JPH11322783A - Dna probe having optically active phosphonic diester bond - Google Patents

Dna probe having optically active phosphonic diester bond

Info

Publication number
JPH11322783A
JPH11322783A JP10123298A JP12329898A JPH11322783A JP H11322783 A JPH11322783 A JP H11322783A JP 10123298 A JP10123298 A JP 10123298A JP 12329898 A JP12329898 A JP 12329898A JP H11322783 A JPH11322783 A JP H11322783A
Authority
JP
Japan
Prior art keywords
protecting group
group
optically active
phosphorus atom
embedded image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10123298A
Other languages
Japanese (ja)
Other versions
JP4305966B2 (en
Inventor
Ryuichi Horie
隆一 堀江
Norihiko Ishiguro
敬彦 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP12329898A priority Critical patent/JP4305966B2/en
Priority to US09/305,223 priority patent/US6211354B1/en
Priority to EP99303552A priority patent/EP0959077B1/en
Priority to EP03076458A priority patent/EP1340766B1/en
Priority to DE69939911T priority patent/DE69939911D1/en
Priority to DE69919778T priority patent/DE69919778T2/en
Publication of JPH11322783A publication Critical patent/JPH11322783A/en
Priority to HK04100967.5A priority patent/HK1059787A1/en
Application granted granted Critical
Publication of JP4305966B2 publication Critical patent/JP4305966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a DNA probe expressed by a specific structural formula having a phosphonic diester bond in which the stereoconfiguration of the phosphorus atom is optically active, and useful for the identification of a target gene, the clinical diagnoses and treatments of diseases, etc., in excellent measurement accuracy and sensitivity. SOLUTION: A DNA probe expressed by formula I (P* is optically active phosphorus atom; R1 and R2 are each a DNA oligomer having an arbitrary sequence; R3 is an intercalative pigment bound through a proper linker) in which the stereoconfiguration of the phosphorus atom is optically active. When intercalated between the DNA probe and a target nucleic acid, the intercalative pigment changes its fluorescent characteristics. The DNA oligomer is preferably produced by reacting arbitrary DNA oligomers with a dinucleotide expressed by formula II (B1 and B2 are each a nucleic acid base; R10 is an amino- protecting group; R11 is a hydroxyl group-protecting group; R12 is phosphate group or phosphoroamidite) in which the stereoconfiguration of the phosphorus atom is optically active.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性なホスホ
ン酸ジエステル結合を持つDNAプローブ及びその製造
法に関するものである。本発明により得られるオリゴヌ
クレオチドは、標的遺伝子の同定、抽出さらには標的遺
伝子の発現の調節に使用され、遺伝子工学、臨床診断、
治療等の分野で利用される。
TECHNICAL FIELD The present invention relates to a DNA probe having an optically active phosphonic diester bond and a method for producing the same. Oligonucleotides obtained according to the present invention are used for identification of target genes, extraction and further regulation of expression of target genes, genetic engineering, clinical diagnosis,
It is used in the field of treatment and the like.

【0002】[0002]

【従来の技術】標的核酸の検出及び定量には、標的核酸
がその中の特定核酸配列、即ち特定の核酸塩基配列と相
補的な配列を有する核酸プローブと相補結合を形成する
性質が利用されている。また、オキサゾールイエロー、
チアゾールオレンジ、エチジウムブロマイドなどのイン
ターカレーター性色素は、二本鎖核酸と結合すると顕著
な蛍光増感を示すことが知られている。
2. Description of the Related Art The detection and quantification of a target nucleic acid utilizes the property that a target nucleic acid forms a complementary bond with a specific nucleic acid sequence therein, ie, a nucleic acid probe having a sequence complementary to a specific nucleobase sequence. I have. Also, oxazole yellow,
It is known that intercalating dyes such as thiazole orange and ethidium bromide show remarkable fluorescence sensitization when bound to double-stranded nucleic acid.

【0003】本出願人は、これらの性質を利用して、特
定の核酸核酸配列を有する核酸(標的核酸)を測定する
方法であって、標的核酸の前記特定核酸配列に相補的な
核酸配列を有する一本鎖オリゴヌクレオチドをプローブ
として用い、そのプローブを試料に添加し標的核酸と相
補結合を形成させる工程を含む方法において、前記プロ
ーブがインターカレーター性蛍光色素で標識された一本
鎖オリゴヌクレオチドであって、該インターカレーター
性色素が標的核酸と一本鎖オリゴヌクレオチドプローブ
の相補結合部分にインターカレーションするものである
ことを特徴とする特定核酸配列の検出法を発明した(特
開平8−211050号公報参照)。
[0003] The applicant of the present invention is a method for measuring a nucleic acid having a specific nucleic acid nucleic acid sequence (target nucleic acid) by utilizing these properties, wherein a nucleic acid sequence complementary to the specific nucleic acid sequence of the target nucleic acid is determined. Using a single-stranded oligonucleotide having as a probe, a method comprising the step of adding the probe to a sample to form a complementary bond with a target nucleic acid, wherein the probe is a single-stranded oligonucleotide labeled with an intercalating fluorescent dye. Then, a method for detecting a specific nucleic acid sequence, characterized in that the intercalating dye intercalates with the complementary binding portion between the target nucleic acid and the single-stranded oligonucleotide probe, was invented (JP-A-8-21110). Reference).

【0004】上記発明により、標的核酸の検出方法にお
いて、相補結合に関与しなかった余剰プローブを分離す
る工程等を必要とせずに、その相補結合の形成の有無及
び形成された相補結合体の相補結合体の定量を可能と
し、特定の核酸配列からなる核酸を均一系で簡便な一段
階の操作により検出し得る標識核酸プローブ等を提供す
ることができた。
According to the above-mentioned invention, in the method for detecting a target nucleic acid, the presence or absence of the formation of the complementary bond and the complementation of the formed complementary complex are eliminated without the necessity of a step of separating extra probes not involved in the complementary binding. It was possible to provide a labeled nucleic acid probe or the like which enables quantification of a conjugate and enables detection of a nucleic acid comprising a specific nucleic acid sequence in a homogeneous system by a simple one-step operation.

【0005】プローブ核酸の標識方法については、限定
的ではないが、標的核酸との相補結合形成に影響を与え
ないアミノアルキルホスホン酸をリンカーとして、プロ
ーブの中央部分にインターカレーターを標識することに
より、標的核酸の配列の一塩基置換の検出も可能となっ
た。
[0005] The method of labeling the probe nucleic acid is not limited, but by labeling an intercalator at the center of the probe with an aminoalkylphosphonic acid which does not affect the formation of complementary bond with the target nucleic acid as a linker, Detection of single nucleotide substitution in the sequence of the target nucleic acid has also become possible.

【0006】[0006]

【発明が解決しようとする課題】インターヌクレオチド
結合のホスホン酸ジエステル結合には、そのリン原子上
にキラル中心が存在する。即ち、オリゴヌクレオチドの
中央部分に1カ所ホスホン酸が導入されたDNAプロー
ブには、絶対配置が、R体S体の二つの立体異性体が存
在することになる。
The phosphonate diester linkage of the internucleotide linkage has a chiral center on its phosphorus atom. That is, the DNA probe in which one phosphonic acid is introduced into the central portion of the oligonucleotide has two stereoisomers of R-form and S-form in absolute configuration.

【0007】遺伝子薬剤として広く研究されているアン
チセンスDNAとして用いられるメチルホスホン酸にお
いては、その絶対配置により、相補鎖との結合安定性
(Tm)、コンホメーション、核酸分解酵素に対する反
応性などが異なることが知られている。
[0007] Methylphosphonic acid used as antisense DNA, which has been widely studied as a gene drug, depends on its absolute configuration such as binding stability (Tm) to a complementary strand, conformation, and reactivity to nuclease. It is known to be different.

【0008】そこで本発明の目的は、アミノアルキルホ
スホン酸をリンカーとして、その核酸配列の中央部分に
インターカレーターを標識した核酸プローブにおいて、
リン原子上の立体構造の異なる核酸プローブを提供する
ことにある。
Accordingly, an object of the present invention is to provide a nucleic acid probe in which an aminoalkylphosphonic acid is used as a linker and an intercalator is labeled at the center of the nucleic acid sequence.
An object of the present invention is to provide nucleic acid probes having different three-dimensional structures on a phosphorus atom.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる目
的を実現すべく鋭意研究を行った結果、本発明を完成す
るに至った。すなわち本発明は、光学活性なDNAプロ
ーブ及びその製造法であって、その核酸プローブが核酸
配列の中央部分にキラルなアミノアルキルホスホン酸を
リンカーとしてインターカレーターで標識されたDNA
プローブである。 また本発明は、光学活性なDNAプ
ローブを製造するための前駆体である光学活性なホスホ
ン酸ジヌクレオシド及びその製造法である。本発明者ら
は、ラセミ体として得られるホスホン酸ジヌクレオチド
の保護基の種類により両立体異性体間のRf値に差異が
あることを見出だした。これにより、両立体異性体の光
学分割を容易にし、光学活性なホスホン酸ジヌクレオチ
ドの製造法を確立したのである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have completed the present invention. That is, the present invention relates to an optically active DNA probe and a method for producing the same, wherein the nucleic acid probe is labeled with an intercalator using a chiral aminoalkylphosphonic acid as a linker at the center of the nucleic acid sequence.
Probe. The present invention also relates to an optically active phosphonate dinucleoside which is a precursor for producing an optically active DNA probe, and a method for producing the same. The present inventors have found that there is a difference in the Rf value between the two stereoisomers depending on the type of the protecting group of the phosphonate dinucleotide obtained as a racemate. This facilitated the optical resolution of both stereoisomers and established a method for producing an optically active phosphonate dinucleotide.

【0010】以下本発明を詳細に説明する。本発明の出
発物質である下記構造式10で表わされるヌクレオシド
として、R21がDMTr基のものが文献に記載された
方法(J. Am. Chem. Soc.、第84
巻、第430頁(1962年))によって取得可能であ
る。また市販の当該化合物を用いてることもできる。
Hereinafter, the present invention will be described in detail. As a nucleoside represented by the following structural formula 10 as a starting material of the present invention, a method in which R21 is a DMTr group is described in the literature (J. Am. Chem. Soc., No. 84).
Vol., P. 430 (1962)). Alternatively, a commercially available compound can be used.

【0011】[0011]

【化13】 Embedded image

【0012】また、下記構造式11で表わされる化合物
は、市販の2−アミノエチルホスホン酸を適当なアミノ
基の保護基で保護したものを用いることができる。アミ
ノ基の保護基は、Z、MZ、Fmoc、TFA、Bz等
一般に用いられる保護基でよいが、好ましくはDMTr
基の脱離条件と異なるものが望ましい。
Further, as the compound represented by the following structural formula 11, commercially available 2-aminoethylphosphonic acid protected with a suitable protecting group for an amino group can be used. The protecting group for the amino group may be a commonly used protecting group such as Z, MZ, Fmoc, TFA, and Bz, and is preferably DMTr.
Desirable conditions are different from the conditions for elimination of groups.

【0013】[0013]

【化14】 Embedded image

【0014】構造式10で表わされる化合物と構造式1
1で表わされる化合物を脱水縮合することにより、下記
構造式12で表わされる化合物が得られる。縮合に用い
る縮合試薬に制限はないが、一般にリン酸エステルを形
成できる試薬、例えば、ジシクロヘキシルカルボジイミ
ド、アルキルベンゼンスルホン酸誘導体、ビス(2−オ
キソ−3−オキサゾリジニル)ホスフィニッククロライ
ド等が例示される。また反応溶媒は、アセトニトリル、
ピリジンなどの生成物が溶解される極性溶媒を用いるこ
とができる。反応温度も特に制限されないが、溶媒の融
点温度から沸点温度まで用いることができるが、好まし
くは−10℃から60℃までの温度が望ましい。
Compound represented by structural formula 10 and structural formula 1
By dehydrating and condensing the compound represented by 1, a compound represented by the following structural formula 12 is obtained. The condensation reagent used for the condensation is not limited, but generally includes a reagent capable of forming a phosphate ester, for example, dicyclohexylcarbodiimide, an alkylbenzenesulfonic acid derivative, bis (2-oxo-3-oxazolidinyl) phosphinic chloride and the like. The reaction solvent is acetonitrile,
A polar solvent in which the product such as pyridine is dissolved can be used. Although the reaction temperature is not particularly limited, it can be used from the melting point temperature to the boiling point temperature of the solvent, and preferably a temperature from -10 ° C to 60 ° C.

【0015】[0015]

【化15】 Embedded image

【0016】得られた構造式12で表わされる化合物
は、下記構造式6で表わされる5’−位水酸基が保護さ
れていないヌクレオシドと縮合することにより、下記構
造式7で表わされるホスホン酸ジヌクレオシドが得られ
る。構造式6で表わされる化合物の3’−位の保護基
は、水酸基の保護基として用いられるAc、Bz、TB
DMS、Bn等を用いることができるが、好ましくはD
MTr基か、アミノエチルホスホン酸のアミノ基の保護
基の脱離条件とは異なるものが望ましい。
The resulting compound represented by Structural Formula 12 is condensed with a nucleoside in which the 5'-hydroxyl group represented by Structural Formula 6 is not protected, thereby obtaining a phosphonic acid dinucleoside represented by Structural Formula 7: Is obtained. The protecting group at the 3′-position of the compound represented by Structural Formula 6 may be any of Ac, Bz, TB used as a protecting group for a hydroxyl group.
DMS, Bn and the like can be used.
It is desirable that the conditions differ from the conditions for removing the MTr group or the protecting group for the amino group of aminoethylphosphonic acid.

【0017】[0017]

【化16】 Embedded image

【0018】[0018]

【化17】 Embedded image

【0019】縮合に用いる縮合試薬に制限はないが、一
般にリン酸エステルを形成できる試薬、例えばジシクロ
ヘキシルカルボジイミド、アルキルベンゼンスルホン酸
誘導体、ビス(2−オキソ−3−オキサゾリジニル)ホ
スフィニッククロライド等が例示される。また反応溶媒
は、アセトニトリル、ピリジン、などの生成物が溶解さ
れる極性溶媒を用いることができる。反応温度も特に制
限はなく、溶媒の融点温度から沸点温度まで用いること
ができるが、好ましくは、−10℃から60℃までの温
度が望ましい。
The condensing reagent used for the condensation is not limited, but generally, a reagent capable of forming a phosphoric ester, for example, dicyclohexylcarbodiimide, an alkylbenzenesulfonic acid derivative, bis (2-oxo-3-oxazolidinyl) phosphinic chloride and the like are exemplified. You. As the reaction solvent, a polar solvent in which a product such as acetonitrile, pyridine or the like is dissolved can be used. The reaction temperature is also not particularly limited, and it can be used from the melting point temperature to the boiling point temperature of the solvent. Preferably, the temperature is from -10 ° C to 60 ° C.

【0020】本化合物は、リン原子上にキラル中心が存
在し、R体、S体の二つの立体異性体の混合物として得
られる。両立体異性体の分割は、シリカゲルカラムクロ
マトグラフィー、逆相カラムクロマトグラフィーなど、
通常の化合物の分離精製方法を用いて光学分割すること
ができる。
The present compound has a chiral center on a phosphorus atom and is obtained as a mixture of two R- and S-stereoisomers. Resolution of both stereoisomers can be performed by silica gel column chromatography, reverse phase column chromatography, etc.
Optical resolution can be performed using a general compound separation and purification method.

【0021】本発明者らは、立体異性体の分割におい
て、ホスホン酸ジエステルの3’−位の保護基の種類に
よって両異性体のRf値に差異があることを発見した。
アミノ基の保護基がMZ基、3’−位の保護基がAcの
時、両異性体のRf値は同一であり、両者を分割するこ
とは困難である。一方、アミノ基の保護基がTFA基、
3’−位の保護基がTBDMS基であるとき、両異性体
のRf値の差は大きく、分割は容易となる。
The present inventors have found that in the resolution of stereoisomers, the Rf values of both isomers differ depending on the type of the protecting group at the 3'-position of the phosphonic acid diester.
When the protecting group for the amino group is MZ, and when the protecting group for the 3′-position is Ac, the Rf values of both isomers are the same and it is difficult to separate them. On the other hand, the protecting group of the amino group is a TFA group,
When the protecting group at the 3′-position is a TBDMS group, the difference between the Rf values of both isomers is large, and the resolution is easy.

【0022】分割した異性体の絶対配置は1H NM
R、31P NMR等の分析方法により決定することが
できる。
The absolute configuration of the resolved isomer is 1H NM
R, 31P It can be determined by an analysis method such as NMR.

【0023】次に分割した光学活性なホスホン酸ジヌク
レオチドの3’−位の保護基を脱保護する。脱保護方法
は、化合物中に存在する他の保護基が脱離しない条件で
あることが望ましい。生成した3’−水酸基を公知の方
法でリン酸化又はホスホロアミダイト化し、別途合成し
たDNAオリゴマーの5’−末端に導入することができ
る。さらに、この5’−末端にホスホン酸ジヌクレオチ
ドが導入されたDNAオリゴマーからDNA鎖を伸長す
ることにより目的の配列を持ったオリゴマーを調製する
ことができる。DNAオリゴマーの調製は、液相法や固
相法など、通常のDNAオリゴマーの調製方法を用いる
ことができる。ホスホン酸ジヌクレオチドをホスホロア
ミダイト化することにより、一般に市販されているDN
A合成機用試薬と同等に扱うことができる。ホスホン酸
ジヌクレオチドのホスホロアミダイト体を用いてDNA
合成機でDNAを合成し、任意のDNA配列の任意の位
置にホスホン酸ジエステルを導入したDNAオリゴマー
を調製することができる。最終的に調製したホスホン酸
オリゴマーの保護基を脱保護し、露出したホスホン酸の
アミノ基とインターカレーター性色素を結合することに
より、本発明の光学活性なDNAプローブを調製するこ
とができる。
Next, the protecting group at the 3'-position of the split optically active phosphonate dinucleotide is deprotected. The deprotection method is desirably a condition under which other protecting groups present in the compound are not eliminated. The generated 3′-hydroxyl group can be phosphorylated or phosphoramidite by a known method and introduced into the 5′-end of a separately synthesized DNA oligomer. Further, an oligomer having a target sequence can be prepared by extending a DNA chain from the DNA oligomer having a phosphonate dinucleotide introduced at the 5′-end. For preparation of the DNA oligomer, an ordinary method for preparing a DNA oligomer such as a liquid phase method or a solid phase method can be used. Phosphoramidination of phosphonate dinucleotides allows the use of commercially available DN
It can be handled in the same way as the reagent for A synthesizer. DNA using phosphoramidite of phosphonate dinucleotide
DNA can be synthesized by a synthesizer, and a DNA oligomer having a phosphonic acid diester introduced at an arbitrary position in an arbitrary DNA sequence can be prepared. The optically active DNA probe of the present invention can be prepared by deprotecting the protecting group of the finally prepared phosphonic acid oligomer and binding the exposed amino group of the phosphonic acid to the intercalating dye.

【0024】インターカレーター色素にアミノ基と直接
結合できる官能基を有しているものを用いることによ
り、アミノ基とインターカレーター色素を容易に結合す
ることができる。さらに、N−Succimidyl−
3−(2−pyridyldithio)propio
nate(SPDP)やN−Succiminidyl
−6−maleimidohexanoate(EMC
S)等の両末端に官能基を有する二官能性試薬をホスホ
ン酸アミノ基に結合し、これを介してインターカレータ
ー性色素を結合すれようにすれば、インターカレーター
性色素が有する官能基の種類を任意に選択することがで
きる。
By using an intercalator dye having a functional group capable of directly bonding to an amino group, the amino group and the intercalator dye can be easily bonded. Furthermore, N-Succimidyl-
3- (2-pyridyldithio) propio
nate (SPDP) or N-Succiminidyl
-6-maleimidohexanoate (EMC
If a bifunctional reagent having a functional group at both ends, such as S), is bonded to an amino group of phosphonic acid and an intercalating dye is bonded via this, the type of the functional group of the intercalating dye Can be arbitrarily selected.

【0025】インターカレーター性色素としては、オキ
サゾールイエロー、チアゾールオレンジ、エチジウムブ
ロマイド、アクリジンオレンジなどの二本鎖核酸とイン
ターカレートして顕著な蛍光増感を示すことが知られて
いる化合物であれば制限なく用いることができる。好ま
しくは、検出の容易さの観点からインターカレーション
によりその蛍光強度が著しく増加するものが特に良い。
このようなインターカレーター性色素として、チアゾー
ルオレンジ、オキサゾールイエローを例示することがで
きる。
As the intercalating dye, any compound known to intercalate with a double-stranded nucleic acid such as oxazole yellow, thiazole orange, ethidium bromide, acridine orange and exhibiting significant fluorescence sensitization can be used. It can be used without limitation. Preferably, from the viewpoint of ease of detection, those whose fluorescence intensity is significantly increased by intercalation are particularly preferable.
Examples of such an intercalating dye include thiazole orange and oxazole yellow.

【0026】[0026]

【発明の実施の形態】以下、本発明を実施例により更に
詳細に説明するが、これらの実施例は本発明の一例であ
り、本発明を限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are only examples of the present invention and do not limit the present invention.

【0027】実施例1 図1の通り、化合物1と化合物2を表1の比率にて混合
し、ピリジンに溶解した溶液に、塩化トリイソプロピル
ベンゼンスルホニル(TPS−Cl)とテトラゾールの
ピリジン溶液を滴下した。反応液を40℃4時間撹拌し
た後、50%ピリジン水溶液を加え、pHを7.0付近
に調整した。反応液を酢酸エチルと飽和食塩水で分液
し、有機層を乾燥後減圧下溶媒を濃縮した。得られた濃
縮液をシリカゲルカラムクロマトグラフィーにて精製
し、化合物3を得た。収量及び収率は表1の通りであ
る。
Example 1 As shown in FIG. 1, compound 1 and compound 2 were mixed in the ratio shown in Table 1, and a pyridine solution of triisopropylbenzenesulfonyl chloride (TPS-Cl) and tetrazole was added dropwise to a solution dissolved in pyridine. did. After the reaction solution was stirred at 40 ° C. for 4 hours, a 50% aqueous pyridine solution was added to adjust the pH to around 7.0. The reaction solution was partitioned between ethyl acetate and saturated saline, the organic layer was dried, and then the solvent was concentrated under reduced pressure. The obtained concentrate was purified by silica gel column chromatography to obtain Compound 3. The yield and yield are as shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 図2の通り、化合物3と化合物4を1:1のモル比で混
合し、ピリジンに溶解した。縮合試薬(塩化トリイソプ
ロピルベンゼンスルホニル(TPS−Cl)、トリイソ
プロピルベンゼンスルホニル−3−ニトロトリアゾール
(TPS−Ntriazole)、ビス(2−オキソ−
3−オキサゾリジニル)ホスフィニッククロライド(B
OP−Cl)を加え、40℃で反応を継続した。表2に
示した反応時間の後、50%ピリジン水溶液を加え、p
Hを7.0付近に調整した。反応液を酢酸エチルと飽和
食塩水で分液し、有機層を乾燥後減圧下溶媒を濃縮し
た。得られた濃縮液をシリカゲルカラムクロマトグラフ
ィーにて精製し、化合物5-S及び化合物5- R(図6
参照)を得た。収量及び収率は表2の通りである。
Example 2 As shown in FIG. 2, Compound 3 and Compound 4 were mixed at a molar ratio of 1: 1 and dissolved in pyridine. Condensation reagents (triisopropylbenzenesulfonyl chloride (TPS-Cl), triisopropylbenzenesulfonyl-3-nitrotriazole (TPS-Ntriazole), bis (2-oxo-
3-oxazolidinyl) phosphinic chloride (B
OP-Cl) was added, and the reaction was continued at 40 ° C. After the reaction time shown in Table 2, 50% aqueous pyridine solution was added, and p
H was adjusted to around 7.0. The reaction solution was partitioned between ethyl acetate and saturated saline, the organic layer was dried, and then the solvent was concentrated under reduced pressure. The obtained concentrated solution was purified by silica gel column chromatography to obtain compound 5-S and compound 5-R (FIG. 6).
See). The yield and yield are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】図3に、図2中の化合物5(R+S)(B
1=T、B2=CBz、R1=MZ、R2=Ac)の5
00 MHz NMR(CDCl3)のチャートを示し
た。また図4に、図2中の化合物5- S(B1=T、B
2=CBz、R1=TFA、R2=TBDMS)及び化
合物5−R(B1=T、B2=CBz、R1=TFA、
R2=TBDMS)の500 MHz NMR(CDC
l3)のチャートを示した。また図5に、図2中の化合
物5−S(B1=ABz、B2=ABz、R1=TF
A、R2=TBDMS)及び化合物5- R(B1=AB
z、B2=ABz、R1=TFA、R2=TBDMS)
の500 MHz NMR(CDCl3)のチャートを
示した。
FIG. 3 shows the compound 5 (R + S) (B
1 = T, B2 = CBz, R1 = MZ, R2 = Ac) 5
The chart of 00 MHz NMR (CDCl3) was shown. FIG. 4 shows the compound 5-S (B1 = T, B
2 = CBz, R1 = TFA, R2 = TBDMS) and compound 5-R (B1 = T, B2 = CBz, R1 = TFA,
R2 = TBDMS) 500 MHz NMR (CDC
13) is shown. FIG. 5 shows the compound 5-S (B1 = ABz, B2 = ABz, R1 = TF) in FIG.
A, R2 = TBDMS) and compound 5-R (B1 = AB
z, B2 = ABz, R1 = TFA, R2 = TBDMS)
The chart of 500 MHz NMR (CDCl3) was shown.

【0032】図6に、化合物5−S及び5−Rの構造を
詳細に示す。表2に示したように化合物5において、そ
の水酸基及びアミノ基の保護基(R1、R2)の種類に
よって、R体、S体両体の両立体特異体の薄層クロマト
グラフ(TLC)における移動度(Rf)が異なり、R
1=TFA、R2=TBDMSのとき、両特異体の分割
が容易となることが分かる。なおTLCは、市販の装置
(Merk Silica gel60F254HPT
LCplate)を使用し、クロロホルムとメタノール
を95:5に混合した展開溶媒を使用して行った。
FIG. 6 shows the structures of the compounds 5-S and 5-R in detail. As shown in Table 2, in compound 5, depending on the type of the protecting group (R1, R2) for the hydroxyl group and the amino group, the transfer of both R-form and S-form stereospecific isomers in thin-layer chromatography (TLC). Degree (Rf) is different, R
It can be seen that when 1 = TFA and R2 = TBDMS, it is easy to split both specificities. The TLC is a commercially available device (Merk Silica gel 60F254HPT).
LCplate) and a developing solvent in which chloroform and methanol were mixed at a ratio of 95: 5.

【0033】実施例3 図7及び図8の通り、化合物5- Sまたは化合物5- R
をTHFに溶解し、0.1Mテトラブチルアンモミウム
フルオライドのTHF溶液を滴下した。反応液を2時間
撹拌した後、反応液を減圧下濃縮乾固した。残さをクロ
ロホルムと飽和食塩水で分液し、有機層を乾燥後、減圧
下濃縮乾固した。得られた残さをシリカゲルカラムクロ
マトグラフィーにて精製し、化合物6- S及び化合物6
- Rを得た。収量及び収率は表3の通りである。
Example 3 As shown in FIGS. 7 and 8, compound 5-S or compound 5-R
Was dissolved in THF, and a THF solution of 0.1 M tetrabutylammonium fluoride was added dropwise. After stirring the reaction solution for 2 hours, the reaction solution was concentrated to dryness under reduced pressure. The residue was partitioned between chloroform and saturated saline, and the organic layer was dried and concentrated to dryness under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain compound 6-S and compound 6
-Obtained R. The yield and yield are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例4 図9の通り、化合物7を文献に記載された方法(Nuc
leic AcidResearch、第14巻、第7
391頁)に従ってホスホロアミダイト化し、化合物8
を合成した。化合物8は単離せずにDNA合成機を用い
たDNAオリゴマー合成に供した。
Example 4 As shown in FIG. 9, compound 7 was prepared by the method described in the literature (Nuc
leic AcidResearch, Vol. 14, No. 7
391), and phosphoramidite was applied to give compound 8
Was synthesized. Compound 8 was subjected to DNA oligomer synthesis using a DNA synthesizer without isolation.

【0036】実施例5 図10の通り、化合物9を実施例4の方法に従ってホス
ホロアミダイト化し、化合物10を合成した。化合物1
0は単離せずにDNA 合成機を用いたDNA オリゴマー合成
に供した。
Example 5 As shown in FIG. 10, Compound 9 was phosphoramidite according to the method of Example 4 to synthesize Compound 10. Compound 1
0 was subjected to DNA oligomer synthesis using a DNA synthesizer without isolation.

【0037】実施例6 実施例4で合成した化合物8(図9参照)とアデノシン
3’−ホスホロアミダイトを原料として、市販のDNA
合成機(Perkin−Elmer社製 Applie
d Biosystems Model 380B D
NA Synthesizer)で以下の塩基配列を有
するDNAオリゴマーA−13S(配列中の「*」にS
体のホスホン酸ジエステル結合を有する)を合成した。
Example 6 A commercially available DNA was prepared from compound 8 (see FIG. 9) synthesized in Example 4 and adenosine 3'-phosphoramidite as raw materials.
Synthesizer (Appkin manufactured by Perkin-Elmer)
d Biosystems Model 380B D
DNA synthesizer A-13S having the following nucleotide sequence (NA “Synthesizer”).
With a phosphonic diester linkage of the form).

【0038】A−13S:(5’)AAAAA*AAA
AAAAA(3’) 実施例7 実施例5で合成した化合物10(図10参照)とアデノ
シン3’−ホスホロアミダイトを原料として、市販のD
NA合成機(Perkin−Elmer社製Appli
ed Biosystems Model 380B
DNA Synthesizer)で以下の塩基配列を
有するDNAオリゴマーA13−R(配列中の「*」に
R体のホスホン酸ジエステル結合を有する)を合成し
た。
A-13S: (5 ') AAAAA * AAA
AAAAA (3 ′) Example 7 Commercially available D was prepared using the compound 10 (see FIG. 10) synthesized in Example 5 and adenosine 3′-phosphoramidite as raw materials.
NA Synthesizer (Appli manufactured by Perkin-Elmer)
ed Biosystems Model 380B
A DNA oligomer A13-R (having an R-form phosphonic acid diester bond at “*” in the sequence) having the following base sequence was synthesized by DNA Synthesizer.

【0039】A−13R:(5’)AAAAA*AAA
AAAAA(3’) 実施例8 DNAオリゴマーA−13Sを原料として、特開平8−
211050号公報に記載された方法に従い、図11に
示すDNA プローブYOA−13Sを得た。図12には、
精製したYOA−13SのHPLCチャートを示した。
A-13R: (5 ') AAAAA * AAA
AAAAA (3 ′) Example 8 Using DNA oligomer A-13S as a raw material,
According to the method described in Japanese Patent Publication No. 21050, a DNA probe YOA-13S shown in FIG. 11 was obtained. In FIG.
The HPLC chart of the purified YOA-13S was shown.

【0040】実施例9 DNAオリゴマーA−13Rを原料として、特開平8−
211050号公報に記載された方法に従い、図13に
示すDNA プローブYOA−13Rを得た。図14には、
精製したYOA−13RのHPLCチャートを示した。
Example 9 Using DNA oligomer A-13R as a raw material,
According to the method described in Japanese Patent Publication No. 21050, a DNA probe YOA-13R shown in FIG. 13 was obtained. In FIG.
The HPLC chart of the purified YOA-13R was shown.

【0041】[0041]

【発明の効果】本発明によれば、アミノアルキルホスホ
ン酸をリンカーとして、その核酸配列の中央部分にイン
ターカレーターを標識した核酸プローブを得ることが可
能になる。特に、今回初めて得られた知見に基づけば、
Rf値の差異を利用して、リン原子上の立体構造の異な
る核酸プローブを提供することが可能となる。
According to the present invention, it is possible to obtain a nucleic acid probe in which an aminoalkylphosphonic acid is used as a linker and an intercalator is labeled at the center of the nucleic acid sequence. In particular, based on the knowledge obtained for the first time,
By utilizing the difference in the Rf value, it is possible to provide nucleic acid probes having different three-dimensional structures on the phosphorus atom.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1の操作を示すための図である。FIG. 1 is a diagram illustrating an operation of a first embodiment;

【図2】図2は実施例2の操作を示すための図である。FIG. 2 is a diagram illustrating an operation of a second embodiment;

【図3】図3は化合物5のNMRチャートである。FIG. 3 is an NMR chart of Compound 5.

【図4】図4は、化合物5−S及び5−RのNMRチャ
ートである。
FIG. 4 is an NMR chart of compounds 5-S and 5-R.

【図5】図5は化合物5−S及び5−RのNMRチャー
トである。
FIG. 5 is an NMR chart of compounds 5-S and 5-R.

【図6】図6は化合物5−S及び5−Rの詳細を示す図
である。
FIG. 6 is a diagram showing details of compounds 5-S and 5-R.

【図7】図7は実施例3の操作を示すための図である。FIG. 7 is a diagram for illustrating an operation according to a third embodiment;

【図8】図8は実施例3の操作を示すための図である。FIG. 8 is a diagram for illustrating the operation of the third embodiment.

【図9】図9は実施例4の操作を示すための図である。FIG. 9 is a diagram for illustrating the operation of the fourth embodiment.

【図10】図10は実施例5の操作を示すための図であ
る。
FIG. 10 is a diagram for illustrating the operation of the fifth embodiment.

【図11】図11は実施例8で得られた本発明のDNA
プローブを示す図である。
FIG. 11 shows the DNA of the present invention obtained in Example 8.
It is a figure showing a probe.

【図12】図12は実施例8で得られた本発明のDNA
プローブのHPLCチャートである。
FIG. 12 shows the DNA of the present invention obtained in Example 8.
It is a HPLC chart of a probe.

【図13】図13は実施例9で得られた本発明のDNA
プローブを示す図である。
FIG. 13 shows the DNA of the present invention obtained in Example 9.
It is a figure showing a probe.

【図14】図14は実施例9で得られた本発明のDNA
プローブのHPLCチャートである。
FIG. 14 shows the DNA of the present invention obtained in Example 9.
It is a HPLC chart of a probe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 33/50 ZNA G01N 33/533 33/533 33/566 33/566 33/58 ZNAA 33/58 ZNA C12N 15/00 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI G01N 33/50 ZNA G01N 33/533 33/533 33/566 33/566 33/58 ZNAA 33/58 ZNA C12N 15/00 A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】下記構造式1(式中、P*は光学活性なリ
ン原子、R1、R2は各々任意の配列のDNAオリゴマ
ー、R3は適当なリンカーを介して結合したインターカ
レーター性色素を示す)で表され、そのリン原子上の立
体が光学活性なホスホン酸ジエステル結合を持つDNA
プローブ。 【化1】
1. The following structural formula 1 wherein P * represents an optically active phosphorus atom, R1 and R2 each represent a DNA oligomer having an arbitrary sequence, and R3 represents an intercalating dye linked via an appropriate linker. ), And a DNA having an optically active phosphonate diester bond on the phosphorus atom.
probe. Embedded image
【請求項2】インターカーレーター性色素が、標的核酸
との間にインターカレーションすることにより、蛍光特
性が変化するものであることを特徴とする請求項1のD
NAプローブ。
2. The method according to claim 1, wherein the intercalating dye intercalates with the target nucleic acid to change the fluorescent property.
NA probe.
【請求項3】下記構造式2(式P*は光学活性なリン原
子、R4、R5は各々任意の配列のDNAオリゴマー、
R6は水素原子、または、アミノ基の保護基を示す)で
表され、そのリン原子上の立体が光学活性なホスホン酸
ジエステル結合を持つDNAオリゴマー。 【化2】
3. The following structural formula 2 (Formula P * is an optically active phosphorus atom, R4 and R5 are DNA oligomers having an arbitrary sequence,
R6 represents a hydrogen atom or an amino-protecting group), and a DNA oligomer having an optically active phosphonate diester bond on the phosphorus atom. Embedded image
【請求項4】請求項3のDNAオリゴマーに適当なリン
カーを介してインターカレーター性色素を結合すること
を特徴とする、請求項1のDNAプローブの製造方法。
4. The method for producing a DNA probe according to claim 1, wherein an intercalating dye is bonded to the DNA oligomer according to claim 3 via a suitable linker.
【請求項5】下記構造式3(式中、P*は光学活性なリ
ン原子、B1、B2は核酸塩基、R7 はアミノ基の保護
基であり、R8 は水酸基の保護基であり、R9は水酸基
の保護基、水素原子、リン酸基、ホスホロアミダイト
基、を示す)で表され、そのリン原子上の立体が光学活
性なホスホン酸ジエステル結合を持つジヌクレオチド。 【化3】
5. The following structural formula 3 wherein P * is an optically active phosphorus atom, B1 and B2 are nucleic acid bases, R7 is a protecting group for an amino group, R8 is a protecting group for a hydroxyl group, and R9 is a protecting group for a hydroxyl group. A protecting group for a hydroxyl group, a hydrogen atom, a phosphoric acid group, or a phosphoramidite group), and the stereochemistry on the phosphorus atom has an optically active phosphonic acid diester bond. Embedded image
【請求項6】下記構造式4(式中、P*は光学活性なリ
ン原子、B1、B2は核酸塩基、R10はアミノ基の保護
基であり、R11は水酸基の保護基であり、R12はリン酸
基、ホスホロアミダイト基、を示す)で表され、そのリ
ン原子上の立体が光学活性なホスホン酸ジエステル結合
を持つジヌクレオチドと任意の配列のDNAオリゴマー
とを反応し、さらにその5’末端より、任意の配列のD
NAオリゴマーを結合することを特徴とする請求項3の
DNAオリゴマーの製造法。 【化4】
6. The following structural formula 4 wherein P * is an optically active phosphorus atom, B1 and B2 are nucleic acid bases, R10 is a protecting group for an amino group, R11 is a protecting group for a hydroxyl group, and R12 is a protecting group for a hydroxyl group. A dinucleotide having an optically active phosphonate diester bond on the phosphorus atom thereof and a DNA oligomer having an arbitrary sequence, and further reacting the 5 ′ From the end, D of any sequence
The method for producing a DNA oligomer according to claim 3, wherein the DNA oligomer is bound. Embedded image
【請求項7】下記構造式5(式中、B1は核酸塩基、R
13はアミノ基の保護基、R14は水酸基の保護基を示
す)で表されるホスホン酸ヌクレオチドと下記構造式6
(式中、B2は核酸塩基、R15は水酸基の保護基を示
す)で表されるヌクレオシドを反応させ、得られた下記
構造式7(式中、B1は核酸塩基、R16はアミノ基の
保護基、R17、R18は各々水酸基の保護基を示す)
で表されるジヌクレオチドを光学分割することを特徴と
する、下記構造式8(式中、P*は光学活性なリン原
子、B1、B2は核酸塩基、R16はアミノ基の保護基
であり、R17は水酸基の保護基であり、R18はリン
酸基、ホスホロアミダイト基、を示す)で表され、その
リン原子上の立体が光学活性なホスホン酸ジエステル結
合を持つジヌクレオチドの製造法。 【化5】 【化6】 【化7】 【化8】
7. The following structural formula 5 wherein B1 is a nucleobase, R
13 represents an amino-protecting group, and R14 represents a hydroxyl-protecting group).
(Wherein B2 represents a nucleobase and R15 represents a hydroxyl-protecting group), and reacted with a nucleoside represented by the following structural formula 7 (wherein B1 is a nucleobase and R16 is an amino-protecting group) , R17 and R18 each represent a hydroxyl-protecting group)
Wherein P * is an optically active phosphorus atom, B1 and B2 are nucleobases, R16 is a protecting group for an amino group, and R17 is a hydroxyl-protecting group, and R18 is a phosphoric acid group or a phosphoramidite group), and a stereonucleotide on the phosphorus atom has an optically active phosphonic acid diester bond, thereby producing a dinucleotide. Embedded image Embedded image Embedded image Embedded image
【請求項8】下記構造式9(式中、B1は核酸塩基、R
19はアミノ基の保護基、R20は水酸基の保護基を示
す)で表されるホスホン酸ヌクレオチド。 【化9】
8. The following structural formula 9 wherein B1 is a nucleobase, R
19 is an amino-protecting group, and R20 is a hydroxyl-protecting group). Embedded image
【請求項9】下記構造式10(式中、B1は核酸塩基、
R21は水酸基の保護基を示す)で表されるヌクレオシ
ドと下記構造式11(式中、R22はアミノ基の保護基
を示す)で表されるホスホン酸誘導体を反応させること
を特徴とする、下記構造式12(式中、B1は核酸塩
基、R23はアミノ基の保護基、R24は水酸基の保護
基を示す)で表されるホスホン酸ヌクレオチドの製造
法。 【化10】 【化11】 【化12】
9. The following structural formula 10 wherein B1 is a nucleic acid base,
R21 represents a hydroxyl-protecting group) and a phosphonic acid derivative represented by the following structural formula 11 (wherein, R22 represents an amino-protecting group): A method for producing a phosphonate nucleotide represented by Structural Formula 12 (wherein, B1 represents a nucleic acid base, R23 represents an amino-protecting group, and R24 represents a hydroxyl-protecting group). Embedded image Embedded image Embedded image
JP12329898A 1998-05-06 1998-05-06 DNA probe with optically active phosphonate diester bond Expired - Fee Related JP4305966B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12329898A JP4305966B2 (en) 1998-05-06 1998-05-06 DNA probe with optically active phosphonate diester bond
US09/305,223 US6211354B1 (en) 1998-05-06 1999-05-05 Optically active DNA probe having phosphonic diester linkage
EP03076458A EP1340766B1 (en) 1998-05-06 1999-05-06 Optically active DNA probe having phosphonic diester linkage
DE69939911T DE69939911D1 (en) 1998-05-06 1999-05-06 Optically active DNA probe with phosphonic diester compound
EP99303552A EP0959077B1 (en) 1998-05-06 1999-05-06 Optically active DNA probe having phosphonic diester linkage
DE69919778T DE69919778T2 (en) 1998-05-06 1999-05-06 Optically active DNA probe with phosphonic diester bond
HK04100967.5A HK1059787A1 (en) 1998-05-06 2004-02-12 Optically active dna probe having phosphonic diester linkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12329898A JP4305966B2 (en) 1998-05-06 1998-05-06 DNA probe with optically active phosphonate diester bond

Publications (2)

Publication Number Publication Date
JPH11322783A true JPH11322783A (en) 1999-11-24
JP4305966B2 JP4305966B2 (en) 2009-07-29

Family

ID=14857088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12329898A Expired - Fee Related JP4305966B2 (en) 1998-05-06 1998-05-06 DNA probe with optically active phosphonate diester bond

Country Status (1)

Country Link
JP (1) JP4305966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111137A1 (en) * 2015-12-22 2017-06-29 味の素株式会社 Oligonucleotide manufacturing method
WO2023219967A1 (en) * 2022-05-09 2023-11-16 Aveta Life, Inc. Tagged compounds for detection and assay of small molecules

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111137A1 (en) * 2015-12-22 2017-06-29 味の素株式会社 Oligonucleotide manufacturing method
JPWO2017111137A1 (en) * 2015-12-22 2018-10-18 味の素株式会社 Method for producing oligonucleotide
JP2022068360A (en) * 2015-12-22 2022-05-09 味の素株式会社 Methods for producing oligonucleotides
WO2023219967A1 (en) * 2022-05-09 2023-11-16 Aveta Life, Inc. Tagged compounds for detection and assay of small molecules

Also Published As

Publication number Publication date
JP4305966B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP2552048B2 (en) Reagent for nucleotide chain synthesis
US7795423B2 (en) Polynucleotide labeling reagent
US5367066A (en) Oligonucleotides with selectably cleavable and/or abasic sites
JP2710756B2 (en) Novel nucleoside phosphoramidite and method for producing the same
Mag et al. Synthesis and selective cleavage of oligodeoxyribonucleotldes containing non-chiral intemucieotlde phosphoramidate linkages
JP4398517B2 (en) Novel 3'-modified oligonucleotide derivatives
JPH10509740A (en) Cationic oligonucleotides and related methods of synthesis and use
US5646261A (en) 3'-derivatized oligonucleotide analogs with non-nucleotidic groupings, their preparation and use
CN106459128B (en) Modified thymidine polynucleotides oligomer and method
US5807837A (en) Composition and method for the treatment or prophylaxis of viral infections using modified oligodeoxyribonucleotides
WO1990008838A1 (en) Labeling of nucleic acids with fluorescent markers
AU2006316903B8 (en) Polynucleotide labelling reagent
Maag et al. Oligodeoxynucleotide probes with multiple labels linked to the 4′-position of thymidine monomers: Excellent duplex stability and detection sensitivity
Puri et al. Synthesis of 5′-polyarene-tethered oligo-DNAs and the thermal stability and spectroscopic properties of their duplexes and triplexes
JPH11322783A (en) Dna probe having optically active phosphonic diester bond
EP1340766B1 (en) Optically active DNA probe having phosphonic diester linkage
US20040220397A1 (en) Solid support for the synthesis of 3'-amino oligonucleotides
JPH05501418A (en) Oligonucleotide functionalization methods
JP4467930B2 (en) Nucleotide labeling reagent and oligonucleotide derivative incorporating the same
CN115942939A (en) Diastereomer ligation reagents for nucleotide probes
WO2007105623A1 (en) Oligonucleotide-immobilized solid support
JPS63222187A (en) Condensing agent for forming phosphoric acid ester and usage thereof
JPS6363695A (en) Solid-phase synthesis of oligonucleotide using nucleoside phosphorothioite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees