JPH11326578A - Method for monitoring toughness of reactor container inner surface cladding material - Google Patents

Method for monitoring toughness of reactor container inner surface cladding material

Info

Publication number
JPH11326578A
JPH11326578A JP10136985A JP13698598A JPH11326578A JP H11326578 A JPH11326578 A JP H11326578A JP 10136985 A JP10136985 A JP 10136985A JP 13698598 A JP13698598 A JP 13698598A JP H11326578 A JPH11326578 A JP H11326578A
Authority
JP
Japan
Prior art keywords
toughness
hardness
coating material
cladding material
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10136985A
Other languages
Japanese (ja)
Inventor
Minoru Tomimatsu
実 冨松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10136985A priority Critical patent/JPH11326578A/en
Publication of JPH11326578A publication Critical patent/JPH11326578A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To monitor the toughness of a cladding material for increasing the soundness of a reactor plant by polishing the surface of the cladding material, measuring hardness, and obtaining the toughness of the material from the hardness of the cladding material surface being measured using the ratio correlation between the toughness of the cladding material and the toughness. SOLUTION: After a surface-polishing device 3 is installed, first a shaft 5 is moved for bringing a tip 6 into contact with a cladding material 2, an a measurement target part 7 is polished. Then, hardness at the target part 7 of the polished material 2 is measured. These operations are monitored according to an image being transmitted from a monitoring camera 8 on an external monitor 11. Then, the hardness measurement result of the material 2 is used, thus estimating the toughness of the cladding material 2 corresponding to the surface hardness according to a toughness/harness ratio graph being created in advance of a material that is used for the cladding material. Since a polishing stage, a hardness-measuring stage, and a stage for obtaining the toughness of the cladding material using the ratio correlation between toughness and hardness are provided, thus continuously monitoring the toughness of the cladding material of the inner surface of a container and hence improving reliability in the soundness of a reactor plant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉容器の炉心
領域における被覆材の靭性を監視する方法に関する。
The present invention relates to a method for monitoring the toughness of a cladding in a core region of a nuclear reactor vessel.

【0002】[0002]

【従来の技術】原子力プラントの健全性の信頼性を増す
ため、原子力プラントの定期検査の際には、燃料被覆管
やチャンネルボックス等の燃料材料で構成される燃料集
合体を精密に検査し、その健全性を確認している。ま
た、近年、原子力プラントの安全性の確認及び長寿命化
の観点から、原子炉内構造物の経年変化を監視し、原子
力ブラントの予防診断に役立てる技術が試みられてい
る。
2. Description of the Related Art In order to increase the reliability of the integrity of a nuclear power plant, during a periodic inspection of the nuclear power plant, a fuel assembly composed of a fuel material such as a fuel cladding tube or a channel box is precisely inspected. We have confirmed its soundness. In recent years, from the viewpoint of confirming the safety of a nuclear power plant and prolonging its life, techniques for monitoring the secular change of the internal structure of a nuclear reactor and utilizing it for preventive diagnosis of a nuclear power plant have been attempted.

【0003】例えば、原子炉容器の炉心領域における材
料は、核反応時に放出される中性子の照射を受けると脆
化する。このため、原子炉容器内には、予め原子炉容器
の炉心領域から採取した材料を機械的試験片として装荷
した幾つかの照射試験カプセルを配置しておき、これら
のカプセルを定期的に取り出し、中の試験片を試験する
ことにより、経年変化度(劣化度)を監視している。
[0003] For example, the material in the core region of a nuclear reactor vessel becomes brittle when irradiated with neutrons emitted during a nuclear reaction. For this reason, in the reactor vessel, several irradiation test capsules in which materials previously collected from the core region of the reactor vessel are loaded as mechanical test pieces are arranged, and these capsules are periodically taken out. By monitoring the test pieces inside, the degree of aging (degree of deterioration) is monitored.

【0004】一方、原子炉容器内面被覆材は、原子炉の
強度を受け持つ構成材料でないため、上記のように試験
片を採取して監視試験を行う対象にはされていなかっ
た。
[0004] On the other hand, since the reactor vessel inner surface coating material is not a constituent material for the strength of the reactor, it has not been subjected to a monitoring test by collecting a test piece as described above.

【0005】[0005]

【発明が解決しようとする課題】しかし、原子炉容器の
炉心領域における被覆材も熱時効や中性子照射により靭
性が低下する場合があり、この靭性の低下に伴い被覆材
に亀裂が発生する可能性があった。この亀裂は、原子炉
容器に作用する繰り返し高熱応力により成長し、被覆材
が被覆の役目を果たさなくなり、原子炉容器の寿命の低
下等につながるという問題点があった。
However, the toughness of the coating material in the core region of the reactor vessel may be reduced due to thermal aging or neutron irradiation, and cracks may occur in the coating material due to the reduced toughness. was there. This crack grows due to repeated high thermal stress acting on the reactor vessel, and the coating material does not serve the purpose of coating, leading to a problem that the life of the reactor vessel is shortened.

【0006】従って、本発明は、このような問題点を解
決するためになされたもので、原子力プラントの健全性
の信頼性を増すために、原子炉容器の炉心領域における
容器内面の被覆材の靭性を監視する方法を提供すること
を目的とする。
Accordingly, the present invention has been made to solve such problems, and in order to increase the reliability of the soundness of a nuclear power plant, a coating material for the inner surface of the vessel in the core region of the reactor vessel is provided. It is intended to provide a method for monitoring toughness.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1に記載の本発明による原子炉容器内面被覆
材の靭性監視方法は、表面研磨装置を用いて被覆材の表
面を研磨する段階と、硬さ測定器を用いて該研磨された
被覆材表面の硬さを測定する段階と、被覆材靭性/硬さ
比相関関係を用いて該測定された被覆材表面硬さから前
記被覆材の靭性を求める段階とを備える。
In order to achieve the above-mentioned object, a method for monitoring the toughness of a coating material on the inner surface of a reactor vessel according to the present invention according to the first aspect of the present invention is to polish the surface of the coating material using a surface polishing apparatus. And measuring the hardness of the polished coating material surface using a hardness measuring device, and using the coating material toughness / hardness ratio correlation to determine the coating material surface hardness. Determining the toughness of the coating material.

【OO08】[OO08]

【発明の実施の形態】以下、本発明に係る原子炉容器内
面被覆材の靭性監視方法の一実施形態を図面を参照しな
がら説明する。図1には、原子炉容器の炉壁1における
被覆材2の表面研磨装置が示されている。この実施形態
においては、炉壁1を被覆した被覆材2は、ステンレス
鋼、例えばSUS308LまたはSUS309Lのオー
ステナイト系ステンレス鋼からできており、このステン
レス鋼が監視の対象となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for monitoring the toughness of a coating material on the inner surface of a reactor vessel according to the present invention will be described below with reference to the drawings. FIG. 1 shows a surface polishing apparatus for a coating material 2 on a furnace wall 1 of a nuclear reactor vessel. In this embodiment, the coating material 2 covering the furnace wall 1 is made of stainless steel, for example, SUS308L or SUS309L austenitic stainless steel, and this stainless steel is to be monitored.

【0009】表面研磨装置3は、内部に駆動部4a及び
制御部4bを有する本体4を備える。本体4は、この本
体を支持する磁石を用いた脚部(図示せず)により、炉
壁1の被覆材2に固定される。この場合、後述するティ
ップ6の先端を、炉壁1の被覆材2に対峙するように配
置するのが好ましい。本体4の駆動部4aから突出して
いるシャフト5は、このシャフトの軸方向即ち炉壁1の
表面に対して、好ましくはほぼ垂直方向に移動すること
ができ、その駆動及び制御は、本体4内部の駆動部4a
及び制御部4bにより行われる。また本体4には、ティ
ップ6による作業を監視するための監視カメラ8が取付
けられている。なお、溶接作業による汚染や後述するモ
ニタ11での画像を見やすくするため、監視カメラ8の
視野前方に開閉自在の遮光フィルタ(図示せず)を取り
付けるのが好ましい。
The surface polishing apparatus 3 includes a main body 4 having a driving section 4a and a control section 4b therein. The main body 4 is fixed to the cladding material 2 of the furnace wall 1 by legs (not shown) using magnets supporting the main body. In this case, it is preferable to dispose the tip of a tip 6 described later so as to face the coating material 2 of the furnace wall 1. The shaft 5 protruding from the drive part 4a of the main body 4 can move in the axial direction of the shaft, that is, in a direction substantially perpendicular to the surface of the furnace wall 1, and its driving and control is performed inside the main body 4. Drive unit 4a
And the control unit 4b. A monitoring camera 8 for monitoring the operation by the tip 6 is attached to the main body 4. It is preferable to attach a light-shielding filter (not shown) that can be freely opened and closed in front of the field of view of the monitoring camera 8 in order to make it easy to see the contamination by the welding work and the image on the monitor 11 described later.

【0010】ティップ6は、シャフト5の先端部に交換
可能に保持されたアタッチメントであり、用途に合わせ
て種々のティップに交換することができる。ティップ6
としては、被覆材2の硬さ測定対象部7を研磨する研磨
用ティップや、硬さ測定後、必要に応じて被覆材2を修
復するTIG溶接用ティップ等が用意されている。この
ティップ6は、シャフト5の炉壁1表面に対する垂直方
向移動により、炉壁1の被覆材2方向へ接近させられ、
上記の研磨や修復溶接等を行うことができる。
The tip 6 is an attachment that is exchangeably held at the tip of the shaft 5, and can be replaced with various tips according to the application. Tip 6
Examples include a polishing tip for polishing the hardness measurement target portion 7 of the coating material 2 and a TIG welding tip for repairing the coating material 2 as necessary after measuring the hardness. This tip 6 is made to approach the coating material 2 of the furnace wall 1 by the vertical movement of the shaft 5 with respect to the surface of the furnace wall 1,
The above-mentioned polishing and repair welding can be performed.

【0011】また、研磨された測定対象部7の硬さの測
定は、表面研磨装置3に代えて設置する硬さ測定器(図
示せず)により行う。本実施形態においては、硬さ測定
器として、総代理店・富士物産株式会社から商品名「コ
ンピュテスト」で市販されているロックウェル硬さ用試
験機の圧痕打ち機構を備えているスイス製の携帯用測定
器を使用する。この硬さ測定器も測定対象部7に対して
試験を行うために最適な位置及び姿勢で設置される。
The hardness of the polished measurement target portion 7 is measured by a hardness measuring device (not shown) installed in place of the surface polishing device 3. In the present embodiment, as a hardness measuring instrument, a Swiss-made indentation mechanism of a Rockwell hardness testing machine marketed by a general agent, Fuji Bussan Co., Ltd. under the trade name "Computetest". Use a portable measuring device. This hardness measuring device is also installed at an optimum position and posture for performing a test on the measurement target portion 7.

【0012】なお、本体4の駆動部4a及び制御部4b
や監視カメラ8からの種々の信号線10は、原子炉容器
内から炉外へ一般的なシール部材等の手法を用いて取り
出され、外部の制御装置9に接続されている。また、監
視カメラ8からの信号は、制御装置9を介してさらにモ
ニタ11に接続され、監視カメラ8から送られてくる画
像を監視できるようになっている。さらに、TIG溶接
を行う場合のガス発生器及び溶接装置等も、一般的なも
のを使用することができ、それら装置からの種々の信号
線等も同様に外部に取り出すことができる。これによ
り、ティップ6による測定対象部7の研磨や溶接、ある
いは硬さ測定器による硬さ測定は、炉外から遠隔操作で
行えるようになっている。また、本実施例では、本体4
内部に制御部4bを設けて駆動部4aの制御を行うよう
にしたが、駆動部4aの制御を外部の制御装置9のみで
行うようにすることもできる。
The drive unit 4a and the control unit 4b of the main body 4
Various signal lines 10 from the monitoring camera 8 are taken out from the inside of the reactor vessel to the outside of the reactor by using a general sealing member or the like, and are connected to an external control device 9. The signal from the surveillance camera 8 is further connected to the monitor 11 via the control device 9 so that an image sent from the surveillance camera 8 can be monitored. In addition, general gas generators and welding devices for performing TIG welding can be used, and various signal lines and the like from these devices can be similarly taken out. Thus, polishing or welding of the measurement target portion 7 by the tip 6 or hardness measurement by the hardness measuring device can be performed by remote control from outside the furnace. In this embodiment, the main body 4
Although the control unit 4b is provided inside to control the drive unit 4a, the control of the drive unit 4a may be performed only by the external control device 9.

【0013】図3に示したグラフは、被覆材に使用され
る材料の靭性/硬さ変化の相関関係を表している。この
図3の例として使用された被覆材料は、SUS308系
のオーステナイト系ステンレス鋼であり、この溶接金属
を対象に熱時効により脆化を模擬した材料の靭性J
ICと、脆化前後における材料の硬さ比rとを、測定結果
の公開文献例(J.M.Vitek他、Acta Metall. Mater., Vo
l.39, No.4, PP503-516,1991)から導いたものを示して
ある。なお、熱時効の条件は、温度が475°Cで、加
熱時間が20000時間である。材料の靭性JICと硬さ
比rとの間には、良好な相関関係が認められる。即ち、
使用前における被覆材の硬さを予め測定しておけば、中
性子照射や熱脆化に起因する硬さの増加変化を明らかに
することができるので、材料の硬さが判れば、このグラ
フから材料の靭性を推測することができる。
The graph shown in FIG. 3 shows the correlation between the toughness / hardness change of the material used for the coating material. The coating material used as an example in FIG. 3 is SUS308 type austenitic stainless steel, and the toughness J of the material simulating embrittlement by thermal aging for this weld metal is used.
The IC and the hardness ratio r of the material before and after embrittlement were determined by referring to published examples of measurement results (JMVitek et al., Acta Metall. Mater., Vo
l.39, No.4, PP503-516, 1991). The conditions of the thermal aging are a temperature of 475 ° C. and a heating time of 20,000 hours. A good correlation is observed between the toughness J IC of the material and the hardness ratio r. That is,
If the hardness of the coating material before use is measured in advance, the increase in hardness due to neutron irradiation and thermal embrittlement can be clarified. The toughness of the material can be estimated.

【0014】硬さ比rから靭性JICを推定するには、予
め監視の対象である被覆材を材料試験炉に入れ、この材
料試験炉で中性子を照射し、照射前後の試験から求まる
靭性及び硬さ変化の関係から靭性/硬さ変化の相関関係
を表すグラフを作成しておき、このグラフを用いて行う
ことが望ましいが、この様な試験を予め行うことができ
ない場合でも、使用する被覆材における初期硬さの推定
値と検査時に測定した被覆材における硬さの測定値とか
ら、図3のグラフの傾きに準じて、靭性を推定すること
も可能である。
In order to estimate the toughness J IC from the hardness ratio r, the coating material to be monitored is placed in a material testing furnace in advance, neutrons are irradiated in the material testing furnace, and the toughness and the toughness obtained from tests before and after irradiation are measured. It is desirable to prepare a graph showing the correlation between the toughness / hardness change from the relationship of the hardness change, and use this graph to perform the test. It is also possible to estimate the toughness from the estimated value of the initial hardness of the material and the measured value of the hardness of the coating material measured at the time of inspection, according to the slope of the graph in FIG.

【0015】次に、図2に従って、本発明に係る原子炉
容器内面被覆材の靭性監視方法の一実施形態を説明す
る。定期検査の際に、図1に示した表面研磨装置3を原
子炉容器の炉心領域における炉壁1の被覆材2に設置す
る。この場合、シャフト5には、研磨用のティップ6を
取り付けておく。表面研磨装置3の設置後、まず、シャ
フト5を移動させてティップ6を被覆材2に接触させ、
測定対象部7を研磨する(ステップ1)。研磨が終了し
たら、表面研磨装置3を硬さ測定器(図示せず)に置き
換え、研磨された被覆材2の測定対象部7における硬さ
を測定する(ステップ2)。研磨の終了は、被覆材2へ
のティップ6の進入深さ制御により検知することがで
き、また被覆材として用いた材料の非照射材を使用し
て、予め深さと時間との関係を把握しておけば、時間制
御により検知することも可能である。なお、これらの作
業は、外部のモニタ11において、監視カメラ8から送
られてくる映像により監視される。
Next, an embodiment of the method for monitoring the toughness of the coating material on the inner surface of the reactor vessel according to the present invention will be described with reference to FIG. At the time of the periodic inspection, the surface polishing apparatus 3 shown in FIG. 1 is installed on the coating material 2 of the furnace wall 1 in the core region of the reactor vessel. In this case, a tip 6 for polishing is attached to the shaft 5. After the installation of the surface polishing device 3, first, the shaft 5 is moved to bring the tip 6 into contact with the coating material 2,
The measurement target portion 7 is polished (Step 1). When the polishing is completed, the surface polishing device 3 is replaced with a hardness measuring device (not shown), and the hardness of the polished coating material 2 in the measurement target portion 7 is measured (Step 2). Completion of the polishing can be detected by controlling the depth of entry of the tip 6 into the coating material 2, and the relationship between depth and time is grasped in advance by using a non-irradiated material of the material used as the coating material. If so, it is also possible to detect by time control. These operations are monitored on the external monitor 11 by the video sent from the monitoring camera 8.

【0016】次に、被覆材2の上記の硬さ測定結果を用
いて、被覆材に使用された材料の予め作成した靭性/硬
さ比グラフから、この表面硬さに対応する被覆材2の靭
性を推定する(ステップ3)。また、上述したように、
被覆材に使用した材料に関する靭性/硬さ比グラフを作
成してない場合でも、使用する被覆材における初期硬さ
の推定値と検査時に測定した被覆材における硬さの測定
値とから、図3のグラフの傾きに準じて、靭性を推定す
る。推定した被覆材の靭性は、原子炉容器の健全性評価
用のデータとなる。
Next, using the above hardness measurement result of the coating material 2, a toughness / hardness ratio graph prepared in advance for the material used for the coating material is used to obtain the coating material 2 corresponding to the surface hardness. The toughness is estimated (step 3). Also, as mentioned above,
Even when the toughness / hardness ratio graph for the material used for the coating material was not prepared, the estimated value of the initial hardness of the coating material used and the measured value of the hardness of the coating material measured at the time of the inspection were used. The toughness is estimated according to the slope of the graph. The estimated toughness of the coating material becomes data for evaluating the integrity of the reactor vessel.

【0017】なお、硬さ測定器による測定が終了した
後、研磨された被覆材2の測定対象部7における表面状
態に応じて必要が生じれば、被覆材2の修復を行う(ス
テップ4)。この作業は、シャフト5の先端にTIG溶
接用のティップ6を取り付けた表面研磨装置3により行
われる。この作業も外部のモニタ11により監視され
る。なお、溶接による補修作業は、ステップ2の硬さ測
定が終了した後であれば、ステップ3の被覆材における
靭性の推定と同時に行ってもよいし、ステップ3の前に
行ってもよい。
After completion of the measurement by the hardness measuring device, if necessary according to the surface condition of the polished coating material 2 in the measurement target portion 7, the coating material 2 is repaired (step 4). . This operation is performed by the surface polishing apparatus 3 in which a tip 6 for TIG welding is attached to the tip of the shaft 5. This operation is also monitored by the external monitor 11. The repair work by welding may be performed at the same time as the estimation of the toughness of the coating material in Step 3 or before Step 3 if the hardness measurement in Step 2 is completed.

【0018】また、本発明は、上述した一実施形態に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で、被覆材の測定対象部を研磨する工程と、被覆材の硬
さを測定する工程と、必要が生じれば被覆材を修復する
工程に関し、本実施形態とは異なった具体的な手段を用
いる等、各種の変更が可能であることは、言うまでもな
い。
Further, the present invention is not limited to the above-described embodiment, but includes a step of polishing the portion to be measured of the coating material and a method of reducing the hardness of the coating material without departing from the gist of the present invention. It goes without saying that various changes can be made in the measurement step and the step of repairing the coating material if necessary, for example, using specific means different from the present embodiment.

【0019】[0019]

【発明の効果】本発明による原子炉容器内面被覆材の靭
性監視方法は、表面研磨装置を用いて被覆材の表面を研
磨する段階と、硬さ測定器を用いて該研磨された被覆材
表面の硬さを測定する段階と、被覆材の靭性/硬さ比相
関関係を用いて該測定された被覆材表面硬さから前記被
覆材の靭性を求める段階とを備えるので、原子炉容器の
炉心領域における容器内面の被覆材の靭性を継続して監
視することができるようになり、原子力プラントの健全
性の信頼性を増すことができる。
According to the method for monitoring the toughness of the coating material on the inner surface of a nuclear reactor vessel according to the present invention, the surface of the coating material is polished by using a surface polishing device, and the surface of the polished coating material is measured by using a hardness measuring device. Measuring the hardness of the coating material, and obtaining the toughness of the coating material from the measured surface hardness of the coating material using the toughness / hardness ratio correlation of the coating material. It becomes possible to continuously monitor the toughness of the coating material on the inner surface of the container in the region, and it is possible to increase the reliability of the soundness of the nuclear power plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る原子炉容器内面被覆材の靭性監
視方法に使用する装置の概要を示す図である。
FIG. 1 is a diagram showing an outline of an apparatus used for a toughness monitoring method for a reactor vessel inner surface coating material according to the present invention.

【図2】 本発明に係る原子炉容器内面被覆材の靭性監
視方法を示すフローチャートである。
FIG. 2 is a flowchart illustrating a method for monitoring the toughness of a reactor vessel inner surface coating material according to the present invention.

【図3】 本発明に係る原子炉容器内面被覆材の靭性監
視方法に利用可能である被覆材に使用した材料の靭性/
硬さ変化の相関関係を表すグラフである。
FIG. 3 shows the toughness of the material used for the cladding material which can be used in the method for monitoring the toughness of the cladding material on the inner surface of the reactor vessel according to the present invention.
It is a graph showing the correlation of a hardness change.

【符号の説明】[Explanation of symbols]

1…炉壁、2…被覆材、3…表面研磨装置、4…本体、
4a…駆動部、4b…制御部、5…シャフト、6…ティ
ップ、7…測定対象部、8…監視カメラ、9…制御装
置、10…信号線、11…モニタ、r…硬さ比、JIC
靭性。
DESCRIPTION OF SYMBOLS 1 ... Furnace wall, 2 ... Coating material, 3 ... Surface polishing device, 4 ... Body,
4a: Drive unit, 4b: Control unit, 5: Shaft, 6: Tip, 7: Measurement target unit, 8: Surveillance camera, 9: Control device, 10: Signal line, 11: Monitor, r: Hardness ratio, J IC
Toughness.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面研磨装置を用いて原子炉容器内面被
覆材の表面を研磨する段階と、硬さ測定器を用いて該研
磨された被覆材表面の硬さを測定する段階と、被覆材の
靭性/硬さ比相関関係を用いて該測定された被覆材表面
硬さから前記被覆材の靭性を求める段階とを備えた原子
炉容器内面被覆材の靭性監視方法。
1. A step of polishing the surface of a coating material on the inner surface of a reactor vessel using a surface polishing apparatus, a step of measuring the hardness of the polished coating material surface using a hardness measuring device, Obtaining the toughness of the cladding material from the measured surface hardness of the cladding material using the toughness / hardness ratio correlation of the reactor vessel.
JP10136985A 1998-05-19 1998-05-19 Method for monitoring toughness of reactor container inner surface cladding material Withdrawn JPH11326578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136985A JPH11326578A (en) 1998-05-19 1998-05-19 Method for monitoring toughness of reactor container inner surface cladding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136985A JPH11326578A (en) 1998-05-19 1998-05-19 Method for monitoring toughness of reactor container inner surface cladding material

Publications (1)

Publication Number Publication Date
JPH11326578A true JPH11326578A (en) 1999-11-26

Family

ID=15188089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136985A Withdrawn JPH11326578A (en) 1998-05-19 1998-05-19 Method for monitoring toughness of reactor container inner surface cladding material

Country Status (1)

Country Link
JP (1) JPH11326578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049290A3 (en) * 2009-10-19 2011-06-16 한국수력원자력 주식회사 Integrity assessment method for a nuclear reactor vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049290A3 (en) * 2009-10-19 2011-06-16 한국수력원자력 주식회사 Integrity assessment method for a nuclear reactor vessel
KR101090019B1 (en) 2009-10-19 2011-12-05 한국수력원자력 주식회사 Hardness test method for reactor vessel

Similar Documents

Publication Publication Date Title
EP1742049B1 (en) Laser-based maintenance apparatus
US7060971B2 (en) Reference standard systems for thermosonic flaw detection
Trimm An overview of nondestructive evaluation methods
JPH11326578A (en) Method for monitoring toughness of reactor container inner surface cladding material
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
JP3595605B2 (en) Repair method and repair device in liquid metal
KR101083183B1 (en) Mehtod to manufacture mockup specimen for performance validation of nondestructive test about stress corrosion crack originated from PWR pressurizer heater sleeve nozzle in high temperature and pressure
USH1084H (en) Ultrasonic thickness measuring and imaging system and method
JP2530011B2 (en) How to repair a long housing
JP2530010B2 (en) How to repair a long housing
JPH02112758A (en) Ultrasonic flaw inspection device
Meyer et al. Inservice Inspection of Extended Dry Storage of Spent Nuclear Fuel, Part II: NDE/Sensor Technology Development and Codification
JP3148869B2 (en) Industrial plant inspection and evaluation method and apparatus
JPH11173970A (en) System for evaluation of sensitization degree of material by accelerated stress corrosion crack test
JP2965716B2 (en) Piping life diagnosis
Nichols IN-SERVTOE INSPECTION AS AN AID TO STEEL PRESSURE VESSEL RELIABILITY
Mayton et al. Characterizing the effects of sonic IR variables on turbine disk inspection using a design of experiments approach
JPH11287888A (en) Evaluation test method for degradation of incore structure material
Renshaw et al. Robotically-deployed NDE inspection development for dry storage systems for used nuclear fuel
JPH10253794A (en) Method for monitoring material for reactor vessel
JP2004245754A (en) Inspection system and inspection method of reactor control rod
Edelmann Ultrasonic examination of austenitic welds at reactor pressure vessels
JP2000162363A (en) Method for preparing material characteristic evaluation specimen of structure material in furnace
Prager Planning and interpreting AE experiments to monitor crack growth at elevated temperatures
JP2003028978A (en) Method and program for determining inspection timing for in-vessel structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802