JPH11325639A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11325639A
JPH11325639A JP10137949A JP13794998A JPH11325639A JP H11325639 A JPH11325639 A JP H11325639A JP 10137949 A JP10137949 A JP 10137949A JP 13794998 A JP13794998 A JP 13794998A JP H11325639 A JPH11325639 A JP H11325639A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
expansion valve
heat exchanger
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10137949A
Other languages
Japanese (ja)
Other versions
JP3736969B2 (en
Inventor
Yoshihiro Takahashi
佳宏 高橋
Norikazu Ishikawa
憲和 石川
Takeshi Kosakai
毅 小坂井
Toshiya Fuse
敏也 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13794998A priority Critical patent/JP3736969B2/en
Publication of JPH11325639A publication Critical patent/JPH11325639A/en
Application granted granted Critical
Publication of JP3736969B2 publication Critical patent/JP3736969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent an entrapped refrigerant by detecting a decision of the entrapped refrigerant of a ceased unit at the time of heating operation according to a difference between an outlet refrigerant temperature of an indoor heat exchanger and an indoor suction temperature, and controlling an opening of an expansion valve according to its result. SOLUTION: After an opening of an expansion valve of an indoor unit B of a ceased side of indoor units A, B is set to a predetermined opening, a compressor 1 is operated, an outlet refrigerant temperature T2 is detected by an outlet refrigerant temperature sensor 102b of an indoor heat exchanger 4b, and a suction temperature T1 is detected by a suction temperature sensor 103b. A controller 100 calculates a temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature, and compares the difference with a set value. Here, if the difference is smaller than the set value, the refrigerant is entrapped in the exchanger 4b, and hence an opening of the valve 5b is corrected to be slightly opened. This correction is repeated until the difference becomes the set value or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、室内機を複数台
備えた、いわゆる室内マルチ型の空気調和機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called indoor multi-type air conditioner having a plurality of indoor units.

【0002】[0002]

【従来の技術】従来、室内マルチ型の空気調和機におい
ては、暖房時において休止室内機があると一部の冷媒が
休止室内機に流れて放熱されるため、運転側室内機の性
能が低下する問題がある。この問題を解決するために、
室内機各々に電子式膨張弁を設けると共に、暖房時にお
ける休止室内機の膨張弁を、同室内機における熱交換器
の冷媒出入口温度の差により冷媒溜まり込みがない程度
にできるだけ少しづつしか流れないように膨張弁の開度
を最小開度に制御し、これにより運転側室内機の性能低
下を防止すると共に、休止室内機側に冷媒が溜り込んで
冷媒不足になる様なことを防止するようにしている。
2. Description of the Related Art Conventionally, in an indoor multi-type air conditioner, when there is a paused indoor unit during heating, a part of refrigerant flows into the paused indoor unit and is radiated, so that the performance of the driving side indoor unit is deteriorated. There is a problem to do. to solve this problem,
An electronic expansion valve is provided for each indoor unit, and the expansion valve of the paused indoor unit during heating is caused to flow as little as possible to the extent that there is no refrigerant accumulation due to the difference in refrigerant inlet / outlet temperature of the heat exchanger in the indoor unit. The opening degree of the expansion valve is controlled to the minimum opening degree, thereby preventing the performance of the indoor unit on the operating side from deteriorating, and preventing the refrigerant from accumulating on the idle indoor unit side and causing a shortage of the refrigerant. ing.

【0003】図10は、例えば実開昭62−43269
号公報に示された上記した従来の室内マルチ型空気調和
機の構成を示す冷媒回路図である。図において、空気調
和機は2つの室内機A,Bユニットより構成されてお
り、ここで、1は圧縮機、2は四方弁、3は冷媒配管、
4aはAユニットの室内熱交換器、4bはBユニットの
室内熱交換器、5a,5bはマイコン等を利用して自由
に開度調整できる電子式膨張弁、6は冷媒配管、9は室
外熱交換器、13はアキュームレーター、11a,11
bは室内ファン、12は室外ファンであり、また室内熱
交換器4a,4bの入口および出口の配管に取り付けら
れた入口および出口冷媒温度センサ101a,101
b,102a,102bで構成されており、冷媒が実線
矢印の如く流れることにより暖房運転がなされ、点線矢
印の如く流れることにより冷房運転がなされる。
FIG. 10 shows, for example, Japanese Utility Model Laid-Open Publication No. 62-43269.
FIG. 1 is a refrigerant circuit diagram illustrating a configuration of the above-described conventional indoor multi-type air conditioner disclosed in Japanese Patent Application Laid-Open Publication No. H10-15064. In the figure, the air conditioner is composed of two indoor units A and B units, where 1 is a compressor, 2 is a four-way valve, 3 is a refrigerant pipe,
4a is an indoor heat exchanger of the A unit, 4b is an indoor heat exchanger of the B unit, 5a and 5b are electronic expansion valves whose opening can be freely adjusted using a microcomputer or the like, 6 is a refrigerant pipe, 9 is an outdoor heat exchanger. Exchanger, 13 is an accumulator, 11a, 11
b denotes an indoor fan, 12 denotes an outdoor fan, and inlet and outlet refrigerant temperature sensors 101a and 101 attached to the inlet and outlet pipes of the indoor heat exchangers 4a and 4b.
b, 102a, and 102b, a heating operation is performed when the refrigerant flows as indicated by a solid line arrow, and a cooling operation is performed when the refrigerant flows as indicated by a dotted line arrow.

【0004】以上のように構成された冷媒回路におい
て、暖房運転時Aユニットが運転され、Bユニットが休
止されて室内ユニットが一台しか運転されていない時
は、Bユニットの膨張弁5bの開度をBユニットの熱交
換器の冷媒出入口温度の差により、同温度差が適温とな
るように、すなわち冷媒が室内交換器4bに溜り込まな
い程度にできるだけ少しづつしか流れないように膨張弁
5bの開度を決めてやる。この時の膨張弁の開度決定
は、室内熱交換器4bの入口および出口に取付けられた
冷媒温度センサ101b,102bの検出温度をそれぞ
れT1,T2とした時、その温度差(T1−T2)が適
温となるよう休止側のBユニットの膨張弁5bの開度を
決定することにより成され、図10の実線矢印に示すよ
うに冷媒が流れる。
In the refrigerant circuit configured as described above, when the A unit is operated during the heating operation, the B unit is stopped, and only one indoor unit is operated, the expansion valve 5b of the B unit is opened. The temperature of the expansion valve 5b is adjusted so that the temperature difference becomes an appropriate temperature, that is, the refrigerant flows as little as possible so that the refrigerant does not accumulate in the indoor exchanger 4b. I will decide the opening. At this time, the opening degree of the expansion valve is determined by determining the detected temperatures of the refrigerant temperature sensors 101b and 102b attached to the inlet and the outlet of the indoor heat exchanger 4b as T1 and T2, respectively, and calculating the temperature difference (T1-T2). Is determined by determining the opening of the expansion valve 5b of the B unit on the inactive side so that the temperature becomes appropriate. The refrigerant flows as shown by the solid line arrow in FIG.

【0005】なお、膨張弁5a,5bは0(全閉)〜1
00(全開)%まで開度を調整できる電子式の膨張弁が
使用されている。今、暖房運転が開始されると図10に
示す実線矢印の方向に冷媒が流れ、四方弁、冷媒配管
3、3a,3bを通り室内熱交換器4a,4bで熱交換
され冷却されて液冷媒となる。この液冷媒は膨張弁5
a,5bで一回減圧され、冷媒配管6a,6bから6を
経て膨張弁7で更に減圧され室外熱交換器9で加熱され
てガス冷媒となり、四方弁2、アキュームレーター13
を通って圧縮機1へ戻る。
[0005] The expansion valves 5a and 5b are 0 (fully closed) to 1
An electronic expansion valve capable of adjusting the opening to 00 (fully open)% is used. Now, when the heating operation is started, the refrigerant flows in the direction of the solid arrow shown in FIG. 10, passes through the four-way valve, the refrigerant pipes 3, 3a, 3b, exchanges heat in the indoor heat exchangers 4a, 4b, is cooled, and is cooled by the liquid refrigerant. Becomes This liquid refrigerant is supplied to the expansion valve 5
The pressure is reduced once by a and 5b, further reduced by an expansion valve 7 through refrigerant pipes 6a and 6b to 6 and heated by an outdoor heat exchanger 9 to become a gas refrigerant, and the four-way valve 2 and the accumulator 13
And returns to the compressor 1.

【0006】ここで、一方の室内熱交換器ユニットであ
るBユニットが休止の場合の膨張弁5a,5bの開度決
定のコントロールを説明する。房運転が始まるとコント
ローラ100は室内熱交換器ユニットの運転が1台か2
台かを確認し、2台だと各々決められた膨張弁開度とな
るように膨張弁5a,5bに開度を指示する。
Here, control for determining the degree of opening of the expansion valves 5a and 5b when the B unit, which is one indoor heat exchanger unit, is at rest will be described. When the cell operation starts, the controller 100 operates one or two indoor heat exchanger units.
The expansion valves 5a and 5b are instructed so that the expansion valves 5a and 5b have the determined expansion valve opening degrees.

【0007】次に暖房運転はAユニット1台だとする
と、Aユニットは決められた膨張弁5aの開度となる
が、Bユニットの膨張弁5bの開度は一旦0(全閉)と
される。しかし小時間経過後、膨張弁5bは少し開けら
れ室内熱交換器4bの入口と出口の配管の冷媒温度セン
サ101bの温度T1と、102bの温度T2を検知し
てT1−T2を計算し、この値が熱交換器への冷媒溜ま
り込み量がない程度の時に示す設定値と比較し、この設
定値より小さければ熱交換器には冷媒が溜まり込んでい
ると判断して膨張弁5bの開度は更に少し開けられ、T
1−T2が設定値になるまで繰り返す。すなわちT1−
T2の値が設定温度範囲内に保たれるように膨張弁5b
の開度は制御される。
Next, assuming that the heating operation is performed by one A unit, the opening degree of the expansion valve 5a of the A unit is set to 0 (completely closed), while the opening degree of the expansion valve 5b of the B unit is set to 0 (completely closed). However, after a lapse of a short time, the expansion valve 5b is slightly opened, and the temperature T1 of the refrigerant temperature sensor 101b of the inlet and outlet pipes of the indoor heat exchanger 4b and the temperature T2 of 102b are detected to calculate T1-T2. When the value is smaller than the set value when the amount of refrigerant accumulated in the heat exchanger is small, if it is smaller than the set value, it is determined that refrigerant is accumulated in the heat exchanger, and the opening degree of the expansion valve 5b is determined. Can be opened a little further, T
Repeat until 1-T2 reaches the set value. That is, T1-
The expansion valve 5b is set so that the value of T2 is maintained within the set temperature range.
Is controlled.

【0008】なお、冷房運転時には暖房運転時における
ような冷媒の溜まり込みは発生しないので、休止ユニッ
トがあれば休止側の膨張弁は単に閉とされる。また、通
常Aユニット、Bユニットの両方が暖房運転される場合
は、公知の如くA,Bユニットのそれぞれの負荷によっ
て各々膨張弁5a,5bの開度は決まるのでこの説明は
省略する。
In the cooling operation, since the accumulation of refrigerant does not occur as in the heating operation, if there is a pause unit, the expansion valve on the pause side is simply closed. Further, when both the A unit and the B unit are normally operated for heating, the opening of the expansion valves 5a and 5b is determined by the loads of the A and B units, respectively, as is well known, so that the description thereof will be omitted.

【0009】[0009]

【発明が解決しようとする課題】上記に説明したよう
に、従来の室内マルチ型の空気調和機においては、暖房
時において休止ユニットがある場合、休止ユニットへの
冷媒の溜まり込みを防止するために室内熱交換器の入口
と出口の配管に取付けられた冷媒温度センサの温度差に
より電子式膨張弁の開度を制御している。
As described above, in a conventional indoor multi-type air conditioner, if there is a pause unit during heating, it is necessary to prevent refrigerant from accumulating in the pause unit. The opening of the electronic expansion valve is controlled by the temperature difference between the refrigerant temperature sensors attached to the inlet and outlet pipes of the indoor heat exchanger.

【0010】しかしながら、通常圧縮機から吐出され室
内交換器に流入する冷媒は過熱ガス状態であり、膨張弁
の開度を適正開度(最小開度)とするためには、膨張弁
の開度を一旦0(全閉)とし、凝縮させた液冷媒を一旦
室内熱交換器および室内熱交換器の出口配管部に溜め込
まなければならず、適正開度へ開度制御できれば溜まり
込んだ冷媒は回収できるが初期時における正常運転を維
持するためにはかなり多量の冷媒量が必要であり、結果
的に封入冷媒量を多くしなければならないと言う問題が
あった。
However, the refrigerant discharged from the compressor and flowing into the indoor exchanger is usually in a superheated gas state. In order to set the opening of the expansion valve to an appropriate opening (minimum opening), the opening of the expansion valve is required. Must be temporarily set to 0 (fully closed), and the condensed liquid refrigerant must be temporarily stored in the indoor heat exchanger and the outlet pipe of the indoor heat exchanger. If the opening can be controlled to an appropriate opening, the collected refrigerant is recovered. Although it is possible, a considerably large amount of refrigerant is required to maintain normal operation at the initial stage, and as a result, there is a problem that the amount of enclosed refrigerant must be increased.

【0011】また、室内熱交換器の入口と出口の配管温
度差(冷媒温度差)で電子膨張弁の制御をしているた
め、適正開度となった時の冷媒の室内熱交換器への溜ま
り込み状態は、室内熱交換器の出口部まで達していない
と言うだけであって、膨張弁の開度を0(全閉)から開
度制御しているため通常最小開度で安定しても室内熱交
換器内には相当量の冷媒の溜まり込みがあり、正常な空
気調和機の運転を維持するためには、この溜まり込む冷
媒量を考慮した封入冷媒量とする必要があり、結果とし
て封入冷媒量が多くなると言った問題があった。
In addition, since the electronic expansion valve is controlled by the difference in the pipe temperature (refrigerant temperature difference) between the inlet and the outlet of the indoor heat exchanger, the refrigerant is supplied to the indoor heat exchanger when the opening degree is proper. The state of accumulation is simply that it does not reach the outlet of the indoor heat exchanger. Since the opening of the expansion valve is controlled from 0 (fully closed), it is usually stable at the minimum opening. Even in the indoor heat exchanger, there is a considerable amount of refrigerant accumulated in the indoor heat exchanger, and in order to maintain normal operation of the air conditioner, it is necessary to set the enclosed refrigerant amount in consideration of the accumulated refrigerant amount. As a result, there is a problem that the amount of the charged refrigerant increases.

【0012】また、暖房時における休止ユニットが送風
運転を行った場合、膨張弁は最小開度で制御されて圧縮
機から供給される少量の冷媒を流しており、この圧縮機
から供給される冷媒は通常は過熱ガスであり室内熱交換
器で凝縮し液冷媒となって室外熱交換器のユニットへ返
されるが、その時の凝縮による放熱分が送風運転の吹出
し温度の上昇につながり、室内熱交換器の入口と出口と
の配管温度差(冷媒温度差)による膨張弁開度の制御で
は室内吸込み温度に対する吹出し温度の上昇度が把握で
きないと言う問題があり、吹出し温度の上昇を成り行き
まかせにせざるを得ないと言った問題があった。
Further, when the pause unit during heating performs the blowing operation, the expansion valve is controlled at the minimum opening to flow a small amount of refrigerant supplied from the compressor. Is usually a superheated gas, which is condensed in the indoor heat exchanger and returned to the outdoor heat exchanger unit as a liquid refrigerant.However, the heat released by the condensation at that time leads to an increase in the blowout temperature of the blower operation, and the indoor heat exchange The control of the expansion valve opening based on the pipe temperature difference (refrigerant temperature difference) between the inlet and outlet of the vessel has a problem that it is not possible to grasp the degree of increase in the blowout temperature with respect to the indoor suction temperature. There was a problem saying that I could not get it.

【0013】[0013]

【課題を解決するための手段】この発明は、上記の問題
を解決するためになされたもので、室内マルチ型の空気
調和機において、暖房運転時に室内ユニットの吸込み温
度を検出する吸込み温度センサと、室内熱交換器の出口
もしくは中央温度を検出する出口冷媒温度センサ,中央
冷媒温度センサと、冷媒流量を制御する電子式膨張弁を
備えることにより、暖房運転時における休止ユニットの
冷媒の溜まり込みの判定を、室内熱交換器の出口冷媒温
度と室内吸込み温度の温度差により検出し、その結果に
照らして電子式膨張弁の開度を適正に制御し、室内熱交
換器への冷媒の溜まり込みを防止して、封入冷媒量を抑
制すると共に、室内吸込み温度と室内熱交換器の出口冷
媒温度もしくは中央冷媒温度を検出することによって、
休止ユニットの送風運転のみの時の室内吸込み温度に対
する吹出し温度の上昇の抑制を電子膨張弁の開度制御に
よって可能とすることを特徴とする空気調和機を提供す
るものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems. In an indoor multi-type air conditioner, a suction temperature sensor for detecting a suction temperature of an indoor unit during a heating operation is provided. By providing an outlet refrigerant temperature sensor that detects the outlet or center temperature of the indoor heat exchanger, a central refrigerant temperature sensor, and an electronic expansion valve that controls the refrigerant flow rate, the refrigerant accumulation in the pause unit during the heating operation can be reduced. Judgment is detected by the temperature difference between the outlet refrigerant temperature of the indoor heat exchanger and the indoor suction temperature, and based on the result, the opening degree of the electronic expansion valve is appropriately controlled, and the refrigerant is accumulated in the indoor heat exchanger. By suppressing the amount of refrigerant enclosed and detecting the indoor suction temperature and the outlet refrigerant temperature or the central refrigerant temperature of the indoor heat exchanger,
It is an object of the present invention to provide an air conditioner characterized in that it is possible to suppress the rise of the blow-out temperature with respect to the indoor suction temperature when only the air blowing operation of the pause unit is performed by controlling the opening degree of the electronic expansion valve.

【0014】上記の手段によるこの発明においては、空
気調和機が暖房運転で暖房運転ユニットと、休止ユニッ
トとが混在する時、休止ユニットの電子式膨張弁の所定
開度は0%(全閉)に近い微小開度に設定し、次いで休
止ユニットの熱交換器の出口冷媒温度と休止ユニットの
吸込み温度との温度差を検出して予め設定した所定の設
定値と比較して、その値が所定値以下ならば電子式膨張
弁の開度を一定量アップする。
In the present invention according to the above means, when the air conditioner is in the heating operation and the heating operation unit and the pause unit are mixed, the predetermined opening of the electronic expansion valve of the pause unit is 0% (fully closed). Is set to a very small opening degree, and then the temperature difference between the outlet refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit is detected and compared with a predetermined set value. If it is less than the value, the opening of the electronic expansion valve is increased by a certain amount.

【0015】この操作を定期的に繰り返し、休止ユニッ
トの熱交換器の出口冷媒温度と休止ユニットの吸込み温
度との温度差が所定の設定値を越えたら電子式膨張弁の
開度は安定することになる。
This operation is periodically repeated, and when the temperature difference between the outlet refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit exceeds a predetermined set value, the opening of the electronic expansion valve is stabilized. become.

【0016】このように電子式膨張弁の開度を制御する
ことによって、休止ユニットの室内熱交換器に溜まり込
む冷媒量を、室内熱交換器に溜り込む以前に冷媒の溜り
込みを検出することによって最低限にすることができ、
冷媒の封入量を抑制するとともに冷媒の溜り込みによる
冷媒不足も防止することができる。
By controlling the degree of opening of the electronic expansion valve in this manner, the amount of refrigerant accumulated in the indoor heat exchanger of the pause unit is detected before the accumulation in the indoor heat exchanger. Can be minimized by
It is possible to suppress the amount of the filled refrigerant and to prevent shortage of the refrigerant due to accumulation of the refrigerant.

【0017】また、休止ユニットが単に送風運転してい
る場合には、吹出し温度を熱交換器の中央冷媒温度から
検出し、予め設定した所定の設定値と比較して、その値
が所定値以下ならば電子式膨張弁の開度を一定量絞る。
この操作を定期的に繰り返し、休止ユニットの熱交換器
の中央冷媒温度と休止ユニットの吸込み温度との温度差
が所定の設定値以下になれば電子式膨張弁の開度は安定
することになる。このように電子式膨張弁の開度を制御
することによって、室温の上昇を抑制し快適性を向上さ
せることができる。
When the pause unit is simply performing the blowing operation, the blow-out temperature is detected from the central refrigerant temperature of the heat exchanger, and is compared with a predetermined set value. Then, the opening of the electronic expansion valve is reduced by a certain amount.
This operation is repeated periodically, and when the temperature difference between the central refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit falls below a predetermined set value, the opening of the electronic expansion valve becomes stable. . By controlling the opening degree of the electronic expansion valve in this way, it is possible to suppress a rise in room temperature and improve comfort.

【0018】[0018]

【発明の実施の形態】実施の形態1.以下、この発明の
第1の実施の形態を図1から図5を用いて説明する。図
1は第1の実施の形態による空気調和機の系統構成図で
ある。図において空気調和機は室外機ユニットCと、2
つの室内機でユニットA,Bより構成されている。ここ
で、1は圧縮機、2は四方弁、3は冷媒配管、4aはユ
ニットAの室内熱交換器、4bはユニットBの室内熱交
換器、5a,5bはマイコン等を利用して自由に開度を
調整できる電子式膨張弁、6は冷媒配管、9は室外熱交
換器、11a,11bは室内ファン、12は室外ファ
ン、13はアキュームレータ、102a,102bは室
内熱交換器4a,4bの出口配管に取付けられた出口冷
媒温度センサ、103a,103bは室内ユニットA,
Bの各々の吸込み空気の温度を検出することができる個
所に取付けられた吸込み温度センサ、100は上記出口
冷媒温度センサ102a,102b,および吸込み温度
センサ103a,103b,および電子式膨張弁5a,
5bを制御するコントローラで構成されており、冷媒が
実線矢印の如く流れることにより暖房運転がなされる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system configuration diagram of the air conditioner according to the first embodiment. In the figure, the air conditioner has an outdoor unit C and 2
Each of the indoor units is composed of units A and B. Here, 1 is a compressor, 2 is a four-way valve, 3 is a refrigerant pipe, 4a is an indoor heat exchanger of the unit A, 4b is an indoor heat exchanger of the unit B, and 5a and 5b are freely using a microcomputer or the like. An electronic expansion valve whose opening can be adjusted, 6 is a refrigerant pipe, 9 is an outdoor heat exchanger, 11a and 11b are indoor fans, 12 is an outdoor fan, 13 is an accumulator, and 102a and 102b are indoor heat exchangers 4a and 4b. The outlet refrigerant temperature sensors 103a and 103b attached to the outlet pipe are the indoor units A and 103, respectively.
B, a suction temperature sensor 100 mounted at a location where the temperature of each suction air can be detected, 100 is the outlet refrigerant temperature sensor 102a, 102b, suction temperature sensor 103a, 103b, and the electronic expansion valve 5a,
5b, and the heating operation is performed by the refrigerant flowing as indicated by the solid arrow.

【0019】このように構成された空気調和機の暖房運
転時において、室内ユニットAは暖房運転,室内ユニッ
トBは休止とすると、休止ユニットである室内ユニット
Bは室内空調空間の温度分布の均一化を図るために送風
運転をしている。そして、この状態における休止ユニッ
トである室内ユニットBの電子式膨張弁5bの開度は、
冷媒が室内熱交換器4b等に溜まり込まない程度に、す
なわち冷媒が溜まり込まない程度にできるだけ少しづつ
しか流れないような開度に決めてやる。以下にこの場合
における電子式膨張弁5bの開度決定の一連の動作につ
いて説明する。なお、電子式膨張弁5a,5bは0(全
閉)〜100%(全開)までの開度調整をマイコン等で
コントロールできる膨張弁が使用されているもので、こ
れら電子式膨張弁5a,5bは以下の説明では単に膨張
弁と略記する。
During the heating operation of the air conditioner configured as described above, the indoor unit A performs the heating operation, and the indoor unit B is stopped. If the indoor unit B is a stopped unit, the temperature distribution of the indoor air-conditioned space is made uniform. The air blow operation is performed in order to achieve. Then, in this state, the opening degree of the electronic expansion valve 5b of the indoor unit B which is the pause unit is:
The opening is set so that the refrigerant flows only as little as possible so that the refrigerant does not accumulate in the indoor heat exchanger 4b or the like, that is, the refrigerant does not accumulate. Hereinafter, a series of operations for determining the opening degree of the electronic expansion valve 5b in this case will be described. The electronic expansion valves 5a and 5b use expansion valves whose opening degree can be controlled by a microcomputer or the like from 0 (fully closed) to 100% (fully opened). Is simply abbreviated as an expansion valve in the following description.

【0020】まず、暖房運転が開始されると図1に示す
矢印の方向に冷媒は流れ、四方弁2、冷媒配管3、3
a,3bを通り室内熱交換器4a,4bで熱交換されて
液冷媒となり、膨張弁5a,5bで減圧され、冷媒配管
6a,6b、6を経て室外熱交換器9で加熱されガス冷
媒となり、四方弁2、アキュームレータ13を経て圧縮
機1へ戻る。
First, when the heating operation is started, the refrigerant flows in the direction of the arrow shown in FIG.
a, 3b, heat is exchanged in the indoor heat exchangers 4a, 4b to become liquid refrigerant, decompressed by the expansion valves 5a, 5b, and heated in the outdoor heat exchanger 9 via refrigerant pipes 6a, 6b, 6 to become gas refrigerant. , And returns to the compressor 1 via the four-way valve 2 and the accumulator 13.

【0021】暖房運転が始まるとコントローラ100は
室内器の運転が1台か、2台かを確認し、ユニットBは
休止、ユニットAの1台だけが暖房運転だとすると、運
転側の室内ユニットAはその与えられた負荷に応じた膨
張弁開度になるよう膨張弁5aが開度指示され、休止側
の室内ユニットBの膨張弁5bの開度は次に述べる所定
の値に設定される。
When the heating operation is started, the controller 100 checks whether the number of the indoor units is one or two. If it is assumed that the unit B is stopped and only one of the units A is in the heating operation, the indoor unit A on the operating side becomes the heating unit. The opening degree of the expansion valve 5a is instructed to be the opening degree of the expansion valve corresponding to the given load, and the opening degree of the expansion valve 5b of the paused indoor unit B is set to a predetermined value described below.

【0022】この時の休止ユニットである室内ユニット
Bに与えられる膨張弁開度について図2を用いて説明す
る。図2は、休止ユニット(ただし送風運転)に与える
膨張弁開度と冷媒流量、吹出し空気温度の吸込み温度に
対する上昇温度、休止側の室内熱交換器に溜り込む冷媒
量の関係を示す特性図である。
The opening degree of the expansion valve provided to the indoor unit B which is the pause unit at this time will be described with reference to FIG. FIG. 2 is a characteristic diagram showing the relationship between the expansion valve opening degree and the refrigerant flow rate applied to the pause unit (however, the blowing operation), the rise temperature of the blown air temperature with respect to the suction temperature, and the refrigerant amount accumulated in the pause side indoor heat exchanger. is there.

【0023】この図2によれば、休止ユニットに与える
膨張弁開度が0%(全閉)の場合、休止ユニットに流れ
る冷媒量、および吹出し温度に対する上昇温度は共に0
となるが、室内熱交換器に溜まり込む冷媒量は最大とな
る。膨張弁の開度を0%(全閉)から開いて行くと、室
内熱交換器に溜まり込む冷媒量は減少して行くが、休止
ユニットに流れる冷媒流量は増加し、吹出し温度の吸込
み温度に対する上昇度も増加する。
According to FIG. 2, when the degree of opening of the expansion valve applied to the pause unit is 0% (fully closed), both the amount of refrigerant flowing through the pause unit and the temperature rise relative to the blowout temperature are 0.
However, the amount of refrigerant accumulated in the indoor heat exchanger becomes the maximum. As the degree of opening of the expansion valve is increased from 0% (fully closed), the amount of refrigerant accumulated in the indoor heat exchanger decreases, but the flow rate of refrigerant flowing into the pause unit increases, and the temperature of the blow-out temperature with respect to the suction temperature increases. The degree of climb also increases.

【0024】一般的に膨張弁の開度に対する室内熱交換
器に溜まり込む冷媒量の増加と、吹出し温度の吸込み温
度に対する上昇度は相反する関係にあり、その他の与え
られた条件を含めて最も適切な膨張弁の開度を選択する
のが通常であり、個々の空気調和機において適切と言え
る休止ユニットの膨張弁開度が存在する。
In general, an increase in the amount of refrigerant accumulated in the indoor heat exchanger with respect to the opening degree of the expansion valve and an increase degree of the outlet temperature with respect to the suction temperature are in a contradictory relationship, and include the most given conditions including other given conditions. Usually, an appropriate expansion valve opening is selected, and there is an expansion valve opening of a pause unit that is appropriate in each air conditioner.

【0025】図3は膨張弁の流量のばらつき特性を示し
た概念図である。一般的に膨張弁には機械的な製造誤差
による影響と、経年変化による影響により冷媒流量のず
れ(流量ばらつき)が発生する。従って、図2に示す室
内熱交換器への冷媒溜まり込み量と、吹出し温度の吸込
み温度に対する上昇度の関係から適切な休止ユニットの
膨張弁開度を決定しても、図3に示すように冷媒流量の
ずれが発生するため必ずしも適切な休止ユニットの膨張
弁開度が得られるとは限らないと言った別の問題が発生
する。
FIG. 3 is a conceptual diagram showing a variation characteristic of the flow rate of the expansion valve. In general, a difference in refrigerant flow rate (flow rate variation) occurs in the expansion valve due to the effects of mechanical manufacturing errors and aging. Accordingly, even if the appropriate expansion valve opening of the pause unit is determined from the relationship between the amount of accumulated refrigerant in the indoor heat exchanger shown in FIG. 2 and the degree of increase in the outlet temperature with respect to the suction temperature, as shown in FIG. Another problem arises in that a difference in the flow rate of the refrigerant occurs, so that an appropriate opening degree of the expansion valve of the pause unit is not always obtained.

【0026】また、流量0となる膨張弁の開度は必ずし
も開度0%ではなく、ある程度の開度になった時点で冷
媒の流量が得られる特性となる膨張弁が多く、上記の流
量のずれにより流量0となる膨張弁開度もずれ(膨張弁
開度ばらつき)が発生する。
The degree of opening of the expansion valve at which the flow rate becomes 0 is not necessarily 0%, but there are many expansion valves having a characteristic that a flow rate of the refrigerant can be obtained when the opening degree reaches a certain degree. The displacement also causes a displacement (expansion valve opening variation) in the expansion valve opening at which the flow rate becomes zero.

【0027】以上の点から休止ユニットの膨張弁開度
は、図2より得られた冷媒が多量に溜まり込まない程度
の微小な値、すなわち適正膨張弁開度よりも低めに設定
されるのが通例である。しかし、同時に冷媒流量を微小
とする目的のために膨張弁開度を低めの設定にしすぎる
と、膨張弁開度のずれ(膨張弁開度のばらつき)により
流量0となり、室内熱交換器に溜まり込む冷媒量が大と
なってしまう可能性が高くなる。また、流量0を回避す
るために膨張弁開度を高めに設定すると室内熱交換器に
溜まり込む冷媒量は少なくなるが、冷媒の流量が増大
し、吹出し温度の吸込み温度に対する上昇度が大きくな
ってしまう。
From the above points, the opening of the expansion valve of the pause unit should be set to a small value such that the refrigerant obtained from FIG. 2 does not accumulate in a large amount, that is, lower than the appropriate opening of the expansion valve. It is customary. However, if the expansion valve opening is set too low at the same time for the purpose of minimizing the flow rate of the refrigerant, the flow rate becomes 0 due to the deviation of the opening degree of the expansion valve (variation in the opening degree of the expansion valve), and the air accumulates in the indoor heat exchanger. There is a high possibility that the amount of refrigerant to be introduced becomes large. When the opening of the expansion valve is set high to avoid the flow rate of 0, the amount of refrigerant accumulated in the indoor heat exchanger decreases, but the flow rate of the refrigerant increases, and the degree of increase in the outlet temperature with respect to the suction temperature increases. Would.

【0028】そこで、適切な膨張弁開度を得るための手
段を図5に基づいて以下に説明する。図5は膨張弁開度
の決定手順を示すフローチャートで、休止ユニットBの
膨張弁開度を所定の開度に設定後、圧縮機を運転し、室
内熱交換器の出口冷媒温度センサ102bにより出口冷
媒温度T2を検出すると共に、吸込み温度センサ103
bにより吸込み温度T1を検出する。そして、出口冷媒
温度と吸込み温度との温度差(T2−T1)を計算し、
この温度差(T2−T1)が予め設定された温度の設定
値と比較し、設定温度より小さければ熱交換器には冷媒
が溜まり込んでいるので、膨張弁開度を少し開けるよう
に修正する。
Therefore, means for obtaining an appropriate expansion valve opening will be described below with reference to FIG. FIG. 5 is a flowchart showing a procedure for determining the expansion valve opening. After setting the expansion valve opening of the pause unit B to a predetermined opening, the compressor is operated, and the outlet is detected by the outlet refrigerant temperature sensor 102b of the indoor heat exchanger. In addition to detecting the refrigerant temperature T2, the suction temperature sensor 103
The suction temperature T1 is detected by b. Then, a temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature is calculated,
This temperature difference (T2−T1) is compared with a preset temperature set value. If the temperature difference is smaller than the set temperature, the refrigerant is accumulated in the heat exchanger, so that the opening degree of the expansion valve is slightly opened. .

【0029】つぎに、再度、出口冷媒温度と吸込み温度
との温度差(T2−T1)を計算し、この温度差(T2
−T1)が予め設定された温度の設定値と比較し、設定
温度より小さければ膨張弁開度を少し開けるように修正
する。このように膨張弁開度を少しづつ調整して上記の
出口冷媒温度と吸込み温度との温度差(T2−T1)の
値が設定値以上になるまで繰り返す。
Next, the temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature is calculated again, and this temperature difference (T2
-T1) is compared with a preset temperature set value, and if it is smaller than the set temperature, the opening degree of the expansion valve is corrected to be slightly opened. In this manner, the opening degree of the expansion valve is gradually adjusted, and the process is repeated until the value of the temperature difference (T2−T1) between the outlet refrigerant temperature and the suction temperature becomes equal to or larger than the set value.

【0030】ここで、図4を用いて温度差(T2−T
1)の設定値について説明する。図4は膨張弁の開度変
化に対する運転特性を示したもので、休止ユニットが送
風運転を実施している場合、風量は通常の暖房運転時と
ほぼ等しく室内熱交換器の熱交換能力は暖房運転とほぼ
等しくなっている。休止ユニットの場合、通常の暖房運
転の時と比較し膨張弁開度は極めて小さく設定され、冷
媒流量はごく僅かな量となる。暖房時室内熱交換器は圧
縮機から流れてくる高温過熱ガスを冷却し液冷媒とする
が、休止ユニットの場合、暖房運転時と比較し熱交換能
力はほぼ等しいにも拘わらず(暖房運転時の冷媒流量)
>>(休止時の冷媒流量)となっているため、休止ユニッ
トの冷媒は通常の暖房時に比べて遥かに冷却する。
Here, referring to FIG. 4, the temperature difference (T2-T
The setting value of 1) will be described. Fig. 4 shows the operation characteristics with respect to the change in the opening degree of the expansion valve.When the pause unit is performing the ventilation operation, the air volume is almost equal to that in the normal heating operation, and the heat exchange capacity of the indoor heat exchanger is the heating operation. It is almost equal to driving. In the case of the pause unit, the opening degree of the expansion valve is set to be extremely small as compared with the normal heating operation, and the flow rate of the refrigerant is extremely small. The heating indoor heat exchanger cools the high-temperature superheated gas flowing from the compressor and turns it into a liquid refrigerant. In the case of the pause unit, the heat exchange capacity is almost the same as in the heating operation (during the heating operation). Refrigerant flow)
>> (refrigerant flow rate at rest), the refrigerant in the rest unit cools far more than during normal heating.

【0031】この関係は冷媒流量を決定する膨張弁開度
と密接な関係にあり、膨張弁開度を小さくして行くほど
冷媒温度は低下し、ある開度からは吸込み温度と冷媒温
度とが一致する。この特性を利用して冷媒流量および冷
媒が流れているか否かの判断が可能であり、ほぼ適正な
冷媒流量を確保するための熱交換器の出口冷媒温度と吸
込み温度との温度差(T2−T1)の値の範囲を決定
し、膨張弁開度を制御することによって最終的に最適開
度を得ることができる。
This relationship is closely related to the opening degree of the expansion valve which determines the flow rate of the refrigerant. The smaller the opening degree of the expansion valve, the lower the refrigerant temperature, and from a certain opening degree, the suction temperature and the refrigerant temperature change. Matches. Using this characteristic, it is possible to determine the flow rate of the refrigerant and whether the refrigerant is flowing, and to determine the temperature difference between the refrigerant temperature at the outlet of the heat exchanger and the suction temperature (T2- By determining the range of the value of T1) and controlling the opening degree of the expansion valve, an optimum opening degree can be finally obtained.

【0032】従って、上記した特性の相関を利用して、
膨張弁開度の最適値を設定すると共に、この最適値と熱
交換器の出口冷媒温度と吸込み温度との温度差(T2−
T1)の値とを比較して膨張弁の開度を修正して、繰り
返し調整を行い最適な膨張弁開度に到達することができ
ると共に、膨張弁の機械的公差のばらつき、および経時
劣化による開度のずれに対してもその影響を排除するこ
とができる。なお、この実施の形態における目的を達成
する上で、室内熱交換器の出口冷媒温度センサ102
a,102bは膨張弁と室内熱交換器を接続する配管の
いずれかの個所に設置すれば良いものである。
Therefore, by utilizing the correlation of the above-mentioned characteristics,
The optimum value of the opening degree of the expansion valve is set, and the temperature difference between this optimum value and the outlet refrigerant temperature and the suction temperature of the heat exchanger (T2-
The opening of the expansion valve is corrected by comparing with the value of T1), and it is possible to attain the optimum opening of the expansion valve by performing the adjustment repeatedly, and the variation of the mechanical tolerance of the expansion valve and the deterioration due to aging. The influence of the deviation of the opening can be eliminated. In order to achieve the object in this embodiment, the outlet refrigerant temperature sensor 102 of the indoor heat exchanger is used.
a and 102b may be installed at any point of the pipe connecting the expansion valve and the indoor heat exchanger.

【0033】実施の形態2.この発明の第1の実施の形
態においては、熱交換器の出口冷媒温度と吸込み温度と
の温度差(T2−T1)の値とを比較して膨張弁の開度
を決定したが、図1の冷媒回路構成により、暖房運転お
よび暖房休止ユニットの吹出し温度の制御を行うことが
できる。すなわち、室内熱交換器4a,4b、室内熱交
換器の出口冷媒温度センサ102a,102b、および
室内吸込み温度センサ103a,103bにおいて、1
03a,103bにより検出された室内吸込み温度に対
する熱交換器の出口冷媒温度を出口冷媒温度センサ10
2a,102bにより検出し、吸込み温度に対する吹出
し温度の上昇度の相関、および吹出し温度に対する出口
冷媒温度との相関から吹出し温度そのものを膨張弁開度
によって制御することが可能となる。
Embodiment 2 FIG. In the first embodiment of the present invention, the degree of opening of the expansion valve is determined by comparing the value of the temperature difference (T2-T1) between the outlet refrigerant temperature of the heat exchanger and the suction temperature. With the refrigerant circuit configuration described above, it is possible to control the heating operation and the blowing temperature of the heating suspension unit. That is, in the indoor heat exchangers 4a and 4b, the outlet refrigerant temperature sensors 102a and 102b of the indoor heat exchanger, and the indoor suction temperature sensors 103a and 103b, 1
The outlet refrigerant temperature of the heat exchanger with respect to the indoor suction temperature detected by
2a and 102b, the outlet temperature itself can be controlled by the opening degree of the expansion valve from the correlation between the suction temperature and the degree of increase in the outlet temperature and the correlation between the outlet temperature and the outlet refrigerant temperature.

【0034】図6および図7は、この実施の形態2を説
明するための膨張弁開度変化に対する運転特性を示した
もので、図6により膨張弁開度を大きくすることによっ
て冷媒流量が増大し、吹出し温度は上昇し、結果として
(吹出し温度−吸込み温度)は上昇する特性となる。こ
の特性を利用して、熱交換器の出口冷媒温度と吸込み温
度との温度差(T2−T1)により図8の膨張弁開度の
決定手順を示すフローチャートのように膨張弁開度を変
化させ、吹出し温度の吸込み温度に対する上昇度と、予
め設定された温度設定値と比較し、設定温度より小さく
なるように膨張弁の開度を少しづつ調整を繰り返して、
膨張弁の開度を制御することにより吹出し温度を調整で
き、結果として休止ユニットの室温の上昇を抑制するこ
とができ、快適性の向上につなげることができる。
FIGS. 6 and 7 show the operating characteristics with respect to the change of the expansion valve opening for explaining the second embodiment. FIG. 6 shows that the flow rate of the refrigerant is increased by increasing the opening of the expansion valve. However, the blowout temperature rises, and as a result, (blowout temperature−suction temperature) rises. Using this characteristic, the expansion valve opening is changed according to the temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature of the heat exchanger as shown in the flowchart of the procedure for determining the expansion valve opening in FIG. The degree of rise of the outlet temperature with respect to the suction temperature is compared with a preset temperature set value, and the adjustment of the opening of the expansion valve is repeated little by little so as to be smaller than the set temperature,
By controlling the opening degree of the expansion valve, the outlet temperature can be adjusted, and as a result, a rise in the room temperature of the pause unit can be suppressed, which can lead to an improvement in comfort.

【0035】また、図7により膨張弁開度を変化させた
時の熱交換器の出口冷媒温度T2と吹出し温度の変化の
特性を利用して、この相関から熱交換器出口冷媒温度T
2を膨張弁開度でコントロールすることによって吹き出
し温度を制御することもできる。
Further, utilizing the characteristics of the change of the outlet refrigerant temperature T2 of the heat exchanger and the change of the outlet temperature when the opening degree of the expansion valve is changed according to FIG.
The blowing temperature can also be controlled by controlling 2 with the expansion valve opening.

【0036】実施の形態3.次に、この発明の第3の実
施の形態を図9を用いて説明する。図9は実施の形態1
に用いた図1の冷媒回路に対して、室内熱交換器の出口
冷媒温度センサ102a,102bの代わりに室内熱交
換器の中央冷媒温度を検出するための中央冷媒温度セン
サ104a,104bを取付けることにより、(室内熱
交換器の中央冷媒温度−吸込み温度)を検出し、この値
と予め設定した温度と比較して前記した実施の形態1お
よび実施の形態2と同様に膨張弁開度の制御行って適正
な膨張弁の開度を決定することができる。
Embodiment 3 Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 9 shows the first embodiment.
1, the central refrigerant temperature sensors 104a and 104b for detecting the central refrigerant temperature of the indoor heat exchanger are mounted instead of the outlet refrigerant temperature sensors 102a and 102b of the indoor heat exchanger. , The (central refrigerant temperature of the indoor heat exchanger−the suction temperature) is detected, and this value is compared with a preset temperature to control the expansion valve opening in the same manner as in the first and second embodiments. It is possible to determine the appropriate opening degree of the expansion valve.

【0037】[0037]

【発明の効果】この発明によれば、少なくとも2台以上
の室内機を接続する屋内マルチ型の空気調和機におい
て、暖房運転時における休止ユニット側の膨張弁開度
を、室内熱交換器の出口冷媒温度と室内空気の吸込み温
度の差、もしくは吹出し温度の値に基づいて膨張弁の開
度を適正な開度に制御することができ、これによって休
止ユニットの室内熱交換器への冷媒の溜まり込み量を最
低限にすることが可能となり、さらには空気調和機に封
入する冷媒量を最低限に抑制しつつ、かつ冷媒不足での
運転をも防止することができる。また、膨張弁の機械的
公差によるばらつきや経時劣化による冷媒流量のずれに
対しても、常に最適な膨張弁の開度となるように制御す
ることが可能となり、その影響を排除することができ
る。
According to the present invention, in an indoor multi-type air conditioner in which at least two or more indoor units are connected, the opening degree of the expansion valve on the pause unit during the heating operation is determined by the outlet of the indoor heat exchanger. The opening of the expansion valve can be controlled to an appropriate opening based on the difference between the refrigerant temperature and the suction temperature of the indoor air, or the value of the blow-out temperature, whereby the refrigerant accumulates in the indoor heat exchanger of the pause unit. This makes it possible to minimize the amount of refrigerant contained in the air conditioner, and it is also possible to minimize the amount of refrigerant to be sealed in the air conditioner and to prevent operation due to insufficient refrigerant. In addition, it is possible to control the expansion valve to always have an optimum opening degree even with respect to the variation due to the mechanical tolerance of the expansion valve and the deviation of the refrigerant flow due to the deterioration with time, and it is possible to eliminate the influence. .

【0038】また、室内熱交換器の暖房時における暖房
運転ユニット、および休止ユニットに対して室内熱交換
器の中央冷媒温度と吸込み温度との温度差を検出し、こ
れによって膨張弁の開度制御を行うことにより、吹き出
し温度を制御することができ、快適性の向上が図れる。
Further, the temperature difference between the central refrigerant temperature and the suction temperature of the indoor heat exchanger is detected for the heating operation unit and the pause unit during the heating of the indoor heat exchanger, thereby controlling the opening degree of the expansion valve. , The blowout temperature can be controlled, and the comfort can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による第1の実施の形態の系統構成
を示す図である。
FIG. 1 is a diagram showing a system configuration according to a first embodiment of the present invention.

【図2】 この発明による第1の実施の形態における膨
張弁開度変化に対する空気調和機の運転特性を示す図で
ある。
FIG. 2 is a diagram illustrating operating characteristics of the air conditioner with respect to a change in the opening degree of an expansion valve according to the first embodiment of the present invention.

【図3】 この発明による第1の実施の形態における膨
張弁開度変化と冷媒流量の関係特性を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a relationship characteristic between a change in an opening degree of an expansion valve and a flow rate of a refrigerant in the first embodiment according to the present invention.

【図4】 この発明による第1の実施の形態における膨
張弁開度変化に対する空気調和機の運転特性を示す説明
図である。
FIG. 4 is an explanatory diagram showing operating characteristics of the air conditioner with respect to a change in the opening degree of the expansion valve in the first embodiment according to the present invention.

【図5】 この発明による第1の実施の形態における膨
張弁開度の決定手順を示すフローチャートである。
FIG. 5 is a flowchart showing a procedure for determining an expansion valve opening degree in the first embodiment according to the present invention.

【図6】 この発明による第2の実施の形態における膨
張弁開度変化に対する空気調和機の運転特性を示す図で
ある。
FIG. 6 is a diagram showing operating characteristics of an air conditioner with respect to a change in an opening degree of an expansion valve according to a second embodiment of the present invention.

【図7】 この発明による第2の実施の形態における膨
張弁開度変化に対する空気調和機の運転特性を示す図で
ある。
FIG. 7 is a diagram showing operating characteristics of an air conditioner with respect to a change in an opening degree of an expansion valve according to a second embodiment of the present invention.

【図8】 この発明による第2の実施の形態における膨
張弁開度の決定手順を示すフローチャートである。
FIG. 8 is a flowchart showing a procedure for determining an opening degree of an expansion valve according to a second embodiment of the present invention.

【図9】 この発明による第3の実施の形態の系統構成
を示す図である。
FIG. 9 is a diagram showing a system configuration according to a third embodiment of the present invention.

【図10】 従来の空気調和機の系統構成を示す図であ
る。
FIG. 10 is a diagram showing a system configuration of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 四方弁、 3,3a,3b 冷媒配
管、 4a,4b 室内熱交換器、 5a,5b 電子
式膨張弁、 6,6a,6b 冷媒配管、 9室外熱交
換器、 11a,11b 室内送風機、 12 室外送
風機、 100コントローラー、 102a,102b
出口冷媒温度センサ、 103a,103b 吸込み
温度センサ、 104a,104b 中央冷媒温度セン
サ、A 室内ユニットA, B 室内ユニットB, C
室外ユニット。
Reference Signs List 1 compressor, 2 four-way valve, 3, 3a, 3b refrigerant pipe, 4a, 4b indoor heat exchanger, 5a, 5b electronic expansion valve, 6, 6a, 6b refrigerant pipe, 9 outdoor heat exchanger, 11a, 11b indoor Blower, 12 outdoor blower, 100 controller, 102a, 102b
Outlet refrigerant temperature sensor, 103a, 103b Suction temperature sensor, 104a, 104b Central refrigerant temperature sensor, A indoor unit A, B indoor unit B, C
Outdoor unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布施 敏也 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Toshiya Fuse 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各々個別に運転、休止できる複数台の室
内機を備えた空気調和機において、前記室内機に各々電
子式膨張弁と、熱交換器の出口冷媒温度を検出する出口
冷媒温度センサ、および吸込み温度を検出する吸込み温
度センサとを備えてなり、暖房運転時において休止側室
内機の熱交換器の出口冷媒温度と、吸込み温度との温度
差を検出し、その検出結果により冷媒の溜まり込みがな
いように前記電子式膨張弁を適正開度に制御するように
したことを特徴とする空気調和機。
1. An air conditioner having a plurality of indoor units each of which can be individually operated and stopped, wherein each of the indoor units has an electronic expansion valve and an outlet refrigerant temperature sensor for detecting an outlet refrigerant temperature of a heat exchanger. And a suction temperature sensor that detects a suction temperature, detects a temperature difference between an outlet refrigerant temperature of the heat exchanger of the pause side indoor unit and a suction temperature during the heating operation, and detects a temperature difference of the refrigerant based on the detection result. An air conditioner, wherein the electronic expansion valve is controlled to an appropriate opening degree so as to prevent accumulation.
【請求項2】 暖房運転時において休止且つ送風状態に
設定された休止側室内機の熱交換器の出口冷媒温度と、
吸込み温度との温度差を検出し、その検出結果により同
室内機の吹出し温度の吸込み温度に対する温度上昇の
値、もしくは吹出し温度の値を算出し、これらの値に基
づいて電子式膨張弁を適正開度に制御するようにしたこ
とを特徴とする請求項1記載の空気調和機。
2. An outlet refrigerant temperature of a heat exchanger of a pause side indoor unit which is paused and set in a blowing state during a heating operation;
The temperature difference from the suction temperature is detected, and the temperature rise value of the blowout temperature of the indoor unit with respect to the suction temperature or the blowout temperature value is calculated based on the detection result, and the electronic expansion valve is properly adjusted based on these values. The air conditioner according to claim 1, wherein the opening is controlled.
【請求項3】 各々個別に運転、休止できる複数台の室
内機を備えた空気調和機において、前記室内機に各々電
子式膨張弁と、熱交換器の中央冷媒温度を検出する中央
冷媒温度センサ、および吸込み温度を検出する吸込み温
度センサとを備えてなり、暖房運転時において休止側室
内機の熱交換器の中央冷媒温度と、吸込み温度との温度
差を検出し、その検出結果により冷媒の溜まり込みがな
いように前記電子式膨張弁を適正開度に制御するように
したことを特徴とする空気調和機。
3. An air conditioner having a plurality of indoor units, each of which can be individually operated and suspended, wherein each of the indoor units has an electronic expansion valve and a central refrigerant temperature sensor for detecting a central refrigerant temperature of a heat exchanger. And a suction temperature sensor that detects a suction temperature, detects a temperature difference between the central refrigerant temperature of the heat exchanger of the pause side indoor unit and the suction temperature during the heating operation, and detects the temperature difference of the refrigerant based on the detection result. An air conditioner, wherein the electronic expansion valve is controlled to an appropriate opening degree so as to prevent accumulation.
【請求項4】 暖房運転時において休止且つ送風状態に
設定された休止側室内機の熱交換器の中央冷媒温度と、
吸込み温度との温度差を検出し、その検出結果に基づい
て電子式膨張弁を適正開度に制御するようにしたことを
特徴とする請求項3記載の空気調和機。
4. A central refrigerant temperature of a heat exchanger of a pause side indoor unit which is set to a pause and a blown state during a heating operation;
4. The air conditioner according to claim 3, wherein a temperature difference from the suction temperature is detected, and the electronic expansion valve is controlled to an appropriate opening based on the detection result.
JP13794998A 1998-05-20 1998-05-20 Air conditioner Expired - Fee Related JP3736969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13794998A JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13794998A JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11325639A true JPH11325639A (en) 1999-11-26
JP3736969B2 JP3736969B2 (en) 2006-01-18

Family

ID=15210486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13794998A Expired - Fee Related JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3736969B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207722A (en) * 2004-01-19 2005-08-04 Lg Electronics Inc Method for controlling multi-type air conditioner
JP2008039375A (en) * 2006-07-12 2008-02-21 Matsushita Electric Ind Co Ltd Multi-room type air conditioner
JP2008196775A (en) * 2007-02-13 2008-08-28 Sharp Corp Air conditioner
JP2008241231A (en) * 2007-02-26 2008-10-09 Shimizu Corp Energy-saving air-conditioning control system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011202833A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
WO2014024376A1 (en) * 2012-08-09 2014-02-13 株式会社デンソー Refrigeration cycling device
WO2017168504A1 (en) * 2016-03-28 2017-10-05 三菱電機株式会社 Air conditioner
KR20190030791A (en) * 2017-09-14 2019-03-25 한온시스템 주식회사 Air conditioning system for automotive vehicles
WO2019058464A1 (en) * 2017-09-20 2019-03-28 三菱電機株式会社 Air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207722A (en) * 2004-01-19 2005-08-04 Lg Electronics Inc Method for controlling multi-type air conditioner
EP1555492A3 (en) * 2004-01-19 2006-06-07 Lg Electronics Inc. Method for controlling multi-type air conditioner
US7131283B2 (en) 2004-01-19 2006-11-07 Lg Electronics Inc. Method for controlling multi-type air conditioner
JP2008039375A (en) * 2006-07-12 2008-02-21 Matsushita Electric Ind Co Ltd Multi-room type air conditioner
JP2008196775A (en) * 2007-02-13 2008-08-28 Sharp Corp Air conditioner
JP2008241231A (en) * 2007-02-26 2008-10-09 Shimizu Corp Energy-saving air-conditioning control system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2011202833A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
WO2014024376A1 (en) * 2012-08-09 2014-02-13 株式会社デンソー Refrigeration cycling device
JP2014034301A (en) * 2012-08-09 2014-02-24 Denso Corp Refrigeration cycle device
WO2017168504A1 (en) * 2016-03-28 2017-10-05 三菱電機株式会社 Air conditioner
JPWO2017168504A1 (en) * 2016-03-28 2018-10-04 三菱電機株式会社 Air conditioner
KR20190030791A (en) * 2017-09-14 2019-03-25 한온시스템 주식회사 Air conditioning system for automotive vehicles
WO2019058464A1 (en) * 2017-09-20 2019-03-28 三菱電機株式会社 Air conditioner
JPWO2019058464A1 (en) * 2017-09-20 2020-03-26 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3736969B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
EP1862745B1 (en) Air conditioner
KR100468917B1 (en) Multi-type air conditioner
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
US8215122B2 (en) Air conditioner and method of controlling the same
US20110023534A1 (en) Refrigeration system
US7380407B2 (en) Multi air conditioning system and method for operating the same
WO2007094343A1 (en) Air-conditioning apparatus
JP4445246B2 (en) Air conditioner
JPH11325639A (en) Air conditioner
CN111121219A (en) Air-cooled module machine loading and unloading control mode
JP3181116B2 (en) Air conditioner
KR100311859B1 (en) Air conditioner having a number of indoor heat exchanger
JP4104218B2 (en) Air conditioner
CN113551437B (en) Air conditioning system and control method
KR20060057339A (en) Multi type air conditioner
JPH09138012A (en) Air conditioner
JP3460660B2 (en) Air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JP3558788B2 (en) Air conditioner and control method thereof
JPH1183128A (en) Highly efficient multiple air conditioning system
JPH09318140A (en) Air conditioner
JP3835310B2 (en) Air conditioner
JP3357823B2 (en) Air conditioner
JP2000304333A (en) Vav control system
JP2536313B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees