JPH11325881A - Method and apparatus for measuring angle of joint - Google Patents

Method and apparatus for measuring angle of joint

Info

Publication number
JPH11325881A
JPH11325881A JP12872198A JP12872198A JPH11325881A JP H11325881 A JPH11325881 A JP H11325881A JP 12872198 A JP12872198 A JP 12872198A JP 12872198 A JP12872198 A JP 12872198A JP H11325881 A JPH11325881 A JP H11325881A
Authority
JP
Japan
Prior art keywords
joint
angle
acceleration
axis
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12872198A
Other languages
Japanese (ja)
Other versions
JP3394979B2 (en
Inventor
Masaaki Makikawa
方昭 牧川
Satoshi Kurata
聡 倉田
Hidemitsu Kobayashi
秀光 小林
Tetsuya Kagawa
哲也 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Ritsumeikan Trust
Original Assignee
Sumitomo Precision Products Co Ltd
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Ritsumeikan Trust filed Critical Sumitomo Precision Products Co Ltd
Priority to JP12872198A priority Critical patent/JP3394979B2/en
Publication of JPH11325881A publication Critical patent/JPH11325881A/en
Application granted granted Critical
Publication of JP3394979B2 publication Critical patent/JP3394979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an accurate measurement not restraining the joint motion by measuring dynamic vectors near a joint at two branches joined by the joint, and conducting specified calculation with the assumption to be equal each other. SOLUTION: A measuring unit 1 for measuring the joint angle of a one-axis joint like a human elbow 2 has e.g. a first and second acceleration sensors 7, 8 mounted on the brachium 3 and forearm 4, each sensor is capable of detecting the acceleration in a direction X parallel to its main plane and direction Y perpendicular in the main plane and their X- and Y-planes are mutually parallel. Using the acceleration components ax1 , ay1 detected by the sensor 7 and the acceleration components ax2 , ay2 detected by the sensor 8, specified calculation is made, utilizing the accelerations a, a' being nearly equal, to obtain the joint angle. About a three-axis joint like a human shoulder, components of the joint angle are obtd. by computing, using e.g. acceleration components on mutually perpendicular X, Y, Z coordinate axes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人もしくはロボッ
ト等の関節の両側に位置する2つの枝部間の角度または
関節により接合される枝部と基部との間の角度を求める
関節角の計測方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of a joint angle for determining an angle between two branches located on both sides of a joint of a human or a robot or an angle between a branch joined by a joint and a base. A method and an apparatus therefor.

【0002】[0002]

【従来の技術】従来から、人の運動を様々な方法で計測
し、解析することが行われている。計測により得られた
データは、スポーツ技能の向上やジェスチャー認識によ
るヒューマンインターフェースの開発に用いられたり、
産業面では、製品の使用時における人の動きや作業によ
る負担の分析、労働環境評価等の分野で応用されてき
た。医療の分野では、リハビリテーションによる成果の
指標化や義肢の制作、調整といったことにも利用されて
いる。また、様々な疾患の原因究明等に際して、その疾
患等を生じた際にどのような運動を行っていたか、その
運動が生理的にどのような影響を及ぼしたかを知ること
は極めて重要である。
2. Description of the Related Art Hitherto, measurement and analysis of human motion have been performed by various methods. The data obtained by the measurement is used for improving sports skills and developing a human interface by gesture recognition,
On the industrial side, it has been applied in fields such as analysis of the movement of people and the burden of work when using products, and evaluation of the working environment. In the medical field, it is also used for indexing the results of rehabilitation, creating and adjusting prostheses. Also, when investigating the cause of various diseases, it is extremely important to know what kind of exercise was performed when the disease or the like occurred, and what kind of physiological influence the exercise exerted.

【0003】人の運動の計測方法としては、何を計測す
るかに応じて、様々な方法が考えられてきた。人が広い
空間内においてどの位置にいるかを測定するのであれ
ば、人を一つの点とみなしてその点をマッピングすると
いう方法が用いられるが、指の関節角等のより細かな計
測においては分度計等が用いられる。また、人の動作や
行動を計測して解析するには、関節の回りでの上腕部や
前腕部等の運動を計測する必要がある。このときの計測
方法としては、非接触式のものとしてビデオカメラ等を
用いた光学的方法や磁気センサによるもの等が挙げられ
る。一方、接触式の計測方法として、回転式電気角度計
や伸縮性のある電気抵抗を使用した角度計等がある。
[0003] Various methods have been considered for measuring human motion, depending on what is to be measured. To measure the position of a person in a large space, a method is used in which the person is regarded as one point and that point is mapped. A degree meter or the like is used. In addition, in order to measure and analyze the motion and behavior of a person, it is necessary to measure the motion of the upper arm, the forearm, and the like around the joint. As the measuring method at this time, an optical method using a video camera or the like, a method using a magnetic sensor, and the like can be cited as non-contact methods. On the other hand, as a contact-type measuring method, there are a rotary electric goniometer and a goniometer using an elastic electric resistance.

【0004】[0004]

【発明が解決しようとする課題】上記光学的方法は、近
年におけるビデオカメラの性能向上や画像の解析方法の
進歩に伴い、人の運動をかなり正確に計測できるように
なっている。しかし、マーカ等を付けて計測を行う場合
は、マーカのずれや隠れ等の問題がある。また、磁気セ
ンサを用いた計測においては、計測範囲内に金属等の磁
気に影響を与えるものがあると、正確に計測ができない
等の問題がある。さらに、これらの手法は、非接触とい
う利点はあるが、被験者の行動範囲が制限されるといっ
た問題がある。また、上記電気角度計や電気抵抗による
計測は、関節に沿って装着するため、被験者の関節運動
が拘束されたり、急激な関節運動に対して計器が破損し
やすい問題がある。
The above-mentioned optical method has become capable of measuring human motion fairly accurately with the recent improvements in video camera performance and advances in image analysis methods. However, when measurement is performed with a marker or the like, there are problems such as displacement or hiding of the marker. In addition, in the measurement using a magnetic sensor, if there is an object such as a metal that affects the magnetism in the measurement range, there is a problem that accurate measurement cannot be performed. Furthermore, these methods have the advantage of non-contact, but have the problem that the range of action of the subject is limited. Moreover, since the measurement using the electric goniometer or the electric resistance is carried out along the joint, there is a problem that the joint movement of the subject is restricted or the instrument is easily damaged due to rapid joint movement.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決し、行動範囲や関節運動等を拘束することなく、移動
を伴う関節運動を正確に計測することのできる関節運動
の計測方法及びその装置を提供することを目的とする。
そのため、本発明の請求項1の関節角の計測方法は、1
軸関節により接合された2つの枝部における上記1軸関
節の近傍で各々力学的なベクトル(例えば、加速度)を
計測し、上記2つの枝部の各計測位置におけるベクトル
が互いに略等しいものとして上記2つの枝部間の角度を
算出することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides a joint movement measuring method and a joint movement measuring method capable of accurately measuring a joint movement accompanied by a movement without restricting an action range or a joint movement. It is intended to provide the device.
Therefore, the method for measuring a joint angle according to claim 1 of the present invention
A dynamic vector (for example, acceleration) is measured in the vicinity of the one-axis joint in the two branches joined by the shaft joint, and the vectors at the measurement positions of the two branches are substantially equal to each other. It is characterized in that an angle between two branch portions is calculated.

【0006】1軸関節の回りで屈曲運動をする時、1つ
の枝部が上記1軸関節の回りで回転する。この場合、上
記1つの枝部におけるベクトルの計測は1軸関節の近傍
で行われるので、上記回転運動によるベクトルはほとん
ど生じないものとすることができる。また、今1つの枝
部が上記1軸関節と反対側の端部を中心に回転運動を行
った時、上記2つの枝部でのベクトルの計測は1軸関節
の近傍で行われるので、上記2つの枝部でのベクトルは
略等しいものとすることができ、このことを利用して上
記2つの枝部の間の角度、つまり、関節角を求めること
ができる。
When performing a bending motion around a uniaxial joint, one branch rotates around the uniaxial joint. In this case, since the measurement of the vector in the one branch portion is performed in the vicinity of the one-axis joint, the vector due to the rotational motion can hardly occur. In addition, when one branch portion rotates around the end opposite to the one-axis joint, the vector measurement at the two branches is performed in the vicinity of the one-axis joint. The vectors at the two branches can be substantially equal, and this can be used to determine the angle between the two branches, that is, the joint angle.

【0007】ここで、「1軸関節」とは、例えば、人の
肘または膝のように1方向のみの屈曲(回転)のみが可
能な関節をいい、「1軸関節」が人の肘である場合、上
腕部が1つの「枝部」に、前腕部が今1つの「枝部」に
該当する。また、「1軸関節」が膝である場合、腿の部
分が1つの「枝部」に、脛の部分が今1つの「枝部」に
該当する。なお、1軸関節は1方向のみに屈曲可能なも
のであれば、人以外の動物の関節やロボットアームの関
節等であってもよく、ロボットアームの場合、その1軸
関節の両側に位置する2つのアーム部が2つの「枝部」
に該当する。
Here, the term "uniaxial joint" refers to a joint which can be bent (rotated) in only one direction, such as a human elbow or a knee, and the term "uniaxial joint" refers to a human elbow. In some cases, the upper arm corresponds to one “branch”, and the forearm corresponds to one “branch”. When the “one-axis joint” is a knee, the thigh corresponds to one “branch”, and the shin corresponds to one “branch”. The uniaxial joint may be a joint of an animal other than a human or a joint of a robot arm as long as it can bend in only one direction. In the case of a robot arm, the uniaxial joint is located on both sides of the uniaxial joint. Two arms are two "branches"
Corresponds to.

【0008】請求項2の関節角の計測方法は、3軸関節
により接合された基部と枝部または3軸関節により接合
された2つの枝部における上記3軸関節の近傍で各々2
組の力学的なベクトルを計測し、上記基部と枝部の各計
測位置または上記2つの枝部の各計測位置における上記
2組のベクトルが各々互いに略等しいものとして上記基
部と肢部間または上記2つの枝部間のX、Y及びZ方向
の角度を算出することを特徴とするものである。
According to a second aspect of the present invention, there is provided a method for measuring a joint angle, wherein two joints are provided in the vicinity of the triaxial joint at the base and the branch joined by the triaxial joint or at the two branches joined by the triaxial joint.
The mechanical vector of a set is measured, and the two sets of vectors at each measurement position of the base and the branch or each measurement position of the two branches are assumed to be substantially equal to each other. It is characterized in that the angles in the X, Y and Z directions between two branch portions are calculated.

【0009】ここで、「3軸関節」とは、人の肩または
股関節のように、2方向の屈曲(回転)及び捩じりが可
能な関節をいい、例えば、3軸関節が人の肩である場
合、人の胴体が「基部」に該当し、前腕部が「枝部」に
該当し、3軸関節が「股関節」である場合、胴体が「基
部」に該当し、腿の部分が「枝部」に該当する。また、
3軸関節は人以外の動物やロボットアーム等の3軸関節
であってもよく、且つ3軸関節は、必ずしも基部と枝部
間に位置していなくても、2つの枝部間に位置していて
もよい。
Here, the "three-axis joint" refers to a joint capable of bending (rotating) and twisting in two directions, such as a human shoulder or a hip joint. , The torso of the person corresponds to the “base”, the forearm corresponds to the “branch”, and the triaxial joint corresponds to the “hip”, the torso corresponds to the “base”, and the thigh corresponds to It corresponds to "branch". Also,
The triaxial joint may be a triaxial joint of an animal other than a human or a robot arm, and the triaxial joint is not necessarily located between the base and the branch, but is located between the two branches. May be.

【0010】請求項3の関節角の計測方法は、請求項1
または2の方法において、上記力学的なベクトルが速
度、加速度、角速度、角加速度または位置ベクトルを含
むことを特徴とするものである。ここで、位置ベクトル
とは、センサの取付方向によって値の異なる位置情報で
ある。
A third aspect of the present invention provides a method for measuring a joint angle.
Alternatively, in the method of the second aspect, the dynamic vector includes a velocity, an acceleration, an angular velocity, an angular acceleration, or a position vector. Here, the position vector is position information having different values depending on the mounting direction of the sensor.

【0011】請求項4の関節角の計測装置は、1軸関節
により接合された2つの枝部における上記1軸関節の近
傍に各々着脱自在に取り付けられ力学的なベクトルを計
測する第1及び第2計測手段と、これらの第1及び第2
計測手段で計測されるベクトルが互いに略等しいものと
して上記2つの枝部間の角度を算出する算出手段とを備
えたことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a first and second joint angle measuring devices which are detachably mounted near the one-axis joint in two branches joined by the one-axis joint and measure a mechanical vector. 2 measuring means and the first and second
And a calculating means for calculating an angle between the two branches assuming that the vectors measured by the measuring means are substantially equal to each other.

【0012】請求項5の関節角の計測装置は、3軸関節
により接合された基部と枝部または3軸関節により接合
された2つの枝部における上記3軸関節の近傍に各々取
り付けられ各々2組の力学的なベクトルを計測する第1
及び第2計測手段と、これら第1及び第2計測手段で計
測される上記2組のベクトルが各々互いに略等しいもの
として上記基部と枝部間または上記2つの枝部間のX、
Y及びZ方向の角度を算出する算出手段とを備えたこと
を特徴とするものである。
According to a fifth aspect of the present invention, there is provided a joint angle measuring device which is attached to the base and the branch joined by a three-axis joint or two branches joined by a three-axis joint in the vicinity of the three-axis joint, respectively. First to measure the dynamic vector of a set
And the second measuring means, and X between the base and the branch or between the two branches assuming that the two sets of vectors measured by the first and second measuring means are substantially equal to each other.
Calculating means for calculating angles in the Y and Z directions.

【0013】請求項6の関節角の計測装置は、請求項4
または5の構成において、上記力学的なベクトルが速
度、加速度、角速度、角加速度または位置ベクトルを含
むことを特徴とするものである。
According to a sixth aspect of the present invention, there is provided a joint angle measuring apparatus.
Alternatively, in the configuration of 5, the dynamic vector includes a velocity, an acceleration, an angular velocity, an angular acceleration, or a position vector.

【0014】[0014]

【発明の実施の形態】以下、本発明の第1の実施の形態
を図面に基づいて説明する。図1に示すように、1軸関
節である人の肘2の関節運動を計測する計測装置1は、
肘2の両側の上腕部3(1つの枝部)及び前腕部4(今
1つの枝部)に各々巻付状態で取り付けられる可撓性支
持具としてのサポータ5、6と、各サポータ5、6上に
設けられた第1及び第2加速度センサ7、8(第1及び
第2計測手段)と、これら第1及び第2加速度センサ
7、8に接続される、図示しないコンピュータ等からな
る算出手段とを備えてなるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a measuring device 1 that measures the joint motion of a person's elbow 2 that is a uniaxial joint includes:
Supporters 5 and 6 as flexible supports which are attached to the upper arm 3 (one branch) and the forearm 4 (now one branch) on both sides of the elbow 2 in a wound state, respectively, The first and second acceleration sensors 7 and 8 (first and second measurement means) provided on the computer 6 and a computer or the like (not shown) connected to the first and second acceleration sensors 7 and 8 Means.

【0015】第1及び第2加速度センサ7、8は、各々
その主平面に平行なX方向の加速度(力学的なベクト
ル)と主平面と直交するY方向の加速度(力学的なベク
トル)とを検出できるものであり、肘2の回りの関節角
の測定に際して、前述のように、肘2の近傍における上
腕部3及び前腕部4に取り付けられ、且つX、Y平面同
士が平行となるように取り付けられる。
Each of the first and second acceleration sensors 7 and 8 detects acceleration in the X direction (mechanical vector) parallel to the main plane and acceleration in the Y direction (mechanical vector) orthogonal to the main plane. When the joint angle around the elbow 2 is measured, as described above, it is attached to the upper arm 3 and the forearm 4 in the vicinity of the elbow 2 so that the X and Y planes are parallel to each other. It is attached.

【0016】ここで、第1加速度センサ7により検出さ
れる加速度をa、そのX方向の加速度成分をax1、Y方
向の加速度成分をay1とし、第2加速度センサ8により
検出される加速度をa’、そのX方向の加速度成分をa
x2、Y方向の加速度成分をa y2とすると、前述のよう
に、第1及び第2加速度センサ7、8がともに肘2の近
傍に取り付けられていることから、aとa’はほぼ等し
くなる。
Here, the signal detected by the first acceleration sensor 7 is
A is the acceleration to be applied, and a is the acceleration component in the X direction.x1, Y direction
Direction acceleration component is ay1And by the second acceleration sensor 8
The detected acceleration is a ', and the acceleration component in the X direction is a
x2, The acceleration component in the Y direction is a y2Then, as described above
First and second acceleration sensors 7 and 8 are both close to elbow 2.
A and a 'are almost equal because they are attached
It becomes.

【0017】a=a’とすると、第1及び第2加速度セ
ンサ7、8の加速度成分(ax1、a y1)と(ax2
y2)の関係は図2のように表すことができる。但し、
θは上腕部2と前腕部3との間の関節角であり、第1及
び第2加速度センサ7、8のX成分同士ax1、ax2のな
す角度、Y成分同士ay1、ay2同士のなす角度も各々θ
となる。これにより、(ax1、ay1)と(ax2、ay2
との関係は、以下の数1中の行列式(1)で表される。
If a = a ', the first and second acceleration cells
Acceleration components (ax1, A y1) And (a)x2,
ay22) can be represented as shown in FIG. However,
θ is the joint angle between the upper arm 2 and the forearm 3,
X components of the second acceleration sensors 7 and 8 and ax1, Ax2Nona
Angle, Y component ay1, Ay2The angle between them is also θ
Becomes As a result, (ax1, Ay1) And (a)x2, Ay2)
Is expressed by the following determinant (1) in Equation 1.

【0018】[0018]

【数1】 (Equation 1)

【0019】上記行列式(1)を解くことにより、以下
の数2中(2)及び(3)に示す連立方程式が得られ、
これを解くことにより、(4)式に示すように、関節角
θを求めることができる。従って、肘2の回りの関節角
θの計測に際しては、第1及び第2加速度センサ7、8
で各々加速度のX、Y成分(ax1、ay1)及び(ax2
y2)を計測し、これらの計測値を上記算出装置に送信
して(4)式による演算を行うのみでよい。
By solving the above determinant (1), simultaneous equations shown in the following equations (2) and (3) are obtained.
By solving this, the joint angle θ can be obtained as shown in equation (4). Therefore, when measuring the joint angle θ around the elbow 2, the first and second acceleration sensors 7, 8
X and Y components of acceleration (a x1 , a y1 ) and (a x2 ,
a y2 ) only needs to be measured, and these measured values need to be transmitted to the above-described calculating device to perform the calculation according to equation (4).

【0020】[0020]

【数2】 (Equation 2)

【0021】上記第1及び第2加速度センサ7、8とし
ては、具体的には容量型の3軸加速度センサ(例えば、
住友精密工業株式会社製のC3A−02−30)等を用
いることができる。この容量型の3軸加速度センサは静
電容量の変化を電圧に変換するもので、加速度をX、
Y、Zの3軸成分に分解して検出することが可能であ
る。なお、本実施の形態は、1軸関節の回りの関節角を
求めるものであるから、第1及び第2加速度センサ7、
8は、X、Yの2軸成分に分解して検出できるものであ
ってもよい。また、上記図示しない算出装置として、コ
ンピュータを用いた場合、第1及び第2加速度センサ
7、8と上記コンピュータとの間に適宜のA/D変換器
を配置すればよい。このコンピュータとしては、被験者
の身体に装着可能な程度の小型のものを用いることも可
能である。
As the first and second acceleration sensors 7 and 8, specifically, a capacitive three-axis acceleration sensor (for example,
C3A-02-30) manufactured by Sumitomo Precision Industries, Ltd. or the like can be used. This capacitance-type three-axis acceleration sensor converts a change in capacitance into a voltage.
It is possible to decompose into three-axis components of Y and Z for detection. In this embodiment, since the joint angle around the uniaxial joint is obtained, the first and second acceleration sensors 7 and
8 may be one that can be decomposed into two-axis components of X and Y and detected. When a computer is used as the calculation device (not shown), an appropriate A / D converter may be arranged between the first and second acceleration sensors 7 and 8 and the computer. As this computer, it is also possible to use a computer small enough to be worn on the body of the subject.

【0022】次に、テストアーム(ロボットアーム)を
用いて、本実施の形態の計測装置1で算出した関節角
と、通常の角度センサで検出した関節角とがどの程度一
致しているかを試験した結果を示す。図3に示すよう
に、テストアーム10は、基部11と2つの枝部12、
13からなり、2つの枝部12、13間の第1関節14
及び基部11と枝部12間の第2関節15はともに1軸
関節として構成されるとともに、第1及び第2関節1
4、15には各々図示しない通常の角度センサ(ポテン
ショメータ)が設けられている。枝部12、13は長さ
が約30cm、厚さが3mmのアクリル板で形成され、
第1関節14の高さは約30cmである。また、第1関
節14の近傍の2つの枝部12、13には各々第1及び
第2加速度センサ7、8が取り付けられる。
Next, a test arm (robot arm) is used to test how much the joint angle calculated by the measuring device 1 of the present embodiment matches the joint angle detected by a normal angle sensor. The results are shown. As shown in FIG. 3, the test arm 10 has a base 11 and two branches 12,
13, the first joint 14 between the two branches 12, 13
The second joint 15 between the base 11 and the branch 12 is configured as a uniaxial joint, and the first and second joints 1
Each of 4 and 15 is provided with a normal angle sensor (potentiometer) not shown. The branches 12, 13 are formed of an acrylic plate having a length of about 30 cm and a thickness of 3 mm,
The height of the first joint 14 is about 30 cm. Further, first and second acceleration sensors 7 and 8 are attached to the two branches 12 and 13 near the first joint 14, respectively.

【0023】図4に測定結果を示す。この測定において
は、第2関節15の回りで枝部12を2回屈曲、伸展さ
せる間に第1関節14の回りで枝部13を数回屈曲、伸
展させ。図4中の曲線Iは第1関節14に設けた角度セ
ンサにより求めた2つの枝部12、13間の関節角、曲
線IIは本実施の形態の計測装置1により求めた枝部1
2、13間の関節角、曲線III は第2関節15に設けた
角度センサにより求めた基部11と枝部12との間の関
節角(枝部12が水平方向に対してなす角度)である。
この結果から、本実施の形態の計測装置1による計測結
果は従来の角度センサによる計測結果とほぼ合致してお
り、計測装置1による計測精度は充分に高いものである
ことを証明している。
FIG. 4 shows the measurement results. In this measurement, the branch 13 is bent and extended several times around the first joint 14 while the branch 12 is flexed and extended twice around the second joint 15. A curve I in FIG. 4 is a joint angle between the two branches 12 and 13 obtained by the angle sensor provided at the first joint 14, and a curve II is a branch 1 obtained by the measuring device 1 of the present embodiment.
The joint angle between 2 and 13 and the curve III are the joint angles between the base 11 and the branch 12 (the angle formed by the branch 12 with respect to the horizontal direction) determined by the angle sensor provided at the second joint 15. .
From this result, the measurement result by the measuring device 1 of the present embodiment almost matches the measurement result by the conventional angle sensor, and it proves that the measurement accuracy by the measuring device 1 is sufficiently high.

【0024】図5及び図6に上記計測装置1の第1及び
第2加速度センサ7、8を実際に肘2の近傍の上腕部3
と前腕部4に取り付けて、上腕部3と前腕部4との間の
関節角を測定した結果を示す。図5は肘2を地面に対し
て垂直な平面内でほぼ一定の周期で屈曲、伸展を繰り返
した場合の時間経過と関節角との関係を示し、図6は肘
2を地面と平行な平面内でほぼ一定の周期で屈曲、伸展
を繰り返した場合の時間経過と関節角との関係を示す。
FIGS. 5 and 6 show that the first and second acceleration sensors 7 and 8 of the measuring device 1 are actually connected to the upper arm 3 near the elbow 2.
4 shows a result of measuring a joint angle between the upper arm 3 and the forearm 4 by attaching the arm to the forearm 4. FIG. 5 shows the relationship between the lapse of time and the joint angle when the elbow 2 is repeatedly bent and extended at a substantially constant cycle in a plane perpendicular to the ground, and FIG. 6 shows the elbow 2 in a plane parallel to the ground. 2 shows the relationship between the passage of time and the joint angle when bending and extension are repeated at a substantially constant cycle in FIG.

【0025】なお、上記実施の形態では、肘2の近傍の
上腕部3側及び前腕部4側で各々加速度を計測して両者
が互いに略等しいものとすることにより、肘2の回りの
関節角を算出するようにしたが、肘2の近傍の上腕部3
側及び前腕部4側で、各々加速度以外の他の力学的なベ
クトル、例えば、速度、角速度、角加速度または位置ベ
クトルを計測し、上腕部3側及び前腕部4側における上
記ベクトルが互いに略等しいものとすることによって
も、肘2の回りの関節角の算出が可能である。
In the above embodiment, the joint angle around the elbow 2 is measured by measuring the acceleration on the upper arm 3 side and the forearm 4 side near the elbow 2 and making them substantially equal to each other. Was calculated, but the upper arm 3 near the elbow 2
On the side and the forearm 4 side, a mechanical vector other than acceleration, for example, a speed, an angular velocity, an angular acceleration, or a position vector is measured, and the vectors on the upper arm 3 and the forearm 4 are substantially equal to each other. By doing so, it is also possible to calculate the joint angle around the elbow 2.

【0026】さらに、肘2の近傍の上腕部3及び前腕部
4で各々2種類以上のベクトルを計測し、予め定めた条
件に基づいて、いずれかのベクトルを選択的に使用する
ことにより、関節角を算出することも可能である。例え
ば、上述のように、関節角を求めるためのベクトルとし
て加速度を用いた場合、肘関節が屈曲、伸展を行う平面
内に加速度が生じない場合は、関節角の算出が不可能で
あり、加速度が小さい範囲では正確な関節角の算出が困
難となる。
Further, two or more types of vectors are measured by the upper arm 3 and the forearm 4 in the vicinity of the elbow 2, and one of the vectors is selectively used based on a predetermined condition, whereby the joint can be obtained. It is also possible to calculate the angles. For example, as described above, when acceleration is used as a vector for obtaining a joint angle, if no acceleration occurs in a plane where the elbow joint bends and extends, it is impossible to calculate the joint angle, and It is difficult to calculate an accurate joint angle in a range where is small.

【0027】すなわち、実際の計測においては、第1及
び第2加速度センサ7、8を取り付けているサポータ
5、6の伸縮作用によって、個々の加速度センサ7、8
に固有の加速度が生じるため、2つの加速度センサ7、
8に同時に生じる共有の加速度が小さくなると、固有の
加速度の影響が大きくなり、正確な関節角の計測が難し
い。
That is, in the actual measurement, each of the acceleration sensors 7 and 8 is expanded and contracted by the supporters 5 and 6 to which the first and second acceleration sensors 7 and 8 are attached.
, A unique acceleration is generated in the two acceleration sensors 7,
When the shared acceleration that occurs simultaneously in the step 8 is reduced, the influence of the inherent acceleration increases, and it is difficult to accurately measure the joint angle.

【0028】そのため、第1及び第2加速度センサ7、
8で検出される加速度が一定値(例えば、0.4G)以
上の場合は加速度に基づいて関節角を算出し、第1及び
第2加速度センサ7、8で検出される加速度が一定値未
満の場合、加速度以外の他のベクトル、例えば、角速度
に基づいて関節角を算出するようにすることもできる。
この場合、上腕部3側及び前腕部4側に、各々加速度セ
ンサ7、8以外に角速度検出用のジャイロセンサを取り
付けておけばよい。なお、上記計測装置1を用いた関節
角の計測は、肘2以外の人の膝等の他の1軸関節や、動
物、ロボット等の1軸関節における関節角の計測にも利
用できることはいうまでもない。
Therefore, the first and second acceleration sensors 7,
If the acceleration detected at 8 is equal to or greater than a certain value (for example, 0.4 G), the joint angle is calculated based on the acceleration, and the acceleration detected by the first and second acceleration sensors 7 and 8 is less than the certain value. In this case, the joint angle may be calculated based on a vector other than the acceleration, for example, the angular velocity.
In this case, gyro sensors for detecting angular velocity may be attached to the upper arm 3 and the forearm 4 in addition to the acceleration sensors 7 and 8, respectively. It is to be noted that the measurement of the joint angle using the measurement device 1 can also be used to measure the joint angle of another uniaxial joint such as a knee of a person other than the elbow 2 or a uniaxial joint of an animal, a robot, or the like. Not even.

【0029】次に、本発明の第2の実施の形態を説明す
る。図7に示すように、3軸関節である人の肩関節の回
りの関節角を計測する計測装置16は、胴体17(基
部)における肩の近傍に取り付けられる可撓性支持具と
してのサポータ18と、上記肩の近傍の上腕部3に取り
付けられるサポータ19とを備え、サポータ18、19
上には各々第1及び第2加速度センサ20、21(第1
及び第2計測手段)が設けられるとともに、これらの加
速度センサ20、21の計測データに基づいて、上記胴
体に対する上腕部3のX、Y、Z方向の角度を求めるコ
ンピュータ等の算出手段(図示せず)が設けられてい
る。
Next, a second embodiment of the present invention will be described. As shown in FIG. 7, a measuring device 16 for measuring a joint angle around a human shoulder joint, which is a three-axis joint, includes a supporter 18 as a flexible support attached to the trunk 17 (base) near the shoulder. And a supporter 19 attached to the upper arm 3 near the shoulder.
The first and second acceleration sensors 20, 21 (first
And second measuring means), and calculating means (such as a computer) for obtaining the angles of the upper arm 3 in the X, Y, and Z directions with respect to the body based on the measurement data of the acceleration sensors 20 and 21. Z) is provided.

【0030】第1加速度センサ20は、そのZ軸が胴体
17の上下方向に、Y軸が胴体17の前後方向に、X軸
が胴体17の左右方向を向くように胴体17に装着され
る。また、第2加速度センサ21は、上腕部3を自然に
胴体17の側方に沿って降ろした状態で、そのX、Y、
Z軸が第1加速度センサ20のX、Y、Z軸と一致する
ように上腕部3に装着される。
The first acceleration sensor 20 is mounted on the body 17 such that the Z axis is in the vertical direction of the body 17, the Y axis is in the front-rear direction of the body 17, and the X axis is in the left-right direction of the body 17. Further, the second acceleration sensor 21 is configured such that the upper arm 3 is naturally lowered along the side of the body 17, and its X, Y,
It is mounted on the upper arm 3 so that the Z axis matches the X, Y, and Z axes of the first acceleration sensor 20.

【0031】以下、肩関節22の回りの関節角の計測方
法につき説明する。胴体17側の第1加速度センサ20
のX、Y、Z軸を基準座標系{A}とし、上腕部3側の
第2加速度センサ21のX、Y、Z軸を運動座標系
{B}とすると、胴体17に対する上腕部3の運動は、
上記基準座標系{A}と運動座標系{B}の位置関係に
よって表され、図7の状態では基準座標系{A}と運動
座標系{B}は一致している。
Hereinafter, a method of measuring a joint angle around the shoulder joint 22 will be described. First acceleration sensor 20 on body 17 side
Let the X, Y, and Z axes of the upper arm 3 with respect to the body 17 be the reference coordinate system {A} and the X, Y, and Z axes of the second acceleration sensor 21 on the upper arm 3 side be the motion coordinate system {B}. Exercise is
This is represented by the positional relationship between the reference coordinate system {A} and the motion coordinate system {B}. In the state of FIG. 7, the reference coordinate system {A} and the motion coordinate system {B} match.

【0032】図8に示すように、上腕部3を回転させる
と、それに伴って、運動座標系{B}が基準座標系
{A}に対してX、Y、Z方向へ回転することになる
が、この時、運動座標系{B}は基準座標系{A}のZ
軸についてφ、Y軸についてθ、X軸についてψだけ回
転させたものであるとして、2つの座標系の回転移動を
表現する。また、上腕部3の動きをより理解しやすいも
のとして表現するために、図9に示すように、上述の
ψ、φ、θを用いて、胴体17に対する挙上角α、前後
方向移動角βを求めることにする。
As shown in FIG. 8, when the upper arm 3 is rotated, the motion coordinate system {B} rotates in the X, Y, and Z directions with respect to the reference coordinate system {A}. However, at this time, the motion coordinate system {B} is the Z of the reference coordinate system {A}.
The rotational movement of the two coordinate systems is expressed assuming that the axis is rotated by φ, the Y axis is rotated by θ, and the X axis is rotated by ψ. In addition, in order to express the movement of the upper arm 3 as something that is easier to understand, as shown in FIG. 9, the elevation angle α with respect to the body 17 and the front-rear movement angle β I will ask for.

【0033】次に、運動座標系{B}を基準座標系
{A}と一致した状態からZ軸、Y軸、X軸について順
次回転移動させる場合の、回転変換行列を求める。ま
ず、Z軸についてφ回転させる時の回転変換行列は、以
下の数3中の(5)式で表される。
Next, a rotation transformation matrix for sequentially rotating and moving the motion coordinate system {B} with respect to the Z-axis, Y-axis, and X-axis from a state where the coordinate system coincides with the reference coordinate system {A} is obtained. First, the rotation conversion matrix when rotating the Z axis by φ is represented by the following equation (5) in Expression 3.

【数3】 (Equation 3)

【0034】次に、運動座標系{B}をY軸についてθ
回転させる場合の回転変換行列は、次の数4中の(6)
式で表される。
Next, the motion coordinate system {B} is set to θ with respect to the Y axis.
The rotation transformation matrix for rotating is (6) in the following equation (4).
It is expressed by an equation.

【数4】 (Equation 4)

【0035】続いて、運動座標系{B}をX軸について
φ回転させる場合の回転変換行列は、次の数5中の
(7)式で表される。
Subsequently, a rotation transformation matrix for rotating the motion coordinate system {B} by φ about the X axis is expressed by the following equation (7) in the following equation (5).

【数5】 (Equation 5)

【0036】従って、Z軸、Y軸、X軸についての回転
移動を順次行った時の回転変換行列Rzyx は以下の数6
中の(8)式のように表される。
Accordingly, the rotational transformation matrix R zyx when the rotational movement about the Z axis, the Y axis, and the X axis is sequentially performed is given by the following equation ( 6).
It is expressed as in equation (8).

【数6】 (Equation 6)

【0037】次に、胴体17側の第1加速度センサ20
で計測される加速度のX、Y、Z成分を(ax1、ay1
z1)、上腕部3側の第2加速度センサ21で計測され
る加速度のX、Y、Z成分を(ax2、ay2、az2)とす
る。1軸関節の場合と同様、第1及び第2加速度センサ
20、21は肩関節の近傍に取り付けられており、第1
及び第2加速度センサ20、21に生じる加速度は略等
しいものとできるので、加速度成分(ax1、ay1
z1)と(ax2、ay2、az2)の関係は、上記回転変換
行列Rzyx を用いて、次の数7中の(9)式のように表
される。この(9)式は不定であり、(9)式のみから
φ、ψ、θを決定することはできない。
Next, the first acceleration sensor 20 on the body 17 side
X, Y, and Z components of acceleration measured by (a x1 , a y1 ,
a z1 ), and the X, Y, and Z components of the acceleration measured by the second acceleration sensor 21 on the upper arm 3 side are defined as (a x2 , a y2 , a z2 ). As in the case of the uniaxial joint, the first and second acceleration sensors 20 and 21 are mounted near the shoulder joint, and
And the accelerations generated in the second acceleration sensors 20 and 21 can be made substantially equal, so that the acceleration components (a x1 , a y1 ,
The relationship between (a z1 ) and (a x2 , a y2 , a z2 ) is represented by the following equation (9) using the rotation transformation matrix R zyx . Equation (9) is indeterminate, and φ, ψ, and θ cannot be determined only from equation (9).

【0038】[0038]

【数7】 (Equation 7)

【0039】このため、本発明では、第1及び第2加速
度センサ20、21で計測されるX、Y、Zの3方向の
加速度成分を、図10に示すようなCRフィルタ23で
フィルタリングすることにより、重力加速度成分を取り
出した。このときの、胴体17に装着した第1加速度セ
ンサ20から得られる重力加速度成分を(gx1、gy1
z1)、上腕部3に装着した第2加速度センサ21から
得られる重力加速度成分を(gx2、gy2、gz2)とする
と、2つの重力加速度成分の関係は、元の加速度成分と
同様に上記回転変換行列Rzyx を用いて、次の数8中の
(10)式のように表される。上記(9)式とこの(1
0)式とに基づいて、φ、ψ、θを決定した。
Therefore, according to the present invention, the acceleration components in the three directions of X, Y and Z measured by the first and second acceleration sensors 20 and 21 are filtered by the CR filter 23 as shown in FIG. , The gravitational acceleration component was extracted. At this time, the gravitational acceleration components obtained from the first acceleration sensor 20 attached to the body 17 are represented by (g x1 , g y1 ,
g z1 ) and the gravitational acceleration component obtained from the second acceleration sensor 21 attached to the upper arm 3 is (g x2 , g y2 , g z2 ), the relationship between the two gravitational acceleration components is the same as the original acceleration component. Using the above rotation transformation matrix R zyx , the following expression (10) in Expression 8 is used. The above equation (9) and this (1)
0, ψ, and θ were determined based on the equation (0).

【0040】[0040]

【数8】 (Equation 8)

【0041】上腕部3の運動をより理解しやすくするた
めに用いた上記挙上角α、前後方向移動角βの算出方法
を以下に示す。上腕部3に装着した第2加速度センサ2
1は、Z軸が肩から上腕部3方向を向くように装着され
ているので、上腕部3に装着した第2加速度センサ21
のZ軸が胴体17に対していかなる方向であるかを表せ
ばよい。運動座標系{B}のZ軸は基準座標系{A}に
対する方向は、回転角θ、φを用いて図9のように表さ
れる。この図9から、挙上角α、前後方向移動角βは、
次の数10中の(11)、(12)式のように表され
る。
A method for calculating the elevation angle α and the forward / backward movement angle β used to make the movement of the upper arm 3 easier to understand will be described below. Second acceleration sensor 2 mounted on upper arm 3
1 is the second acceleration sensor 21 mounted on the upper arm 3 because the Z-axis is mounted so that the Z axis is directed from the shoulder to the upper arm 3.
The direction of the Z axis of the body 17 with respect to the body 17 may be expressed. The direction of the Z axis of the motion coordinate system {B} with respect to the reference coordinate system {A} is expressed as shown in FIG. 9 using the rotation angles θ and φ. From FIG. 9, the elevation angle α and the forward / backward movement angle β are:
It is expressed as in the following equations (11) and (12).

【0042】[0042]

【数9】 (Equation 9)

【0043】次に、上記の計測装置16により、実際に
肩の回りの関節角を計測した結果を図11に示す。ここ
では、被験者が自然な立位の状態から上腕部3を体の前
方に肩の高さまで上げた後、元の立位の状態に戻す動作
を行い、その間に上記第1及び第2加速度センサ20、
21の計測値に基づいて上記3方向の回転角φ、θ、ψ
を不図示のコンピュータにより算出した。図11中曲線
IはZ軸についての回転角φ、曲線IIはY軸についての
回転角θ、曲線III はX軸についての回転角ψの時間的
変化を算出した結果を各々示している。また、上記挙上
角α、前後方向移動角βの時間的変化を上記計測装置1
6で算出したものを図12中曲線I及びIIに示す。
Next, the result of actually measuring the joint angle around the shoulder by the measuring device 16 is shown in FIG. Here, the subject raises the upper arm 3 from the natural standing state to the shoulder level in front of the body, and then performs the operation of returning to the original standing state, during which the first and second acceleration sensors are used. 20,
21, the rotation angles φ, θ, ψ in the three directions based on the measurement values.
Was calculated by a computer (not shown). In FIG. 11, a curve I shows a result of calculating a rotation angle φ about the Z axis, a curve II shows a result of calculating a temporal change of a rotation angle θ about the Y axis, and a curve III shows a result of calculating a temporal change of the rotation angle ψ about the X axis. In addition, the change in the elevation angle α and the longitudinal movement angle β with time is measured by the measuring device 1.
The values calculated in 6 are shown in curves I and II in FIG.

【0044】なお、上記の計測方法において、被験者が
静止している時は、上記(9)式で表される加速度成分
と、(10)式で表される重力加速度成分とが等しくな
り、関節角を決定することができなくなる。そのため、
上記加速度成分と重力加速度成分との差がある一定値よ
り小さくなって両者が略等しくなった場合、関節角の変
化が生じていないものとみなして、加速度成分と重力加
速度成分との差が上記一定値より小さくなる直前の関節
角をそのまま維持しているものとすればよい。
In the above measuring method, when the subject is stationary, the acceleration component expressed by the above equation (9) and the gravitational acceleration component expressed by the above equation (10) become equal, and The angle cannot be determined. for that reason,
If the difference between the acceleration component and the gravitational acceleration component is smaller than a certain value and the two are substantially equal, it is considered that no change in the joint angle has occurred, and the difference between the acceleration component and the gravitational acceleration component is What is necessary is just to maintain the joint angle immediately before it becomes smaller than the fixed value.

【0045】また、この第2の実施の形態においても、
第1の実施の形態と同様に、加速度以外の速度、角速
度、角加速度、位置ベクトル等の他の力学的なベクトル
を利用して3軸関節の関節角の算出を行うこともでき、
必要により、2種類以上ベクトルを、所定の条件の下で
使い分けて関節角の算出を行うことも可能である。ま
た、上記計測装置16を用いた関節角の計測は、人の股
関節等の他の基部(胴体17)と枝部(腿の部分)間の
3軸関節や、足首の関節等の2つの枝部間の3軸関節、
さらに、動物やロボット等の3軸関節における関節角の
計測にも利用できることはいうまでもない。
Also, in the second embodiment,
Similarly to the first embodiment, it is also possible to calculate the joint angle of the three-axis joint using other mechanical vectors such as velocity, angular velocity, angular acceleration, and position vector other than acceleration.
If necessary, it is also possible to calculate the joint angle by selectively using two or more types of vectors under predetermined conditions. The measurement of the joint angle using the measuring device 16 is performed by using a triaxial joint between another base (the torso 17) such as a human hip joint and a branch (a thigh) or two branches such as an ankle joint. 3-axis joint between the parts,
Further, it is needless to say that the present invention can be used for measuring the joint angle of a three-axis joint of an animal or a robot.

【0046】[0046]

【発明の効果】以上説明したように、本発明の請求項1
の関節角の計測方法は、1軸関節により接合された2つ
の枝部における上記1軸関節の近傍で各々力学的なベク
トルを計測し、上記2つの枝部の各計測位置におけるベ
クトル(例えば、加速度等)が互いに略等しいものとし
て上記2つの枝部間の角度を求めるものであるから、従
来の各種計測方法と異なり、計測中における被験者等の
行動範囲が制限されたり、関節の運動が拘束されること
がなく、且つ被験者等が移動中であっても1軸関節の関
節角を正確に測定することが可能になる。
As described above, according to the first aspect of the present invention,
Is a method of measuring a joint vector at each measurement position of each of the two branches at each measurement position in the vicinity of the one-axis joint in two branches joined by the one-axis joint. Since the angle between the above two branches is determined assuming that the acceleration and the like are substantially equal to each other, unlike the conventional various measurement methods, the range of action of the subject or the like during the measurement is restricted, and the movement of the joint is restricted. And the joint angle of the one-axis joint can be accurately measured even when the subject or the like is moving.

【0047】請求項2の関節角の計測方法は、3軸関節
により接合された基部と枝部または3軸関節により接合
された2つの枝部における上記3軸関節の近傍で各々2
組の力学的なベクトルを計測し、上記基部及び枝部の各
計測位置または上記2つの枝部の各計測位置における上
記2組のベクトルが各々互いに略等しいものとして上記
基部と肢部間または上記2つの枝部間のX、Y及びZ方
向の角度を求めるものであるから、従来の各種計測方法
と異なり、計測中の行動範囲が制限されたり、関節の運
動が拘束されることがなく、且つ移動中であっても3軸
関節の関節角を正確に測定することが可能となる。
According to a second aspect of the present invention, there is provided a method for measuring a joint angle in the vicinity of a triaxial joint at a base and a branch joined by a triaxial joint or at two branches joined by a triaxial joint.
The mechanical vector of the set is measured, and assuming that the two sets of vectors at each measurement position of the base and the branch or each measurement position of the two branches are substantially equal to each other, between the base and the limb or Since the angle in the X, Y and Z directions between the two branches is determined, unlike the conventional various measurement methods, the range of action during measurement is not limited, and the movement of the joint is not restricted. In addition, it is possible to accurately measure the joint angle of the three-axis joint even during movement.

【0048】請求項3の関節角の計測方法は、請求項1
または2の方法において、上記力学的なベクトルが速
度、加速度、角速度、角加速度または位置ベクトルを含
むものであり、関節が1軸関節か3軸関節に応じて、こ
れらの中から任意の1または2のベクトルを使用するこ
とにより、関節角を容易に且つ正確に計測することがで
きるようになる。
The method for measuring a joint angle according to the third aspect is the first aspect.
Or the method of 2, wherein the mechanical vector includes a velocity, an acceleration, an angular velocity, an angular acceleration, or a position vector. By using the two vectors, the joint angle can be easily and accurately measured.

【0049】請求項4の関節角の計測装置は、1軸関節
により接合された2つの枝部における上記1軸関節の近
傍に各々着脱自在に取り付けられ力学的なベクトルを計
測する第1及び第2計測手段と、これらの第1及び第2
計測手段で計測されるベクトルが互いに略等しいものと
して上記2つの枝部間の角度を算出する算出手段とを備
えたものであるから、従来の各種計測装置と異なり、計
測中における被験者等の行動範囲が制限されたり、関節
の運動が拘束されることがなく、且つ被験者等が移動中
であっても1軸関節の関節角を正確に測定することがで
きるとともに、構造簡単で安価な計測装置を提供するこ
とが可能となる。
According to a fourth aspect of the present invention, there is provided a joint angle measuring device which is detachably attached to a vicinity of the one-axis joint in two branches joined by the one-axis joint and measures a mechanical vector. 2 measuring means and the first and second
It is provided with a calculating means for calculating the angle between the two branches assuming that the vectors measured by the measuring means are substantially equal to each other. Therefore, unlike conventional various measuring devices, the behavior of the subject or the like during the measurement is different. An inexpensive measuring device that can accurately measure the joint angle of a one-axis joint even when a subject or the like is moving without limiting the range or restricting the movement of the joint. Can be provided.

【0050】請求項5の関節角の計測装置は、3軸関節
により接合された基部と枝部または3軸関節により接合
された2つの枝部における上記3軸関節の近傍に各々取
り付けられ各々2組の力学的なベクトルを計測する第1
及び第2計測手段と、これら第1及び第2計測手段で計
測される上記2組のベクトルが各々互いに略等しいもの
として上記基部と枝部間または上記2つの枝部間のX、
Y及びZ方向の角度を算出する算出手段とを備えたもの
であるから、従来の各種計測装置と異なり、計測中にお
ける被験者等の行動範囲が制限されたり、関節の運動が
拘束されることがなく、且つ被験者等が移動中であって
も3軸関節の関節角を正確に測定することができるとと
もに、構造簡単で安価な計測装置を提供することが可能
となる。
According to a fifth aspect of the present invention, there is provided a joint angle measuring device which is attached near the three-axis joint in each of a base and a branch joined by a three-axis joint or two branches joined by a three-axis joint. First to measure the dynamic vector of a set
And the second measuring means, and X between the base and the branch or between the two branches assuming that the two sets of vectors measured by the first and second measuring means are substantially equal to each other.
Since it is provided with calculating means for calculating angles in the Y and Z directions, unlike conventional various measuring devices, the range of action of a subject or the like during measurement may be restricted, or joint motion may be restricted. In addition, it is possible to accurately measure the joint angle of the three-axis joint even when the subject or the like is moving, and to provide an inexpensive measuring device with a simple structure.

【0051】請求項6の関節角の計測装置は、請求項4
または5の構成において、上記力学的なベクトルが速
度、加速度、角速度、角加速度または位置ベクトルを含
むものであるから、関節が1軸関節か3軸関節かに応じ
て、これらの中から任意の1または2のベクトルを使用
することにより、関節角を容易に且つ正確に計測するこ
とができるとともに、構造簡単で安価な計測装置を提供
することが可能になる。
According to a sixth aspect of the present invention, there is provided a joint angle measuring apparatus.
In the configuration of or 5, since the mechanical vector includes a velocity, an acceleration, an angular velocity, an angular acceleration, or a position vector, any one or any of these may be selected depending on whether the joint is a one-axis joint or a three-axis joint. By using the two vectors, it is possible to easily and accurately measure the joint angle, and to provide an inexpensive measuring device with a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る計測装置を被
験者の上腕部と前腕部とに装着した状態を示す概略斜視
図。
FIG. 1 is a schematic perspective view showing a state in which a measuring device according to a first embodiment of the present invention is mounted on an upper arm and a forearm of a subject.

【図2】上記計測装置を用いて関節角を求める原理を示
す説明図。
FIG. 2 is an explanatory diagram showing the principle of obtaining a joint angle using the measurement device.

【図3】テストアームを用いて上記計測装置の計測精度
を試験する様子を示す概略正面図。
FIG. 3 is a schematic front view showing a state of testing the measurement accuracy of the measurement device using a test arm.

【図4】上記テストアームを用いて上記計測装置及び通
常の角度センサで関節角を計測した結果を示すグラフ。
FIG. 4 is a graph showing a result of measuring a joint angle with the measuring device and a normal angle sensor using the test arm.

【図5】地面に対して垂直な平面内での前腕部の回転運
動を上記計測装置で計測した結果を示すグラフ。
FIG. 5 is a graph showing a result obtained by measuring the rotational movement of the forearm in a plane perpendicular to the ground by the measuring device.

【図6】地面に対して平行な平面内での前腕部の回転運
動を上記計測装置で計測した結果を示すグラフ。
FIG. 6 is a graph showing the result of measuring the rotational movement of the forearm in a plane parallel to the ground by the measuring device.

【図7】本発明の第2の実施の形態に係る計測装置を被
験者の胴体と上腕部とに装着した状態をしそ巣概略斜視
図。
FIG. 7 is a schematic perspective view showing a state in which a measuring device according to a second embodiment of the present invention is mounted on a torso and an upper arm of a subject.

【図8】図7の計測装置を装着した状態で上腕部を運動
させる様子を示す概略斜視図。
8 is a schematic perspective view showing a state in which the upper arm is exercised in a state where the measuring device of FIG. 7 is mounted.

【図9】挙上角及び前後方向移動角を求める原理を示す
説明図。
FIG. 9 is an explanatory diagram showing a principle of obtaining a lift angle and a forward-backward movement angle.

【図10】加速度における重力加速度成分をフィルタリ
ングするためのCRフィルタを示す説明図。
FIG. 10 is an explanatory diagram showing a CR filter for filtering a gravitational acceleration component in acceleration.

【図11】被験者が自然な立位の状態から上腕部を胴体
の前方に肩の高さまで上げて元に戻す動作を行う際の
X、Y、Z方向の角度を図7の計測装置を用いて計測し
た結果を示すグラフ。
11 shows the X, Y, and Z directions of the subject using the measuring device of FIG. 7 when the subject performs an operation of raising the upper arm from the natural standing state to the level of the shoulder in front of the torso and returning to the original position. The graph which shows the result of having measured.

【図12】図11の計測時に上記挙上角及び前後方向移
動角を上記計測装置で同時に求めた結果を示すグラフ。
FIG. 12 is a graph showing a result obtained by simultaneously obtaining the elevation angle and the front-rear movement angle by the measurement device at the time of measurement in FIG. 11;

【符号の説明】[Explanation of symbols]

1、16 計測装置 2 肘(1軸関節) 3 上腕部(1つの枝部) 4 前腕部(今1つの枝部) 7、20 第1加速度センサ(第1計測手段) 8、21 第2加速度センサ(第2計測手段) 17 胴体 22 肩関節(3軸関節) 1, 16 Measuring device 2 Elbow (one axis joint) 3 Upper arm (one branch) 4 Forearm (one branch now) 7, 20 First acceleration sensor (first measuring means) 8, 21 Second acceleration Sensor (second measuring means) 17 Torso 22 Shoulder joint (3-axis joint)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉田 聡 滋賀県草津市野路東1−1−1 立命館大 学 びわこ・くさつキャンパス 理工学部 内 (72)発明者 小林 秀光 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 (72)発明者 香川 哲也 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Kurata 1-1-1, Nojihigashi, Kusatsu-shi, Shiga Ritsumeikan University Inside the Faculty of Science and Technology (72) Inventor Hidemitsu Kobayashi 1 Fuso-cho, Amagasaki-shi, Hyogo No. 10 Sumitomo Precision Industries Co., Ltd. (72) Inventor Tetsuya Kagawa 1-10 Fuso-cho, Amagasaki City, Hyogo Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1軸関節により接合された2つの枝部に
おける上記1軸関節の近傍で各々力学的なベクトルを計
測し、上記2つの枝部の各計測位置におけるベクトルが
互いに略等しいものとして上記2つの枝部間の角度を算
出することを特徴とする関節角の計測方法。
1. A mechanical vector is measured in the vicinity of the one-axis joint of two branches joined by a one-axis joint, and the vectors at the measurement positions of the two branches are substantially equal to each other. A method for measuring a joint angle, comprising calculating an angle between the two branch portions.
【請求項2】 3軸関節により接合された基部と枝部ま
たは3軸関節により接合された2つの枝部における上記
3軸関節の近傍で各々2組の力学的なベクトルを計測
し、上記基部と枝部の各計測位置または上記2つの枝部
の各計測位置における上記2組のベクトルが各々互いに
略等しいものとして上記基部と肢部間または上記2つの
枝部間のX、Y及びZ方向の角度を算出することを特徴
とする関節角の計測方法。
2. A base and a branch joined by a three-axis joint, or two sets of dynamic vectors are measured in the vicinity of the three-axis joint in a branch or two branches joined by a three-axis joint. And the X, Y, and Z directions between the base and the limb or between the two branches assuming that the two sets of vectors at each measurement position of the branch and the measurement positions of the two branches are substantially equal to each other. A method for measuring a joint angle, comprising calculating an angle of a joint.
【請求項3】 上記力学的なベクトルが速度、加速度、
角速度、角加速度または位置ベクトルを含むことを特徴
とする請求項1または2記載の関節角の計測方法。
3. The dynamic vector includes a velocity, an acceleration,
3. The method for measuring a joint angle according to claim 1, wherein the method includes an angular velocity, an angular acceleration, or a position vector.
【請求項4】 1軸関節により接合された2つの枝部に
おける上記1軸関節の近傍に各々着脱自在に取り付けら
れ力学的なベクトルを計測する第1及び第2計測手段
と、これらの第1及び第2計測手段で計測されるベクト
ルが互いに略等しいものとして上記2つの枝部間の角度
を算出する算出手段とを備えたことを特徴とする関節角
の計測装置。
4. A first and a second measuring means which are detachably attached to two branches connected by a one-axis joint near the one-axis joint and measure a mechanical vector, respectively, and And a calculating means for calculating an angle between the two branches assuming that the vectors measured by the second measuring means are substantially equal to each other.
【請求項5】 3軸関節により接合された基部と枝部ま
たは3軸関節により接合された2つの枝部における上記
3軸関節の近傍に各々取り付けられ各々2組の力学的な
ベクトルを計測する第1及び第2計測手段と、これら第
1及び第2計測手段で計測される上記2組のベクトルが
各々互いに略等しいものとして上記基部と枝部間または
上記2つの枝部間のX、Y及びZ方向の角度を算出する
算出手段とを備えたことを特徴とする関節角の計測装
置。
5. A base and a branch joined by a three-axis joint or two branches joined by a three-axis joint are respectively attached near the three-axis joint and each measure two sets of mechanical vectors. X, Y between the base and the branch or between the two branches assuming that the two sets of vectors measured by the first and second measuring means and the first and second measuring means are substantially equal to each other. And a calculating means for calculating an angle in the Z direction.
【請求項6】 上記力学的なベクトルが速度、加速度、
角速度、角加速度または位置ベクトルを含むことを特徴
とする請求項4または5記載の関節角の計測装置。
6. The dynamic vector includes velocity, acceleration,
The joint angle measuring device according to claim 4, wherein the joint angle measuring device includes an angular velocity, an angular acceleration, or a position vector.
JP12872198A 1998-05-12 1998-05-12 Method and apparatus for measuring joint angle Expired - Fee Related JP3394979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12872198A JP3394979B2 (en) 1998-05-12 1998-05-12 Method and apparatus for measuring joint angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872198A JP3394979B2 (en) 1998-05-12 1998-05-12 Method and apparatus for measuring joint angle

Publications (2)

Publication Number Publication Date
JPH11325881A true JPH11325881A (en) 1999-11-26
JP3394979B2 JP3394979B2 (en) 2003-04-07

Family

ID=14991799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872198A Expired - Fee Related JP3394979B2 (en) 1998-05-12 1998-05-12 Method and apparatus for measuring joint angle

Country Status (1)

Country Link
JP (1) JP3394979B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072579A1 (en) * 2003-02-14 2004-08-26 Akebono Brake Industry Co., Ltd. Difference correcting method for posture determining instrument and motion measuring instrument
WO2009090200A2 (en) 2008-01-16 2009-07-23 Syddansk Universitet Integrated unit for monitoring motion in space
JP2011064483A (en) * 2009-09-15 2011-03-31 Tamagawa Seiki Co Ltd Joint angle measuring device
ES2355787A1 (en) * 2009-03-17 2011-03-31 Fundacion Para Progreso Soft Computing Instrument for the objective measurement of the shoulder range of motion
WO2011075983A1 (en) * 2009-12-24 2011-06-30 湖南三一智能控制设备有限公司 Angle measuring apparatus and method thereof and engineering machinery
JP2012168189A (en) * 2012-04-16 2012-09-06 Kochi Univ Of Technology Tilt angle estimation system relative angle estimation system and angular velocity estimation system
JP2015175697A (en) * 2014-03-14 2015-10-05 公立大学法人会津大学 Electronic angle measuring tool and angle measuring program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072579A1 (en) * 2003-02-14 2004-08-26 Akebono Brake Industry Co., Ltd. Difference correcting method for posture determining instrument and motion measuring instrument
US7233872B2 (en) 2003-02-14 2007-06-19 Akebono Brake Industry Co., Ltd. Difference correcting method for posture determining instrument and motion measuring instrument
WO2009090200A2 (en) 2008-01-16 2009-07-23 Syddansk Universitet Integrated unit for monitoring motion in space
ES2355787A1 (en) * 2009-03-17 2011-03-31 Fundacion Para Progreso Soft Computing Instrument for the objective measurement of the shoulder range of motion
JP2011064483A (en) * 2009-09-15 2011-03-31 Tamagawa Seiki Co Ltd Joint angle measuring device
WO2011075983A1 (en) * 2009-12-24 2011-06-30 湖南三一智能控制设备有限公司 Angle measuring apparatus and method thereof and engineering machinery
JP2012168189A (en) * 2012-04-16 2012-09-06 Kochi Univ Of Technology Tilt angle estimation system relative angle estimation system and angular velocity estimation system
JP2015175697A (en) * 2014-03-14 2015-10-05 公立大学法人会津大学 Electronic angle measuring tool and angle measuring program

Also Published As

Publication number Publication date
JP3394979B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
Sers et al. Validity of the Perception Neuron inertial motion capture system for upper body motion analysis
MEng Development of finger-motion capturing device based on optical linear encoder
Goodvin et al. Development of a real-time three-dimensional spinal motion measurement system for clinical practice
Brennan et al. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal
US20080091373A1 (en) Method for calibrating sensor positions in a human movement measurement and analysis system
Choe et al. A sensor-to-segment calibration method for motion capture system based on low cost MIMU
TWI549655B (en) Joint range of motion measuring apparatus and measuring method thereof
Chang et al. Sensor glove based on novel inertial sensor fusion control algorithm for 3-D real-time hand gestures measurements
Kortier et al. Hand pose estimation by fusion of inertial and magnetic sensing aided by a permanent magnet
Chin et al. A marker-based mean finite helical axis model to determine elbow rotation axes and kinematics in vivo
Lu et al. A 3-D finger motion measurement system via soft strain sensors for hand rehabilitation
Lim et al. A low cost wearable optical-based goniometer for human joint monitoring
Ying et al. Use of dual Euler angles to quantify the three-dimensional joint motion and its application to the ankle joint complex
Meng et al. Accuracy improvement on the measurement of human-joint angles
Morton et al. Pose calibrations for inertial sensors in rehabilitation applications
JP6663219B2 (en) Posture motion detection device
Callejas-Cuervo et al. Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes
Lu et al. Measurement of hand joint angle using inertial-based motion capture system
JPH11325881A (en) Method and apparatus for measuring angle of joint
Castañeda et al. Knee joint angle monitoring system based on inertial measurement units for human gait analysis
Xu et al. Measuring human joint movement with IMUs: Implementation in custom-made low cost wireless sensors
Hermanis et al. Grid shaped accelerometer network for surface shape recognition
Rahman et al. Range of motion measurement using single inertial measurement unit sensor: a validation and comparative study of sensor fusion techniques
Martínez-Solís et al. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait
JP2016206081A (en) Operation inference device and operation inference method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees