (en) Method for producing oriented electrical steel sheet
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH10280040A (en) Production of grain-oriented electrical steel sheet excellent in iron loss characteristic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802