JPH11326188A - Oil film detecting device - Google Patents

Oil film detecting device

Info

Publication number
JPH11326188A
JPH11326188A JP12846898A JP12846898A JPH11326188A JP H11326188 A JPH11326188 A JP H11326188A JP 12846898 A JP12846898 A JP 12846898A JP 12846898 A JP12846898 A JP 12846898A JP H11326188 A JPH11326188 A JP H11326188A
Authority
JP
Japan
Prior art keywords
light
oil film
light beam
polarized
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12846898A
Other languages
Japanese (ja)
Inventor
Mutsuhisa Hiraoka
睦久 平岡
Naohiro Noda
直広 野田
Tokio Oto
時喜雄 大戸
Yoshiharu Tanaka
良春 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12846898A priority Critical patent/JPH11326188A/en
Publication of JPH11326188A publication Critical patent/JPH11326188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To sensitively, accurately, and continuously detect a small amount of oil content in a wide measurement region by scanning the water surface linearly with a beam and allowing only reflection light at a prescribed angle to an incident optical to axis to be transmitted through a light guide and receiving it. SOLUTION: A beam 4 including a P-polarized and S-polarized components uniformly is applied to the rising water surface where an oil film 5 floats at a certain incident angle 7 by parallel scanning with beam-scanning mechanism 29 consisting of a polygon mirror 27 and a lens 28. In this case, since a scanning direction 30 of a scanning beam 33 crosses a direction 31 where the oil film 5 flows, the oil film 5 flowing into a scanning range 32 is successively applied and is reflected in a diversified direction by waves. Reflection light 10 is passed through a light guide 34 is an array, and only the reflected light 10 being reflected at a prescribed angle is passed and is condensed by a lens group 35 and then in separated into a P-polarized component 13 and an S-polarized component 14 by a polarized beam splitter 12. Then, the polarized components 13 and 14 are optoelectrically converted by photodiodes 15 and 16 and are inputted to a signal-processing part 36 and are compared with a reference value 35, thus judging the presence or absence of the oil film 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水面上の油膜を検
知する装置に関する。詳しくは、浄水場、養殖場などに
流入する油分、また、工場排水施設などから流出する油
分を、水面上の油膜として自動的に検知する油膜検知装
置に関する。
The present invention relates to an apparatus for detecting an oil film on a water surface. More specifically, the present invention relates to an oil film detecting device that automatically detects an oil component flowing into a water purification plant, a farm, or the like, or an oil component flowing out of a factory drainage facility or the like as an oil film on the water surface.

【0002】[0002]

【従来の技術】浄水場においては、原水の油汚染が水質
事故の約半数を占め取水停止や浄水場の清掃が必要にな
る重大事故であるために、また、養殖場では、油の流入
によって生産物が汚染または死滅する危険があるため
に、これらの取水施設への油の流入を常時監視する方法
と装置が求められている。一方、工場排水においては、
油分の混入した排水を公共水域に排出することは水質汚
染として社会的な問題であり、排水基準を満たす必要が
あるために、処理後の排水中に油分が残っているかどう
かを連続的に監視する方法と装置が求められている。
2. Description of the Related Art In a water purification plant, oil contamination of raw water accounts for about half of water quality accidents, which is a serious accident that requires the suspension of water intake and cleaning of the water purification plant. Due to the risk of product contamination or death, there is a need for a method and apparatus for constantly monitoring the flow of oil into these water intakes. On the other hand, in factory wastewater,
Draining oil-containing wastewater into public waters is a social problem as water pollution, and it is necessary to meet wastewater standards. Therefore, it is necessary to continuously monitor whether or not oil remains in treated wastewater. There is a need for a method and apparatus for doing so.

【0003】浄水場において取水への油の流入を自動検
知する方法としては、従来から、(1)反射率測定法、
(2)TVカメラによる画像監視法(特開平4−835
75号)が知られている。また、工場排水中の油分の検
知方法としては、例えば、(3)ヘキサン抽出・重量法
(JIS K0101、JIS K0102)、(4)
抽出・赤外線吸収測定法(JIS K0101、JIS
K0102)、(5)乳化・濁度測定法、(6)蛍光
測定法などが知られている。
[0003] As a method of automatically detecting the inflow of oil into the water intake at a water purification plant, there have been conventionally used (1) a reflectance measurement method,
(2) Image monitoring method using a TV camera (Japanese Patent Laid-Open No. 4-835)
No. 75) is known. Examples of a method for detecting oil in factory wastewater include (3) hexane extraction / gravimetric method (JIS K0101, JIS K0102) and (4)
Extraction and infrared absorption measurement method (JIS K0101, JIS
K0102), (5) emulsification / turbidity measurement method, (6) fluorescence measurement method and the like are known.

【0004】しかし、これらの油分検知装置は、連続自
動測定が難しいこと、微量油分の検出が困難なこと、誤
動作が多いなどの問題点のあることが指摘されており、
それらを解決するために、(7)偏光解析法による油膜
検知装置が、本出願人らにより特願平9−90453号
として出願されている。この従来の(7)偏光解析法に
よる油膜検知装置の構成例を図12に示す。
However, it has been pointed out that these oil detecting devices have problems such as difficulty in continuous automatic measurement, difficulty in detecting a trace amount of oil, and many malfunctions.
In order to solve these problems, (7) an oil film detecting device based on ellipsometry has been filed by the present applicant as Japanese Patent Application No. 9-90453. FIG. 12 shows an example of the configuration of this conventional oil film detecting device based on (7) ellipsometry.

【0005】この図において、円偏光特性を有するレー
ザー光源1を用いて、P偏光成分(図中では、P偏光成
分の振動方向3を上下の矢印で示す)とS偏光成分(図
中では、S偏光成分の振動方向2を中心に黒点のある円
で示す)を均等に含む光ビーム4を、油膜5の浮遊する
波立った水面6に、ある入射角7で斜めから照射する。
ここで、入射角7とは入射光軸8が水面6と交わる点に
立てた水面の法線9と入射光軸8とのなす角度をであ
る。水面6からの反射光10をピンホール11で光路制
限をした後、偏光ビームスプリッタ12に通し、P偏光
成分13とS偏光成分14に分離する。分離したP偏光
成分13とS偏光成分14をフォトダイオード15とフ
ォトダイオード16で各々光電変換して各々の光量を電
気信号に変換する。各々の電気信号をアンプ17とアン
プ18でそれぞれ増幅した後、演算回路19に入力す
る。演算回路19は入力信号に基づきP偏光成分とS偏
光成分の光量比を演算出力する。
[0005] In this figure, a laser light source 1 having circular polarization characteristics is used, and a P-polarized component (in the figure, the oscillation direction 3 of the P-polarized component is indicated by an up and down arrow) and an S-polarized component (in the figure, A light beam 4 that uniformly includes a circle with a black spot around the oscillation direction 2 of the S-polarized light component) is radiated obliquely to a floating wavy water surface 6 of an oil film 5 at a certain incident angle 7.
Here, the incident angle 7 is an angle formed between the normal 9 of the water surface and the incident optical axis 8 at the point where the incident optical axis 8 intersects the water surface 6. After limiting the optical path of the reflected light 10 from the water surface 6 with a pinhole 11, the reflected light 10 passes through a polarizing beam splitter 12 and is separated into a P-polarized component 13 and an S-polarized component 14. The separated P-polarized light component 13 and S-polarized light component 14 are photoelectrically converted by a photodiode 15 and a photodiode 16, respectively, and each light amount is converted into an electric signal. After each electric signal is amplified by the amplifier 17 and the amplifier 18, it is input to the arithmetic circuit 19. The arithmetic circuit 19 calculates and outputs the light amount ratio between the P-polarized component and the S-polarized component based on the input signal.

【0006】またコンパレータ20はS偏光成分の光量
を増幅するアンプ18から分岐した信号が基準電圧21
より低いことを検知し信号を出力する。ホールド回路2
2は演算回路19からの信号をコンパレータ20の信号
出力に従ってホールドする。これは、ピンホール11の
光路制限のために反射光10がフォトダイオード16に
届かずにアンプ18の信号レベルが低下しているとき、
演算回路19の信号をホールドしてこれを無効とするた
めの処理である。ホールド回路22からの信号出力を平
均演算回路23で移動平均した後、比較回路24に入力
する。比較回路24は水面に油膜のない正常時に相当す
る基準値25と入力信号を比較し、あらかじめ設定した
範囲を超えたときに油膜があると判定し、外部に警報2
6を出力する。水面の揺れが小さい場合には、反射光の
光路制限を行うためのピンホール11と反射光が遮光さ
れた期間の信号出力を無効にするためのコンパレータ2
0とホールド回路22と平均演算回路23は必要が無
く、演算回路19の出力をそのまま、比較回路24に入
力する。
The comparator 20 outputs a signal branched from the amplifier 18 for amplifying the light amount of the S-polarized component to a reference voltage 21.
It detects that it is lower and outputs a signal. Hold circuit 2
2 holds the signal from the arithmetic circuit 19 in accordance with the signal output of the comparator 20. This is because when the reflected light 10 does not reach the photodiode 16 due to the optical path limitation of the pinhole 11 and the signal level of the amplifier 18 is reduced,
This is a process for holding the signal of the arithmetic circuit 19 and invalidating the signal. After the signal output from the hold circuit 22 is moving averaged by the averaging circuit 23, it is input to the comparison circuit 24. The comparison circuit 24 compares the input signal with a reference value 25 corresponding to a normal state where there is no oil film on the water surface, determines that the oil film is present when the value exceeds a predetermined range, and outputs an external alarm 2
6 is output. When the fluctuation of the water surface is small, the pinhole 11 for limiting the optical path of the reflected light and the comparator 2 for invalidating the signal output during the period when the reflected light is blocked.
There is no need for the 0, the hold circuit 22, and the average operation circuit 23, and the output of the operation circuit 19 is directly input to the comparison circuit 24.

【0007】上記の装置では、油膜の有る水面と無い水
面とで、反射した光のP偏光成分とS偏光成分との比が
異なることを利用して油膜を検知している。電磁波であ
る光は伝播方向に垂直な面内で振動する横波であるの
で、その面内で方向性のある振動をする。この振動の電
界ベクトルの方向が偏光の特性を示す。振動が特定の方
向に保たれているとき、その光ビームは直線偏光特性を
持つといい、特定の方向に偏らず全ての方向に不規則に
変化するときには、無偏光特性をもつという。また、電
界ベクトルの軌跡が円形のものを円偏光、楕円形のもの
を楕円偏光と呼ぶ。これらの任意の光線の偏光成分は伝
播方向に垂直で互いに直行する2つの成分に分解でき
る。上記の装置のように、入射光軸が水面と交わる点に
立てた水面の法線および入射光軸を含む平面に平行な偏
光成分(P偏光成分)と垂直な偏光成分(S偏光成分)
の2つの成分を同時に含む光ビームを照射するのには、
無偏光特性または円偏光特性の光ビームを照射するか、
直線偏光特性の光ビームをその偏光方向が入射光軸と水
面の法線を含む平面に対して傾けて(例えば45°)に
して照射すればよい。
In the above apparatus, the oil film is detected by utilizing the difference between the P-polarized light component and the S-polarized light component of the reflected light between the water surface having an oil film and the water surface having no oil film. Since light, which is an electromagnetic wave, is a transverse wave that oscillates in a plane perpendicular to the propagation direction, it oscillates directionally in that plane. The direction of the electric field vector of this vibration indicates the polarization characteristics. When the vibration is kept in a specific direction, the light beam is said to have a linear polarization characteristic, and when the light beam is not biased in a specific direction and changes irregularly in all directions, it is said to have a non-polarization characteristic. Further, a circular locus of the electric field vector is called circularly polarized light, and an elliptical one is called elliptically polarized light. The polarization components of these arbitrary rays can be decomposed into two components perpendicular to each other and perpendicular to the direction of propagation. As in the above apparatus, a polarization component parallel to a plane normal to the water surface and a plane containing the incident optical axis (P-polarization component) and a polarization component perpendicular to the plane including the incident optical axis (S-polarization component)
To irradiate a light beam containing the two components at the same time,
Irradiating a non-polarized or circularly polarized light beam,
The light beam having the linear polarization characteristic may be irradiated with its polarization direction inclined (for example, 45 °) with respect to a plane including the incident optical axis and the normal to the water surface.

【0008】図13に水面、入射光、P偏光面、S偏光
面との相互関係を示す。P偏光成分とS偏光成分は水面
で各々独立に反射されると考えることができる。そして
その反射光強度は、フレネルの反射係数で規定され、光
線の入射する入射角度と媒質の屈折率(または誘電率)
によって各々独立に変化する。そのために水面に油膜が
存在する場合には、油と水の屈折率の違いによってP偏
光成分とS偏光成分の反射光強度が各々独立に変化す
る。そこで、反射光のP偏光成分とS偏光成分を分離
し、各々の反射光強度をそれぞれ測定し、その比をとる
と、油膜の存在によってその値が変わるため、これによ
り油膜を検知することができる。
FIG. 13 shows the correlation among the water surface, incident light, P-polarized surface, and S-polarized surface. The P-polarized component and the S-polarized component can be considered to be independently reflected on the water surface. The intensity of the reflected light is defined by the reflection coefficient of Fresnel, the angle of incidence of the ray and the refractive index (or dielectric constant) of the medium.
Changes independently of each other. Therefore, when an oil film is present on the water surface, the reflected light intensities of the P-polarized light component and the S-polarized light component change independently of each other due to the difference in the refractive index between oil and water. Therefore, the P-polarized light component and the S-polarized light component of the reflected light are separated, and the respective reflected light intensities are measured. When the ratio is taken, the value changes depending on the presence of the oil film, so that the oil film can be detected. it can.

【0009】この手段の特徴は、光学的な測定であるた
め複雑な操作を必要とせず簡便に連続的に油膜を検知で
きることの他に、水面の波立ちや浮遊する異物の影響を
受けにくく、正確で高感度に油膜を検知できることであ
る。水面が波立ったり異物が浮遊してくると乱反射光が
生じるため、単に反射光の強度をモニタするだけである
と、その強度が変化して安定な測定が行えず感度が低下
してしまう。これに対してP偏光成分とS偏光成分の比
をモニタするようにすると、水面が波立って反射光の強
度が変化しても、一定の反射角で受光しているかぎり偏
光成分の比は変化しにくいため、安定で高感度な測定を
行うことができる。また、水面に浮遊する異物がある場
合、ある範囲の入射角度でモニタすれば、S偏光成分を
P偏光成分で除した比は、油膜の存在により水に比べて
大きくなるのに対し、異物の場合は偏光が解消してその
比は小さくなるため、この違いによって油膜と異物を判
別することができる。
The feature of this means is that since it is an optical measurement, the oil film can be easily and continuously detected without complicated operation, and it is hardly affected by the ripples on the water surface and the floating foreign substances. To detect the oil film with high sensitivity. If the water surface is wavy or foreign matter floats, irregularly reflected light is generated. Therefore, if only the intensity of the reflected light is monitored, the intensity changes and stable measurement cannot be performed, resulting in a decrease in sensitivity. On the other hand, if the ratio between the P-polarized component and the S-polarized component is monitored, the ratio of the polarized component is maintained as long as light is received at a constant reflection angle, even if the surface of the water ripples and the intensity of the reflected light changes. Since it is hard to change, stable and highly sensitive measurement can be performed. In addition, when there is a foreign substance floating on the water surface, the ratio of the S-polarized component divided by the P-polarized component becomes larger than that of water due to the presence of the oil film. In this case, since the polarized light is eliminated and the ratio becomes smaller, the difference between the oil film and the foreign matter can be determined.

【0010】[0010]

【発明が解決しようとする課題】上記の偏光解析法によ
る油膜検知装置は、水面の波立ちや浮遊する異物の影響
を受けにくく、正確で高感度に油膜を検知できる。しか
し、水面上の計測領域が1点であり、計測領域が狭いた
めに、計測点を通過しない油膜を検知できないという問
題点があった。
The oil film detecting device based on the above-mentioned ellipsometry is hardly affected by ripples on the water surface or floating foreign substances, and can detect the oil film accurately and with high sensitivity. However, there is a problem that an oil film that does not pass through the measurement point cannot be detected because the measurement area on the water surface is one point and the measurement area is narrow.

【0011】例えば、浄水場の取水施設への油の流入監
視を例にとってみると、現状では、多くの浄水場で、監
視をする人が取水口を目視観察するといった方法がとら
れている。この目視による方法は、多大な労力がかかる
反面、水面の広い範囲を一度に観察できる利点を持ち、
取水口に流れ込む油膜を逃すことなく監視できる。人に
代わる自動監視装置にもこの特性を持たせることが要求
される。
For example, taking monitoring of the inflow of oil into a water intake facility of a water purification plant as an example, at present, in many water purification plants, a method is adopted in which a monitoring person visually observes an intake port. Although this visual method requires a great deal of labor, it has the advantage of observing a wide area of the water surface at once,
The oil film flowing into the water intake can be monitored without missing. It is required that an automatic monitoring device instead of a person also has this characteristic.

【0012】その他の従来装置のうち、TVカメラによ
る画像監視法は、水面上の広い範囲を監視できるが、水
面が波立っている場合には、画像が乱れ、正確な計測を
行うことができない。本発明は、上述の課題を解決する
ためになされたものであり、その目的は、浄水場、養殖
場に流入する微量な油分、または工場排水施設から油出
する微量な油分を、広い計測領域で高感度に正確に連続
自動監視できる油膜検知装置を提供することにある。
Among other conventional devices, the image monitoring method using a TV camera can monitor a wide area on the water surface, but when the water surface is wavy, the image is disturbed and accurate measurement cannot be performed. . The present invention has been made in order to solve the above-described problems, and an object of the present invention is to measure a small amount of oil flowing into a water purification plant, an aquaculture plant, or a small amount of oil discharged from a factory drainage facility in a wide measurement area. It is an object of the present invention to provide an oil film detecting device capable of automatically and continuously monitoring with high sensitivity and accuracy.

【0013】[0013]

【課題を解決するための手段】上記問題を解決するため
に、本発明の第1の装置では、油膜の浮遊する水面に、
P偏光成分とS偏光成分の両方の成分を含む光ビームを
照射する投光手段と、前記水面からの反射光を受光して
そのP偏光成分の光量とS偏光成分の光量を測定する受
光手段と、これらP偏光成分とS偏光成分の光量比に基
づき水面上の油膜を検知する信号処理手段とを備える油
膜検知装置において、光ビームを直線的に走査して水面
上に照射する光ビーム走査手段と、走査光ビームの入射
光軸に対して規定した角度で反射した反射光のみを透過
しそれ以外の角度で反射した反射光を遮光するアレイ状
の光ガイドとを技術的手段として採用することとする。
Means for Solving the Problems To solve the above problems, a first apparatus of the present invention employs a method in which an oil slick floats on a water surface.
Light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component, and a light-receiving means for receiving the reflected light from the water surface and measuring the amount of the P-polarized component and the amount of the S-polarized component And a signal processing means for detecting an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. Means and an array-shaped light guide that transmits only reflected light reflected at a prescribed angle with respect to the incident optical axis of the scanning light beam and blocks reflected light reflected at other angles as technical means. It shall be.

【0014】この第1の装置は、光ビーム走査手段で照
射光ビームを直線的に走査することによって、水面上の
広い範囲に光ビームを照射する。通常、油膜は水面上を
浮遊しているため、直線的な走査であっても、油膜の流
れに交差する方向に光ビームを走査すれば、流れてくる
油膜を次々と捕らえることができる。水面が波立ってい
る場合には、走査光ビームは、水面上のそれぞれの照射
位置に生じた波によって様々な方向に反射される。この
とき、単に、反射光を集光し受光するだけでは、様々な
反射角で反射した光を受光してしまうため、反射光のP
偏光成分とS偏光成分の光量比は安定しない。しかし、
走査光ビームの入射光軸に対して規定した角度で反射し
た反射光のみを透過しそれ以外の角度で反射した反射光
を遮光するアレイ状の光ガイドを設け、この光ガイドを
通過した反射光のみを集光し受光するようにすると、一
定の反射角で反射した光のみを受光できるため、受光し
た光のP偏光成分とS偏光成分の光量比は安定する。こ
の光量比は、従来技術の項で説明したように、油膜の有
無によりその値が変わるため、これにより油膜を波立ち
に影響されずに高感度で正確に検知できる。このよう
に、発明した油膜検知装置は、油膜を広い計測領域で高
感度に正確に検知することができる。
This first device irradiates a light beam over a wide area on the water surface by linearly scanning the irradiation light beam with a light beam scanning means. Usually, since the oil film is floating on the water surface, even if it is a linear scan, if the light beam is scanned in a direction intersecting the flow of the oil film, the flowing oil film can be captured one after another. When the water surface is wavy, the scanning light beam is reflected in various directions by waves generated at respective irradiation positions on the water surface. At this time, simply condensing and receiving the reflected light will receive light reflected at various reflection angles.
The light quantity ratio between the polarized light component and the S polarized light component is not stable. But,
An array-shaped light guide that transmits only reflected light reflected at a specified angle with respect to the incident optical axis of the scanning light beam and blocks reflected light reflected at other angles is provided, and reflected light that passes through this light guide is provided. If only the light is collected and received, only the light reflected at a fixed reflection angle can be received, so that the light quantity ratio between the P-polarized component and the S-polarized component of the received light is stabilized. As described in the section of the related art, the value of the light amount ratio changes depending on the presence or absence of an oil film, so that the oil film can be accurately detected with high sensitivity without being affected by the ripple. As described above, the oil film detecting device according to the invention can accurately detect the oil film with high sensitivity in a wide measurement area.

【0015】本発明の第2の装置では、油膜の浮遊する
水面に、P偏光成分とS偏光成分の両方の成分を含む光
ビームを照射する投光手段と、前記水面からの反射光を
受光してそのP偏光成分の光量とS偏光成分の光量を測
定する受光手段と、これらP偏光成分とS偏光成分の光
量比に基づき水面上の油膜を検知する信号処理手段とを
備える油膜検知装置において、光ビームを直線的に走査
して水面上に照射する光ビーム走査手段と、P偏光成分
とS偏光成分の光量をそれぞれ測定するアレイ状の光検
出器とを技術的手段として採用することとする。
In the second apparatus of the present invention, a light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component to a water surface on which an oil film floats, and receiving light reflected from the water surface An oil film detecting device comprising: light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component; and signal processing means for detecting an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. , As optical means, a light beam scanning means for linearly scanning a light beam onto a water surface and an array-shaped photodetector for measuring the amounts of P-polarized component and S-polarized component respectively. And

【0016】この第2の装置は、まず、光ビーム走査手
段で照射光ビームを直線的に走査しているため、第1の
装置と同様に、水面上の広い範囲に光ビームを照射でき
る。そして、水面からの反射光のP偏光成分とS偏光成
分の光量をそれぞれ測定するアレイ状の光検出器を備え
ているため、アレイ状の光検出器の各素子が、走査光ビ
ームの照射される水面上のそれぞれ異なる位置を観察で
き、各素子は水面上の異なる位置からそれぞれ規定の反
射角で反射した光を受光するので、受光した光のP偏光
成分とS偏光成分の比は水面が波立っていても安定して
いる。この比は、従来技術の項で説明したように、油膜
の有無によりその値が変わるため、これにより油膜を高
感度で正確に検知できる。このように、発明した油膜検
知装置は、本発明の第1の装置と同様に、油膜を広い計
測領域で高感度に正確に検知することができる。
In the second device, first, the irradiation light beam is linearly scanned by the light beam scanning means, so that the light beam can be applied to a wide range on the water surface, as in the first device. Since the array-type photodetector for measuring the amounts of the P-polarized component and the S-polarized component of the reflected light from the water surface is provided, each element of the array-shaped photodetector is irradiated with the scanning light beam. The different positions on the water surface can be observed, and each element receives the light reflected from the different position on the water surface at a specified reflection angle, so that the ratio of the P-polarized component to the S-polarized component of the received light is It is stable even if it is wavy. As described in the section of the related art, the value of this ratio changes depending on the presence or absence of an oil film, so that the oil film can be accurately detected with high sensitivity. As described above, the oil film detecting device according to the present invention can accurately detect the oil film with high sensitivity in a wide measurement region, similarly to the first device of the present invention.

【0017】本発明の第3の装置では、油膜の浮遊する
水面に、P偏光成分とS偏光成分の両方の成分を含む光
ビームを照射する投光手段と、前記水面からの反射光を
受光してそのP偏光成分の光量とS偏光成分の光量を測
定する受光手段と、これらP偏光成分とS偏光成分の光
量比に基づき水面上の油膜を検知する信号処理手段とを
備える油膜検知装置において、照射光ビームを直線形状
にする光ビーム変形手段と、照射光ビームの入射光軸に
対して規定した角度で反射した反射光のみを透過しそれ
以外の角度で反射した反射光を遮光するアレイ状の光ガ
イドとを技術的手段として採用することとする。
In the third apparatus of the present invention, a light projecting means for irradiating a light beam containing both a P-polarized component and an S-polarized component to a water surface on which an oil film floats, and receiving light reflected from the water surface An oil film detecting device comprising: light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component; and signal processing means for detecting an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. And a light beam deforming means for converting the irradiation light beam into a linear shape, and transmitting only reflected light reflected at a prescribed angle with respect to the incident optical axis of the irradiation light beam and blocking reflected light reflected at other angles. An array of light guides will be employed as technical means.

【0018】この第3の装置は、円筒面レンズ等の光ビ
ーム変形手段を用い、照射光ビームを直線形状に変換し
ているため、水面上の広い範囲に光ビームを照射でき
る。それ以外の構成は第1の装置と同じであり、油膜を
広い計測領域で高感度に正確に検知することができる。
本発明の第4の装置では、油膜の浮遊する水面に、P偏
光成分とS偏光成分の両方の成分を含む光ビームを照射
する投光手段と、前記水面からの反射光を受光してその
P偏光成分の光量とS偏光成分の光量を測定する受光手
段と、これらP偏光成分とS偏光成分の光量比に基づき
水面上の油膜を検知する信号処理手段とを備える油膜検
知装置において、照射光ビームを直線形状にする光ビー
ム変形手段と、P偏光成分とS偏光成分の光量をそれぞ
れ測定するアレイ状の光検出器とを技術的手段として採
用することとする。
This third device uses a light beam deforming means such as a cylindrical lens to convert the irradiation light beam into a linear shape, so that the light beam can be irradiated over a wide range on the water surface. The other configuration is the same as that of the first device, and the oil film can be accurately detected with high sensitivity in a wide measurement area.
In the fourth apparatus of the present invention, a light projecting unit that irradiates a light beam containing both a P-polarized component and an S-polarized component to a water surface on which an oil film floats, and receives reflected light from the water surface to receive the light beam. In the oil film detecting apparatus, the light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component, and the signal processing means for detecting the oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component are irradiated. Light beam deforming means for converting the light beam into a linear shape, and an array of photodetectors for measuring the amounts of the P-polarized light component and the S-polarized light component are employed as technical means.

【0019】この第4の装置は、円筒面レンズ等の光ビ
ーム変形手段を用い、照射光ビームを直線形状に変換し
ているため、水面上の広い範囲に光ビームを照射でき
る。それ以外の構成は第2の装置と同じであり、油膜を
広い計測領域で高感度に正確に検知することができる。
本発明の第5の装置では、油膜の浮遊する水面に、P偏
光成分とS偏光成分の両方の成分を含む光ビームを照射
する投光手段と、前記水面からの反射光を受光してその
P偏光成分の光量とS偏光成分の光量を測定する受光手
段と、これらP偏光成分とS偏光成分の光量比に基づき
水面上の油膜を検知する信号処理手段とを備える油膜検
知装置において、光ビームを2次元走査して水面上に照
射する光ビーム2次元走査手段と、走査光ビームの入射
光軸に対して規定した角度で反射した反射光のみを透過
しそれ以外の角度で反射した反射光を遮光する格子状の
光ガイドとを技術的手段として採用することとする。
This fourth device uses a light beam deforming means such as a cylindrical lens to convert the irradiation light beam into a linear shape, so that the light beam can be irradiated over a wide area on the water surface. The other configuration is the same as that of the second device, and the oil film can be accurately detected with high sensitivity in a wide measurement area.
In the fifth device of the present invention, a light projecting unit that irradiates a light beam containing both a P-polarized component and an S-polarized component to a water surface on which an oil film floats, and receives light reflected from the water surface to receive the light beam. An oil film detecting apparatus comprising: a light receiving unit that measures the light amount of the P-polarized component and the light amount of the S-polarized component; and a signal processing unit that detects an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. A light beam two-dimensional scanning means for two-dimensionally scanning the beam and irradiating the water surface, and a reflection means for transmitting only reflected light reflected at a specified angle with respect to an incident optical axis of the scanning light beam and reflecting at other angles A lattice-shaped light guide that blocks light is employed as technical means.

【0020】この第5の装置は、2次元の光ビーム走査
手段で照射光ビームを面状に走査しているため、水面上
のより広い範囲に光ビームを照射できる。水面が波立っ
ている場合には、本発明の第1の装置と同様に、走査光
ビームは、水面上のそれぞれの照射位置に生じた波によ
って様々な方向に反射される。そこで、走査光ビームの
入射光軸に対して規定した角度で反射した反射光のみを
透過しそれ以外の角度で反射した反射光を遮光する格子
状の光ガイドを設け、この格子状の光ガイドを通過した
反射光のみを集光し受光するようにする。これにより、
受光した光のP偏光成分とS偏光成分の光量比は安定す
るため、波立ちに影響されずに、油膜を広い計測領域で
高感度に正確に検知することができる。第1の装置と違
うのは、照射光ビームを面状に走査しているため、油膜
が水面上を浮遊しているときのみならず、停止している
ときにも広い範囲で油膜を捕らえることができることで
ある。
In the fifth apparatus, since the irradiation light beam is scanned in a plane by the two-dimensional light beam scanning means, the light beam can be applied to a wider area on the water surface. When the water surface is wavy, the scanning light beam is reflected in various directions by waves generated at respective irradiation positions on the water surface, as in the first device of the present invention. Therefore, a grating light guide is provided that transmits only reflected light reflected at a specified angle with respect to the incident optical axis of the scanning light beam and blocks reflected light reflected at other angles. Only the reflected light that has passed through is collected and received. This allows
Since the light amount ratio between the P-polarized light component and the S-polarized light component of the received light is stable, the oil film can be accurately detected with high sensitivity in a wide measurement area without being affected by the ripple. The difference from the first device is that the irradiating light beam is scanned in a planar manner, so that not only when the oil film is floating on the water surface but also when it is stopped, the oil film can be captured over a wide area. Is what you can do.

【0021】本発明の第6の装置では、油膜の浮遊する
水面に、P偏光成分とS偏光成分の両方の成分を含む光
ビームを照射する投光手段と、前記水面からの反射光を
受光してそのP偏光成分の光量とS偏光成分の光量を測
定する受光手段と、これらP偏光成分とS偏光成分の光
量比に基づき水面上の油膜を検知する信号処理手段とを
備える油膜検知装置において、光ビームを2次元走査し
て水面上に照射する光ビーム2次元走査手段と、P偏光
成分とS偏光成分の光量をそれぞれ測定するCCD素子
とを技術的手段として採用することとする。
In the sixth apparatus of the present invention, a light projecting means for irradiating a light surface containing both a P-polarized light component and an S-polarized light component to a water surface on which an oil film floats, and receiving light reflected from the water surface An oil film detecting device comprising: light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component; and signal processing means for detecting an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. In the above, two-dimensional light beam scanning means for two-dimensionally scanning a light beam onto a water surface, and CCD elements for measuring the amounts of P-polarized light component and S-polarized light component are employed as technical means.

【0022】この第6の装置は、2次元の光ビーム走査
手段で照射光ビームを面状に走査しているため、第5の
装置と同様に、水面上のより広い範囲に光ビームを照射
できる。そして、水面からの反射光のP偏光成分とS偏
光成分の光量をそれぞれ測定するCCD素子を備えてい
るため、CCDの各素子が、走査光ビームの照射される
水面上のそれぞれ異なる位置を観察でき、各素子は水面
上の異なる位置からそれぞれ規定の反射角で反射した光
を受光するので、受光した光のP偏光成分とS偏光成分
の比は水面が波立っていても安定し、これにより油膜を
高感度で正確に検知できる。本発明の第5の装置と違う
のは、CCD素子を用いているので油膜の画像出力を得
ることができることである。
In the sixth device, since the irradiation light beam is scanned in a plane by the two-dimensional light beam scanning means, the light beam is radiated to a wider area on the water surface as in the fifth device. it can. Since the CCD devices for measuring the amounts of the P-polarized light component and the S-polarized light component of the reflected light from the water surface are provided, each of the CCD devices observes a different position on the water surface irradiated with the scanning light beam. Since each element receives light reflected at a predetermined reflection angle from a different position on the water surface, the ratio of the P-polarized light component to the S-polarized light component of the received light is stable even if the water surface is wavy, Thereby, the oil film can be detected with high sensitivity and accuracy. The difference from the fifth device of the present invention is that an image output of an oil film can be obtained because a CCD element is used.

【0023】本発明の第7の装置では、油膜の浮遊する
水面に、P偏光成分とS偏光成分の両方の成分を含む光
ビームを照射する投光手段と、前記水面からの反射光を
受光してそのP偏光成分の光量とS偏光成分の光量を測
定する受光手段と、これらP偏光成分とS偏光成分の光
量比に基づき水面上の油膜を検知する信号処理手段とを
備える油膜検知装置において、照射光ビームを前記水面
上に広がる面形状の光ビームにする光ビーム変形手段
と、前記受光手段が照射光ビームの入射光軸に対して規
定した角度で反射した反射光のみを透過しそれ以外の角
度で反射した反射光を遮光する格子状の光ガイドとを技
術的手段として採用することとする。
In a seventh apparatus of the present invention, a light projecting means for irradiating a light surface containing both a P-polarized light component and an S-polarized light component to a water surface on which an oil film floats, and receiving reflected light from the water surface An oil film detecting device comprising: light receiving means for measuring the light amount of the P-polarized component and the light amount of the S-polarized component; and signal processing means for detecting an oil film on the water surface based on the light amount ratio of the P-polarized component and the S-polarized component. A light beam deforming means for converting the irradiation light beam into a light beam having a surface shape spreading on the water surface, and transmitting only reflected light reflected by the light receiving means at a prescribed angle with respect to an incident optical axis of the irradiation light beam. A grid-like light guide that blocks light reflected at other angles is employed as technical means.

【0024】この第7の装置は、レンズ等の光ビーム変
形手段を用い、照射光ビームを面形状に変換しているた
め、水面上の広い範囲に光ビームを照射できる。それ以
外の構成は第5の装置と同じであり、油膜を広い計測領
域で高感度に正確に検知することができる。本発明の第
8の装置では、油膜の浮遊する水面に、P偏光成分とS
偏光成分の両方の成分を含む光ビームを照射する投光手
段と、前記水面からの反射光を受光してそのP偏光成分
の光量とS偏光成分の光量を測定する受光手段と、これ
らP偏光成分とS偏光成分の光量比に基づき水面上の油
膜を検知する信号処理手段とを備える油膜検知装置にお
いて、照射光ビームを前記水面上に広がる面形状の光ビ
ームにする光ビーム変形手段と、P偏光成分とS偏光成
分の光量をそれぞれ測定するCCD素子とを技術的手段
として採用することとする。
In the seventh apparatus, since the irradiation light beam is converted into a surface shape by using a light beam deformation means such as a lens, the light beam can be applied to a wide area on the water surface. The other configuration is the same as that of the fifth device, and the oil film can be accurately detected with high sensitivity in a wide measurement area. In the eighth device of the present invention, the P-polarized component and S
A light projecting means for irradiating a light beam containing both components of the polarized light component, a light receiving means for receiving the reflected light from the water surface and measuring the light quantity of the p-polarized component and the light quantity of the s-polarized component; A signal processing unit that detects an oil film on the water surface based on the light amount ratio of the component and the S-polarized component, in an oil film detection device, a light beam deformation unit that converts the irradiation light beam into a light beam having a surface shape spreading on the water surface, A CCD element for measuring the light amounts of the P-polarized component and the S-polarized component will be employed as technical means.

【0025】この第8の装置は、レンズ等の光ビーム変
形手段を用い、照射光ビームを面形状に変換しているた
め、水面上の広い範囲に光ビームを照射できる。それ以
外の構成は第6の装置と同じであり、油膜を広い計測領
域で高感度に正確に検知することができる。
In the eighth device, since the irradiation light beam is converted into a surface shape by using a light beam deformation means such as a lens, the light beam can be applied to a wide area on the water surface. The other configuration is the same as that of the sixth device, and the oil film can be accurately detected with high sensitivity in a wide measurement area.

【0026】[0026]

【発明の実施の形態】以下、本発明を8つの実施例にも
とづき説明する。 [発明の実施例] [実施例1]発明の第1の実施例としての油膜検知装置
を図1に示す。この図において、従来の油膜検知装置例
として示した図12の符号と同一のものは、同一物を示
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on eight embodiments. [Embodiment of the Invention] [Embodiment 1] Fig. 1 shows an oil film detection device as a first embodiment of the invention. In this figure, the same components as those in FIG. 12 shown as examples of the conventional oil film detecting device indicate the same components.

【0027】図1において、P偏光成分とS偏光成分を
均等に含む光ビーム4を、ポリゴンミラー27とレンズ
28からなる光ビーム走査機構29で平行走査して油膜
5の浮遊する波立った水面に、ある入射角7で斜めから
照射する。光ビームの走査方向30は油膜の流れる方向
31に交差するようになっていて、走査範囲32内に流
れてくる油膜5を次々と照射する。走査光ビーム33は
水面上の走査範囲32内のそれぞれの照射位置に生じた
波によって様々な方向に反射される。これらの反射光1
0を、複数の細長いセルからなるアレイ状の光ガイド3
4に通すことによって、規定した角度で反射した反射光
のみを透過しそれ以外の角度で反射した反射光を遮光す
るようにした後、レンズ群35で集光し、偏光ビームス
プリッタ12に通し、P偏光成分13とS偏光成分14
に分離する。分離したP偏光成分13とS偏光成分14
をフォトダイオード15とフォトダイオード16で各々
光電変換して各々の光量を電気信号に変換する。各々の
電気信号は、図1に示す従来技術の装置と同様な信号処
理部36で処理することができ、比較回路24は水面に
油膜のない正常時に相当する基準値25と処理信号を比
較し、あらかじめ設定した範囲を超えたときに油膜があ
ると判定し、外部に警報26を出力する。
In FIG. 1, a light beam 4 containing a P-polarized light component and an S-polarized light component is scanned in parallel by a light beam scanning mechanism 29 comprising a polygon mirror 27 and a lens 28 so that the oil film 5 floats on a wavy water surface. At a certain incident angle 7. The scanning direction 30 of the light beam intersects the direction 31 in which the oil film flows, and irradiates the oil film 5 flowing in the scanning range 32 one after another. The scanning light beam 33 is reflected in various directions by waves generated at respective irradiation positions in the scanning range 32 on the water surface. These reflected light 1
0 is an array of light guides 3 composed of a plurality of elongated cells.
4 so that only the reflected light reflected at the specified angle is transmitted and the reflected light reflected at other angles is blocked, and then condensed by the lens group 35 and passed through the polarizing beam splitter 12. P polarization component 13 and S polarization component 14
To separate. Separated P-polarized component 13 and S-polarized component 14
Is photoelectrically converted by the photodiode 15 and the photodiode 16 to convert each light amount into an electric signal. Each electric signal can be processed by a signal processing unit 36 similar to the prior art apparatus shown in FIG. 1, and the comparison circuit 24 compares the processed signal with a reference value 25 corresponding to a normal state where there is no oil film on the water surface. , When it exceeds a preset range, it is determined that there is an oil film, and an alarm 26 is output to the outside.

【0028】図2には、実施例1の装置で、油膜の無い
水面と油膜が浮遊する水面を測定したときのP偏光成分
とS偏光成分との反射光量の比を入射角の関数として示
す。レーザ光の走査幅は100mm、波長は633n
m、油膜の膜厚は1μmである。入射角45°〜60°
付近のデータを示していないのは、この付近ではP偏光
成分の反射強度が極めて小さく計測誤差が大きいためで
ある。図から、油膜のある場合と無い場合の計測差が大
きいのは入射角60°〜90°であり、この範囲の入射
角で測定すると効率よく油膜を検知できることがわか
る。以上のように、発明の第1の実施例の装置は、水面
の波立ちに影響されずに、油膜を広い計測領域で高感度
に正確に検知することができる。 [実施例2]発明の第2の実施例としての油膜検知装置
を図3に示す。この図において、図12および図1に示
した符号と同一のものは同一物を示している。
FIG. 2 shows the ratio of the amount of reflected light between the P-polarized light component and the S-polarized light component as a function of the incident angle when measuring the water surface without the oil film and the water surface where the oil film floats with the apparatus of the first embodiment. . Laser beam scanning width is 100mm, wavelength is 633n
m, the thickness of the oil film is 1 μm. Incident angle 45 ° -60 °
The reason why the data in the vicinity is not shown is that the reflection intensity of the P-polarized light component is extremely small and the measurement error is large in the vicinity. From the figure, it can be seen that the measurement difference between the case with the oil film and the case without the oil film is large at the incident angle of 60 ° to 90 °. As described above, the apparatus according to the first embodiment of the present invention can accurately detect an oil film with high sensitivity in a wide measurement area without being affected by ripples on the water surface. [Embodiment 2] FIG. 3 shows an oil film detecting apparatus according to a second embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12 and 1 indicate the same components.

【0029】この実施例では、実施例1の装置と同じよ
うに、走査光ビーム30を油膜5の浮遊する波立った水
面に斜めから照射して、照射範囲39内に流れてくる油
膜を次々と照射する。そして、水面からの反射光10を
レンズ群35で集光し、偏光ビームスプリッタ12に通
し、P偏光成分13とS偏光成分14に分離する。分離
したP偏光成分13とS偏光成分14をフォトダイオー
ドアレイ37とフォトダイオードアレイ38上に結像さ
せ、フォトダイオードアレイ37、38の各素子で受光
したP偏光成分13とS偏光成分14の各素子ごとの光
量をそれぞれ電気信号に変換する。フォトダイオードア
レイ37、38の各素子は、走査光ビーム30の照射さ
れる水面上のそれぞれ異なる位置を観察するので、各素
子は水面上の異なる観察位置からそれぞれ規定の反射角
で反射した光を受光することになり、フォトダイオード
アレイ37とフォトダイオードアレイ38の対応する各
素子におけるP偏光成分とS偏光成分の光量比は水面が
波立っていても安定している。各素子のそれぞれの電気
信号は、図1に示す従来技術の装置と同様な信号処理部
36で処理することができる。ただし、この信号処理は
フォトダイオードアレイ37とフォトダイオードアレイ
38の各素子ごとに行う。比較回路24は水面に油膜の
ない正常時に相当する基準値25と各素子ごとの処理信
号を比較し、あらかじめ設定した範囲を超えたときに油
膜があると判定し、外部に警報26を出力する。
In this embodiment, similarly to the apparatus of the first embodiment, the scanning light beam 30 is obliquely applied to the wavy water surface where the oil film 5 floats, and the oil film flowing into the irradiation area 39 is successively emitted. Irradiation. Then, the reflected light 10 from the water surface is condensed by a lens group 35, passes through a polarizing beam splitter 12, and is separated into a P-polarized component 13 and an S-polarized component 14. The separated P-polarized light component 13 and S-polarized light component 14 are imaged on a photodiode array 37 and a photodiode array 38, and each of the P-polarized light component 13 and the S-polarized light component 14 received by each element of the photodiode arrays 37 and 38. The light quantity of each element is converted into an electric signal. Each element of the photodiode arrays 37 and 38 observes a different position on the surface of the water irradiated with the scanning light beam 30, so that each element reflects light reflected from a different observation position on the surface of the water at a predetermined reflection angle. As a result, the light amount ratio between the P-polarized light component and the S-polarized light component in the corresponding elements of the photodiode arrays 37 and 38 is stable even if the water surface is wavy. Each electrical signal of each element can be processed by a signal processing unit 36 similar to the prior art device shown in FIG. However, this signal processing is performed for each element of the photodiode arrays 37 and 38. The comparison circuit 24 compares a reference value 25 corresponding to a normal state where there is no oil film on the water surface with the processing signal of each element, determines that there is an oil film when it exceeds a preset range, and outputs an alarm 26 to the outside. .

【0030】図4に、実施例2の装置で、油膜の無い水
面と油膜が浮遊する水面を測定したときのP偏光成分と
S偏光成分の反射光量の比をフォトダイオードアレイの
各素子ごとに示す。レーザ光の走査幅は100mm、波
長は633nm、フォトダイオードアレイの素子数は1
6、油膜の膜厚は1μm、直径は50mmである。図か
ら、油膜のある場合と無い場合でP偏光成分とS偏光成
分の光量比が異なり、走査光ビームの照射範囲にある油
膜を検知できることがわかる。以上のように、この実施
例2の装置は、実施例1の装置と同様に、油膜を広い計
測領域で高感度に正確に検知することができる。 [実施例3]発明の第3の実施例としての油膜検知装置
を図5に示す。この図において、図12、図1に示した
符号と同一のものは同一物を示している。
FIG. 4 shows the ratio of the amount of reflected light of the P-polarized light component to that of the S-polarized light component when the water surface without an oil film and the water surface where the oil film floats are measured by the apparatus of the second embodiment for each element of the photodiode array. Show. The scanning width of the laser beam is 100 mm, the wavelength is 633 nm, and the number of elements of the photodiode array is 1.
6. The thickness of the oil film is 1 μm and the diameter is 50 mm. From the figure, it can be seen that the light amount ratio between the P-polarized light component and the S-polarized light component differs between the case with and without the oil film, and the oil film in the irradiation range of the scanning light beam can be detected. As described above, the apparatus according to the second embodiment can accurately detect the oil film with high sensitivity in a wide measurement area, similarly to the apparatus according to the first embodiment. [Embodiment 3] FIG. 5 shows an oil film detecting apparatus according to a third embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12 and 1 indicate the same components.

【0031】この実施例では、P偏光成分とS偏光成分
を均等に含む光ビーム4を、円筒面レンズ39とレンズ
40からなる光ビーム変形手段41で直線形状に変換し
て、油膜5の浮遊する波立った水面に直線状に照射す
る。光ビームの長径方向は油膜の流れる方向31に交差
するようになっていて、照射範囲42内に流れてくる油
膜を次々と照射できる。それ以外の構成は実施例1と同
じであり、実施例1と同じ性能が得られる。 [実施例4]発明の第4の実施例としての油膜検知装置
を図6に示す。この図において、図12、図3、図5に
示した符号と同一のものは同一物を示している。
In this embodiment, the light beam 4 including the P-polarized light component and the S-polarized light component is converted into a linear shape by the light beam deforming means 41 comprising the cylindrical lens 39 and the lens 40, and the oil film 5 is suspended. Irradiate the wavy water surface linearly. The major axis direction of the light beam intersects the flowing direction 31 of the oil film, so that the oil film flowing into the irradiation range 42 can be successively irradiated. The other configuration is the same as that of the first embodiment, and the same performance as that of the first embodiment is obtained. [Embodiment 4] FIG. 6 shows an oil film detecting apparatus according to a fourth embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12, 3, and 5 indicate the same components.

【0032】この実施例では、実施例4と同様に、光ビ
ーム4を、光ビーム変形手段41で直線形状に変換し
て、油膜5の浮遊する波立った水面に直線状に照射す
る。光ビームの長径方向は油膜の流れる方向31に交差
するようになっていて、照射範囲42内に流れてくる油
膜を次々と照射できる。それ以外の構成は実施例2と同
じであり、実施例2と同じ性能が得られる。 [実施例5]発明の第5の実施例としての油膜検知装置
を図7に示す。この図において、図12、図1に示した
符号と同一のものは同一物を示している。
In this embodiment, similarly to the fourth embodiment, the light beam 4 is converted into a linear shape by the light beam deforming means 41, and the light beam 4 is irradiated linearly on the wavy water surface of the oil film 5. The major axis direction of the light beam intersects the flowing direction 31 of the oil film, so that the oil film flowing into the irradiation range 42 can be successively irradiated. The other configuration is the same as that of the second embodiment, and the same performance as that of the second embodiment is obtained. [Embodiment 5] FIG. 7 shows an oil film detecting apparatus according to a fifth embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12 and 1 indicate the same components.

【0033】P偏光成分とS偏光成分を均等に含む光ビ
ーム4を、第1のガルバノミラー43と第2のガルバノ
ミラー44とレンズ45とからなる2次元光ビーム走査
機構46で面状に走査して、油膜5の浮遊する波立った
水面に、ある入射角7で斜めから照射する。本実施例で
は、照射光ビームを面状に走査しているため、実施例1
の装置に比べ水面上のより広い範囲に光ビームを照射で
きる。2次元の走査光ビーム47は水面上の走査範囲4
8内のそれぞれの照射位置に生じた波によって様々な方
向に反射される。これらの反射光10を、複数の細長い
セルからなる格子状の光ガイド49に通すことによっ
て、規定した角度で反射した反射光のみを透過しそれ以
外の角度で反射した反射光を遮光するようにした後、レ
ンズ群50で集光し、偏光ビームスプリッタ12に通
し、P偏光成分13とS偏光成分14に分離する。分離
したP偏光成分13とS偏光成分14をフォトダイオー
ド15とフォトダイオード16で各々光電変換して各々
の光量を電気信号に変換する。各々の電気信号は、図1
に示す従来技術の装置と同様な信号処理部36で処理す
ることができ、比較回路24は水面に油膜のない正常時
に相当する基準値25と処理信号を比較し、あらかじめ
設定した範囲を超えたときに油膜があると判定し、外部
に警報26を出力する。以上のように、発明の第5の実
施例の装置は、水面の波立ちに影響されずに、油膜を広
い計測領域で高感度に正確に検知することができる。実
施例1の装置と違うのは、照射光ビームを面状に走査し
ているため、油膜が水面上を浮遊しているときのみなら
ず停止しているときにも広い範囲で油膜を捕らえること
ができることである。 [実施例6]発明の第6の実施例としての油膜検知装置
を図8に示す。この図において、図12、図1、図2に
示した符号と同一のものは同一物を示している。
A two-dimensional light beam scanning mechanism 46 comprising a first galvanometer mirror 43, a second galvanometer mirror 44, and a lens 45 scans the light beam 4 including a P-polarization component and an S-polarization component equally in a plane. Then, the floating water surface of the oil film 5 is irradiated obliquely at a certain incident angle 7. In this embodiment, since the irradiation light beam is scanned in a plane, the first embodiment is used.
The light beam can be irradiated to a wider area on the water surface than the device of the above. The two-dimensional scanning light beam 47 has a scanning range 4 on the water surface.
The wave generated at each irradiation position in 8 reflects in various directions. The reflected light 10 is passed through a lattice-shaped light guide 49 composed of a plurality of elongated cells so that only the reflected light reflected at a specified angle is transmitted and the reflected light reflected at other angles is blocked. After that, the light is condensed by the lens group 50, passes through the polarization beam splitter 12, and is separated into a P-polarized component 13 and an S-polarized component 14. The separated P-polarized light component 13 and S-polarized light component 14 are photoelectrically converted by a photodiode 15 and a photodiode 16, respectively, and each light amount is converted into an electric signal. Each electric signal is shown in FIG.
And the comparison circuit 24 compares the processing signal with a reference value 25 corresponding to a normal state where there is no oil film on the water surface, and exceeds a predetermined range. Sometimes it is determined that there is an oil film, and an alarm 26 is output to the outside. As described above, the apparatus according to the fifth embodiment of the present invention can accurately detect an oil film with high sensitivity in a wide measurement area without being affected by the ripples on the water surface. The difference from the apparatus of the first embodiment is that the irradiation light beam is scanned in a plane, so that the oil film can be captured in a wide range not only when the oil film is floating above the water surface but also when the oil film is stopped. Is what you can do. Sixth Embodiment FIG. 8 shows an oil film detection device according to a sixth embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12, 1 and 2 represent the same components.

【0034】この実施例では、実施例5の装置と同じよ
うに、2次元走査した光ビーム47を油膜5の浮遊する
波立った水面に照射して、照射範囲48内にある油膜5
を面状に走査する。そして、水面からの反射光10をレ
ンズ群35で集光し、偏光ビームスプリッタ12に通
し、P偏光成分13とS偏光成分14に分離する。分離
したP偏光成分13とS偏光成分14をCCDカメラ5
0とCCDカメラ51上に結像させ、CCDカメラ5
0、51の各素子で受光したP偏光成分13とS偏光成
分14の各素子ごとの光量をそれぞれ電気信号に変換す
る。CCDカメラ50、51の各素子は、2次元走査光
ビーム47の照射される水面上のそれぞれ異なる位置を
観察するので、各素子は水面上の異なる観察位置からそ
れぞれ規定の反射角で反射した光を受光することにな
り、CCDカメラ50とCCDカメラ51の対応する各
素子におけるP偏光成分とS偏光成分の光量比は水面が
波立っていても安定している。各素子のそれぞれの電気
信号は、図1に示す従来技術の装置と同様な信号処理部
36で処理することができる。ただし、この信号処理は
CCDカメラ50とCCDカメラ51の各素子ごとに行
う。比較回路24は水面に油膜のない正常時に相当する
基準値25と各素子ごとの処理信号を比較し、あらかじ
め設定した範囲を超えたときに油膜があると判定し、外
部に警報26を出力する。
In this embodiment, similarly to the apparatus of the fifth embodiment, a two-dimensionally scanned light beam 47 is applied to the floating wavy surface of the oil film 5, and the oil film 5 within the irradiation range 48 is irradiated.
Is scanned in a plane. Then, the reflected light 10 from the water surface is condensed by a lens group 35, passes through a polarizing beam splitter 12, and is separated into a P-polarized component 13 and an S-polarized component 14. The separated P-polarized light component 13 and S-polarized light component 14 are
0 and an image is formed on the CCD camera 51, and the CCD camera 5
The light amount of each of the P-polarized light component 13 and the S-polarized light component 14 received by each of the elements 0 and 51 is converted into an electric signal. Since the elements of the CCD cameras 50 and 51 observe different positions on the water surface irradiated with the two-dimensional scanning light beam 47, each element reflects light reflected at a predetermined reflection angle from a different observation position on the water surface. Is received, and the light amount ratio between the P-polarized light component and the S-polarized light component in the corresponding elements of the CCD camera 50 and the CCD camera 51 is stable even if the water surface is wavy. Each electrical signal of each element can be processed by a signal processing unit 36 similar to the prior art device shown in FIG. However, this signal processing is performed for each element of the CCD camera 50 and the CCD camera 51. The comparison circuit 24 compares a reference value 25 corresponding to a normal state where there is no oil film on the water surface with the processing signal of each element, determines that there is an oil film when it exceeds a preset range, and outputs an alarm 26 to the outside. .

【0035】図9に、実施例6の装置で、油膜が浮遊す
る水面を測定したときのP偏光成分とS偏光成分の反射
光量の比をCCDカメラの各素子に対応する画素の画像
データとして示す。レーザ光の走査幅は100mm×1
00mm、波長は633nm、油膜の膜厚は1μm、直
径は50mmである。図から、P偏光成分とS偏光成分
の光量比により、走査光ビームの照射範囲にある油膜を
検知できることがわかる。以上のように、この実施例8
の装置は、実施例5の装置と同様に、油膜を広い計測領
域で高感度に正確に検知することができる。実施例5の
装置と違うのは、CCDカメラを用いているので油膜の
画像出力を得ることができることである。 [実施例7]発明の第7の実施例としての油膜検知装置
を図10に示す。この図において図12、図1、図7に
示した符号と同一のものは同一物を示している。この実
施例では、P偏光成分とS偏光成分を均等に含む光ビー
ム4を、凹レンズ52とレンズ53からなる光ビーム変
形手段54で面形状に変換して、油膜5の浮遊する波立
った水面に面状に照射する。それ以外の構成は実施例5
と同じであり、実施例5の装置と同じ性能が得られる。 [実施例8]発明の第8の実施例としての油膜検知装置
を図11に示す。この図において図12、図8、図10
に示した符号と同一のものは同一物を示している。この
実施例では、実施例7と同様に、光ビーム4を、光ビー
ム変形手段54で面形状に変換して、油膜5の浮遊する
波立った水面に面状に照射する。それ以外の構成は実施
例6と同じであり、実施例6と同じ性能が得られる。
FIG. 9 shows the ratio of the amount of reflected light between the P-polarized light component and the S-polarized light component when measuring the water surface on which the oil film floats as the image data of the pixel corresponding to each element of the CCD camera. Show. Scanning width of laser beam is 100mm × 1
00 mm, the wavelength is 633 nm, the thickness of the oil film is 1 μm, and the diameter is 50 mm. From the figure, it is understood that the oil film in the irradiation range of the scanning light beam can be detected based on the light amount ratio between the P-polarized light component and the S-polarized light component. As described above, this embodiment 8
This device can accurately detect the oil film with high sensitivity in a wide measurement region, similarly to the device of the fifth embodiment. The difference from the apparatus of the fifth embodiment is that an image output of an oil film can be obtained because a CCD camera is used. Seventh Embodiment FIG. 10 shows an oil film detecting device according to a seventh embodiment of the present invention. In this figure, the same components as those shown in FIGS. 12, 1 and 7 indicate the same components. In this embodiment, a light beam 4 including a P-polarized component and an S-polarized component is converted into a surface shape by a light beam deforming means 54 including a concave lens 52 and a lens 53, and the floating water surface of the oil film 5 Is irradiated in a planar manner. Other configurations are described in Example 5.
And the same performance as the device of the fifth embodiment is obtained. [Eighth Embodiment] FIG. 11 shows an oil film detecting device according to an eighth embodiment of the present invention. In this figure, FIG. 12, FIG. 8, FIG.
Are the same as those shown in FIG. In this embodiment, similarly to the seventh embodiment, the light beam 4 is converted into a surface shape by the light beam deforming means 54, and the light beam 4 is irradiated on the floating water surface of the oil film 5 in a surface shape. The other configuration is the same as that of the sixth embodiment, and the same performance as that of the sixth embodiment is obtained.

【0036】実施例1〜8の図には油膜検知装置の設置
方法が示されていないが、油水位の変化しない水槽では
その周囲に固定して、水位の変化する河川、海洋等では
浮きフロートに乗せて水面に浮かして設置する方法を採
用することができる。また、太陽光などの外乱光の影響
があるときには、受光部の光電変換器の前に投光ビーム
の波長のみを通す干渉フィルタを設けたり、投光ビーム
を変調してその変調周波数のみを信号処理部で選別した
りして、外乱光の影響を除くことができる。実施例で
は、P偏光成分とS偏光成分の両方を含む光ビームを用
いたが、2つのレーザ光源を用いてP偏光特性を有する
光ビームとS偏光特性を有する光ビームを交互に照射し
て、偏光ビームスプリッタ12を省略して、反射光のP
偏光成分とS偏光成分の強度を1つの光電変換器15で
測定するようにしても、実施例と同じ性能が得られる。
The method of installing the oil film detecting device is not shown in the drawings of Embodiments 1 to 8, but it is fixed around the water tank where the oil level does not change, and floats in the river or ocean where the water level changes. And a method of floating on the water surface for installation. Also, when there is an influence of disturbance light such as sunlight, an interference filter that passes only the wavelength of the projected beam is provided in front of the photoelectric converter in the light receiving unit, or the projected beam is modulated and only the modulation frequency is signaled. The influence of disturbance light can be eliminated by sorting in the processing unit. In the embodiment, the light beam including both the P-polarized component and the S-polarized component is used. However, the light beam having the P-polarized light and the light beam having the S-polarized light are alternately irradiated by using two laser light sources. , The polarization beam splitter 12 is omitted, and P
Even if the intensities of the polarized light component and the S-polarized light component are measured by one photoelectric converter 15, the same performance as that of the embodiment can be obtained.

【0037】[0037]

【発明の効果】本発明の油膜検知装置は、浄水場、養殖
場などに流入する油分、また、工場排水施設などから流
出する油分を、水面上の油膜として自動的に検知する油
膜検知装置に関し、従来の装置の問題点である、計測領
域が狭いために、計測点を通過しない油膜を検知できな
いという問題を解決するために考案されたものであり、
照射光ビームを、直線的または2次元に走査する手段
や、直線形状または面形状に変換する手段を用いて、油
膜の浮遊する水面に広く照射し、光ガイドやアレイ状の
光検出器またはCCD素子を用いて、反射光の受光角度
を一定にして反射光のP偏光成分とS偏光成分を受光す
るようにして油膜を検知するので、広い計測領域で高感
度に正確に、水面上に浮遊する油膜を連続自動監視でき
る。
The oil film detecting device according to the present invention relates to an oil film detecting device for automatically detecting an oil component flowing into a water purification plant, an aquaculture plant or the like, or an oil component flowing out of a factory drainage facility as an oil film on the water surface. , Was devised to solve the problem of the conventional device, that the measurement area is small, the oil film that does not pass through the measurement point can not be detected,
Using a means to scan the irradiation light beam linearly or two-dimensionally, or a means to convert the light beam into a linear shape or a surface shape, irradiate the water surface where the oil film floats widely, and use a light guide or an array-like photodetector or CCD The sensor detects the oil film by receiving the P-polarized light component and the S-polarized light component of the reflected light at a constant light receiving angle using the element, so it floats on the water surface with high sensitivity and accuracy in a wide measurement area. It can continuously and automatically monitor the oil slick that is generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】油膜検知装置の第1の発明例の模式図FIG. 1 is a schematic view of a first invention example of an oil film detection device.

【図2】油膜の無い水面と膜膜の浮遊する水面におけ
る、入射角に対するS偏光成分とP偏光成分の反射光量
の比の変化を示す図
FIG. 2 is a diagram showing a change in the ratio of the amount of reflected light of an S-polarized component and a reflected light of a P-polarized component with respect to an incident angle on a water surface having no oil film and a water surface on which the film film floats.

【図3】油膜検知装置の第2の発明例の模式図FIG. 3 is a schematic view of a second invention example of an oil film detection device.

【図4】油膜の無い水面と膜膜の浮遊する水面におい
て、フォトダイオードアレイの各素子に対応するS偏光
成分とP偏光成分の反射光量の比の変化を示す図
FIG. 4 is a diagram showing a change in the ratio of the amount of reflected light of the S-polarized light component and the reflected light amount of the P-polarized light component corresponding to each element of the photodiode array on the water surface having no oil film and the water surface on which the film film floats.

【図5】油膜検知装置の第3の発明例の模式図FIG. 5 is a schematic view of a third invention example of an oil film detection device.

【図6】油膜検知装置の第4の発明例の模式図FIG. 6 is a schematic view of a fourth invention example of an oil film detection device.

【図7】油膜検知装置の第5の発明例の模式図FIG. 7 is a schematic view of a fifth invention example of an oil film detection device.

【図8】油膜検知装置の第6の発明例の模式図FIG. 8 is a schematic view of a sixth example of the oil film detecting device of the present invention.

【図9】画像としての油膜の測定出力を示す図FIG. 9 is a diagram showing a measurement output of an oil film as an image.

【図10】油膜検知装置の第7の発明例の模式図FIG. 10 is a schematic view of an oil film detecting device according to a seventh embodiment of the present invention;

【図11】油膜検知装置の第8の発明例の模式図FIG. 11 is a schematic view of an eighth embodiment of the oil film detecting device.

【図12】従来の油膜検知装置の模式図FIG. 12 is a schematic view of a conventional oil film detection device.

【図13】水面、入射光、P偏光面、S偏光面との相互
関係の説明図
FIG. 13 is an explanatory diagram of a correlation between a water surface, incident light, a P-polarized surface, and an S-polarized surface.

【符号の説明】[Explanation of symbols]

1 : レーザ光源 2 : S偏光成分の振動方向 3 : P偏光成分の振動方向 4 : 光ビーム 5 : 油膜 6 : 水面 7 : 入射角 8 : 入射光軸 9 : 水面の法線 10 : 反射光 11 : ピンホール 12 : 偏光ビームスプリッタ 13 : P偏光成分 14 : S偏光成分 15,16: フォトダイオード 17,18: アンプ 19 : 演算回路 20 : コンパレータ 21 : 基準電圧 22 : ホールド回路 23 : 平均演算回路 24 : 比較回路 25 : 基準値 26 : 警報 27 : ポリゴンミラー 28 : レンズ 29 : 光ビーム走査機構 30 : 走査方向 31 : 油膜の流れる方向 32 : 走査範囲 33 : 走査光ビーム 34 : 光ガイド 35 : レンズ群 36 : 信号処理部 37,38: フォトダイオードアレイ 39 : 円筒面レンズ 40 : レンズ 41 : 光ビーム変形手段 42 : 照射範囲 43,44: ガルバノミラー 45 : レンズ 46 : 2次元光ビーム走査機構 47 : 走査光ビーム 48 : 走査範囲 49 : 光ガイド 50,51: CCDカメラ 52 : 凹レンズ 53 : レンズ 54 : 光ビーム変形手段 55 : 面状ビーム 56 : 照射範囲 1: laser light source 2: oscillation direction of S-polarized component 3: oscillation direction of P-polarized component 4: light beam 5: oil film 6: water surface 7: incident angle 8: incident optical axis 9: normal to water surface 10: reflected light 11 : Pinhole 12: Polarization beam splitter 13: P-polarization component 14: S-polarization component 15, 16: Photodiode 17, 18: Amplifier 19: Operation circuit 20: Comparator 21: Reference voltage 22: Hold circuit 23: Average operation circuit 24 : Comparison circuit 25: reference value 26: alarm 27: polygon mirror 28: lens 29: light beam scanning mechanism 30: scanning direction 31: direction of oil film flow 32: scanning range 33: scanning light beam 34: light guide 35: lens group 36: signal processing unit 37, 38: photodiode array 39: cylindrical lens 4 : Lens 41: light beam deforming means 42: irradiation range 43, 44: galvanometer mirror 45: lens 46: two-dimensional light beam scanning mechanism 47: scanning light beam 48: scanning range 49: light guide 50, 51: CCD camera 52: Concave lens 53: Lens 54: Light beam deforming means 55: Planar beam 56: Irradiation range

フロントページの続き (72)発明者 田中 良春 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Continuation of the front page (72) Inventor Yoshiharu Tanaka 1-1-1 Tanabe Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】油膜の浮遊する水面に、入射光軸が水面と
交わる点に立てた水面の法線および入射光軸を含む平面
に平行な偏光成分(以下、P偏光成分と記す)と前記平
面に垂直な偏光成分(以下、S偏光成分と記す)の両方
の成分を含む光ビームを照射する投光手段と、前記水面
からの反射光を受光してそのP偏光成分の光量とS偏光
成分の光量を測定する受光手段と、これらP偏光成分と
S偏光成分の光量比に基づき水面上の油膜を検知する信
号処理手段とを備える油膜検知装置であって、 前記投光手段が、光ビームを直線的に走査して水面上に
照射する光ビーム走査手段を備え、前記受光手段が、走
査光ビームの入射光軸に対して規定した角度で反射した
反射光のみを透過しそれ以外の角度で反射した反射光を
遮光するアレイ状の光ガイドを備えることを特徴とする
油膜検知装置。
1. A polarization component (hereinafter referred to as a P-polarization component) parallel to a plane including the normal line of the water surface and the incident optical axis, which is set at a point where the incident optical axis intersects the water surface, on the floating water surface of the oil film. A light projecting means for irradiating a light beam containing both components of a polarization component perpendicular to the plane (hereinafter referred to as S-polarization component); An oil film detection device comprising: a light receiving unit that measures a light amount of a component; and a signal processing unit that detects an oil film on a water surface based on a light amount ratio between the P-polarized component and the S-polarized component. Light beam scanning means for linearly scanning the beam to irradiate the surface of the water, wherein the light receiving means transmits only reflected light reflected at a specified angle with respect to the incident optical axis of the scanning light beam, and An array of light guides that block light reflected at an angle An oil film detection device comprising:
【請求項2】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、光ビームを直線的に走査して水面上に
照射する光ビーム走査手段を備え、前記受光手段が、P
偏光成分とS偏光成分の光量をそれぞれ測定するアレイ
状の光検出器を備えることを特徴とする油膜検知装置。
2. An oil film detecting apparatus comprising: a light projecting means, a light receiving means, and a signal processing means according to claim 1, wherein the light projecting means linearly scans a light beam to scan a water surface. Light beam scanning means for irradiating the light beam,
An oil film detection device comprising: an array of photodetectors for measuring the amounts of polarized light components and S-polarized light components.
【請求項3】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、照射光ビームを直線形状にする光ビー
ム変形手段を備え、前記受光手段が、照射光ビームの入
射光軸に対して規定した角度で反射した反射光のみを透
過しそれ以外の角度で反射した反射光を遮光するアレイ
状の光ガイドを備えることを特徴とする油膜検知装置。
3. An oil film detecting device comprising: a light projecting means, a light receiving means, and a signal processing means according to claim 1, wherein the light projecting means makes the irradiation light beam a linear shape. Means, wherein the light receiving means comprises an array-shaped light guide that transmits only reflected light reflected at a specified angle with respect to the incident optical axis of the irradiation light beam and blocks reflected light reflected at other angles. An oil film detection device characterized by the above-mentioned.
【請求項4】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、照射光ビームを直線形状にする光ビー
ム変形手段を備え、前記受光手段が、P偏光成分とS偏
光成分の光量をそれぞれ測定するアレイ状の光検出器を
備えることを特徴とする油膜検知装置。
4. An oil film detection device comprising: a light projecting means, a light receiving means, and a signal processing means according to claim 1, wherein the light projecting means makes the irradiation light beam a linear shape. An oil film detecting device, wherein the light receiving means comprises an array-shaped photodetector for measuring the amounts of the P-polarized light component and the S-polarized light component, respectively.
【請求項5】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、光ビームを2次元走査して水面上に照
射する光ビーム2次元走査手段を備え、前記受光手段
が、走査光ビームの入射光軸に対して規定した角度で反
射した反射光のみを透過しそれ以外の角度で反射した反
射光を遮光する格子状の光ガイドを備えることを特徴と
する油膜検知装置。
5. An oil film detecting apparatus comprising: a light projecting means, a light receiving means, and a signal processing means according to claim 1, wherein the light projecting means scans a light beam two-dimensionally and places it on a water surface. A light beam two-dimensional scanning means for irradiating is provided, and the light receiving means transmits only reflected light reflected at a prescribed angle with respect to an incident optical axis of the scanning light beam and shields reflected light reflected at other angles. An oil film detection device comprising a lattice-shaped light guide.
【請求項6】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、光ビームを2次元走査して水面上に照
射する光ビーム2次元走査手段を備え、前記受光手段
が、P偏光成分とS偏光成分の光量をそれぞれ測定する
CCD素子を備えることを特徴とする油膜検知装置。
6. An oil film detecting device comprising: a light projecting device according to claim 1, a light receiving device, and a signal processing device, wherein the light projecting device scans a light beam two-dimensionally and places the light beam on a water surface. An oil film detecting device, comprising: a two-dimensional scanning means for irradiating a light beam; and the light receiving means includes a CCD element for measuring a light amount of each of a P-polarized component and an S-polarized component.
【請求項7】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、照射光ビームを前記水面上に広がる面
形状の光ビームにする光ビーム変形手段を備え、前記受
光手段が、照射光ビームの入射光軸に対して規定した角
度で反射した反射光のみを透過しそれ以外の角度で反射
した反射光を遮光する格子状の光ガイドを備えることを
特徴とする油膜検知装置。
7. An oil film detection device comprising: the light projecting means according to claim 1, a light receiving means, and a signal processing means, wherein the light projecting means spreads an irradiation light beam on the water surface. A light beam deforming means for converting the reflected light reflected at an angle defined with respect to the incident optical axis of the irradiation light beam into a light beam and blocking the reflected light reflected at other angles. An oil film detecting device, comprising: a lattice-shaped light guide.
【請求項8】請求項1に記載の投光手段と、受光手段
と、信号処理手段とを備える油膜検知装置であって、 前記投光手段が、照射光ビームを前記水面上に広がる面
形状の光ビームにする光ビーム変形手段を備え、前記受
光手段が、P偏光成分とS偏光成分の光量をそれぞれ測
定するCCD素子を備えることを特徴とする油膜検知装
置。
8. An oil film detecting device comprising the light projecting means, the light receiving means, and the signal processing means according to claim 1, wherein the light projecting means spreads an irradiation light beam on the water surface. An oil film detecting device, comprising: a light beam deforming means for converting the light beam into a light beam; and the light receiving means includes a CCD element for measuring the light amount of each of the P-polarized component and the S-polarized component.
JP12846898A 1998-05-12 1998-05-12 Oil film detecting device Pending JPH11326188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12846898A JPH11326188A (en) 1998-05-12 1998-05-12 Oil film detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12846898A JPH11326188A (en) 1998-05-12 1998-05-12 Oil film detecting device

Publications (1)

Publication Number Publication Date
JPH11326188A true JPH11326188A (en) 1999-11-26

Family

ID=14985484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12846898A Pending JPH11326188A (en) 1998-05-12 1998-05-12 Oil film detecting device

Country Status (1)

Country Link
JP (1) JPH11326188A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429764A (en) * 2005-08-30 2007-03-07 Imp College Innovations Ltd A scanning device using a first optical system with a first focal length and a second optical system with a second focal length
JP2007147448A (en) * 2005-11-28 2007-06-14 Iwasaki Electric Co Ltd Oil film detector and oil film detection method
JP2009244119A (en) * 2008-03-31 2009-10-22 Dkk Toa Corp Reflectivity detecting device
JP2020527719A (en) * 2017-07-19 2020-09-10 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Systems and methods for high-speed wide-field illumination scanning for in vivo small animal fluorescence tomography
US11153499B2 (en) 2017-07-19 2021-10-19 Perkinelmer Health Sciences, Inc. Rapid, high dynamic range image acquisition with a charge-coupled device (CCD) camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429764A (en) * 2005-08-30 2007-03-07 Imp College Innovations Ltd A scanning device using a first optical system with a first focal length and a second optical system with a second focal length
JP2007147448A (en) * 2005-11-28 2007-06-14 Iwasaki Electric Co Ltd Oil film detector and oil film detection method
JP4654894B2 (en) * 2005-11-28 2011-03-23 岩崎電気株式会社 Oil film detection apparatus and method
JP2009244119A (en) * 2008-03-31 2009-10-22 Dkk Toa Corp Reflectivity detecting device
JP2020527719A (en) * 2017-07-19 2020-09-10 ペルキネルマー ヘルス サイエンシーズ, インコーポレイテッド Systems and methods for high-speed wide-field illumination scanning for in vivo small animal fluorescence tomography
US11141064B2 (en) 2017-07-19 2021-10-12 Perkinelmer Health Sciences, Inc. Systems and methods for rapid wide field illumination scanning for in vivo small animal fluorescence tomographic imaging
US11153499B2 (en) 2017-07-19 2021-10-19 Perkinelmer Health Sciences, Inc. Rapid, high dynamic range image acquisition with a charge-coupled device (CCD) camera

Similar Documents

Publication Publication Date Title
US5717485A (en) Foreign substance inspection apparatus
US5076692A (en) Particle detection on a patterned or bare wafer surface
CN106769882B (en) Oil spilling monitor and monitoring method thereof
JPH01187437A (en) Defect inspection device
CN103575737A (en) Defect detection method and device
KR20140133925A (en) Defect inspection method and defect inspection device
WO2015011968A1 (en) Inspection device
JPS5780546A (en) Detecting device for foreign substance
JPH0933446A (en) Apparatus for inspecting surface defect
JPH11326188A (en) Oil film detecting device
JP3898580B2 (en) Fluorescence detection device
JP2003106980A (en) Measuring device and measuring method for minute particle group
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP3713879B2 (en) Oil film detector
JP3707241B2 (en) Oil film detector
JP3447478B2 (en) Trace oil detector
JP2001165850A (en) Oil film detector
JPH04168347A (en) Method and apparatus for detecting parallax refractive index for liquid chromatography
JP2002139423A (en) Oil film detector
JP2001343322A (en) Oil film detector
US20190302027A1 (en) Method and apparatus for determining solids content in a liquid medium
JP2836481B2 (en) Particle size distribution analyzer
JP2001064952A (en) Device and method of detecting snow jam
US20160103077A1 (en) Liquid contaminant sensor system and method
JPS60222756A (en) Foreign matter inspector