JPH11317283A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH11317283A
JPH11317283A JP12258898A JP12258898A JPH11317283A JP H11317283 A JPH11317283 A JP H11317283A JP 12258898 A JP12258898 A JP 12258898A JP 12258898 A JP12258898 A JP 12258898A JP H11317283 A JPH11317283 A JP H11317283A
Authority
JP
Japan
Prior art keywords
heating
resistance
ceramic
ceramic body
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12258898A
Other languages
Japanese (ja)
Other versions
JP3515900B2 (en
Inventor
Norio Okuda
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12258898A priority Critical patent/JP3515900B2/en
Publication of JPH11317283A publication Critical patent/JPH11317283A/en
Application granted granted Critical
Publication of JP3515900B2 publication Critical patent/JP3515900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformly heat by burying a heating pattern in which a resistance heating group made of a plurality of wire heaters connected in parallel is formed in the specified portion in a ceramic body. SOLUTION: A heating element 4 having a heating pattern S of a plurality of resistance heating groups q1 -q24 made of, for example, seven wire heaters 5 connected in parallel is buried in a disc ceramic body which is used in a ceramic heater of a film forming device or an etching device of a semiconductor wafer and has a power supply terminal 6 on the lower surface. They are continuously connected and formed almost concentrically or spirally. In the resistance heating groups q1 -q24 , by cutting at least one of the wire heaters 5 so that each resistance value becomes almost the same value, the dispersion of temperatures on the placing surface to support a body-to-be-heated is reduced to ±1% or less. A ceramic body made mainly of boron nitride or aluminum nitride has high heat conductivity and corrosion resistance to halogen gas. The heating element 4 is formed in screen printing of conductive paste of high melting point metal for example.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックヒータ
に関するものであり、特に、CVD、PVD、スパッタ
リングなどの成膜装置やエッチング装置に用いられるセ
ラミックヒータ、その中でも半導体製造装置用セラミッ
クヒータとして好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater, and more particularly to a ceramic heater used for a film forming apparatus such as CVD, PVD, sputtering, etc., and an etching apparatus, and particularly suitable as a ceramic heater for a semiconductor manufacturing apparatus. Things.

【0002】[0002]

【従来の技術】従来、CVD、PVD、スパッタリング
などの成膜装置やエッチング装置には、半導体ウエハ等
の被加熱物を支持しながら所定の処理温度に加熱するた
めにセラミックヒータが使用されている。
2. Description of the Related Art Conventionally, a ceramic heater has been used in a film forming apparatus such as CVD, PVD, sputtering, or the like, for heating to a predetermined processing temperature while supporting an object to be heated such as a semiconductor wafer. .

【0003】この種のセラミックヒータは、図4(a)
(b)に示すように、円盤状をしたセラミック体12か
らなり、該セラミック体12中には例えば図5に示すよ
うな1本の線状発熱体15からなる発熱パターンRを埋
設するとともに、上記セラミック体12の上面を被加熱
物の載置面13としたものがあった。なお、16は上記
セラミック体12中に埋設されている線状発熱体15へ
通電するための給電端子である。
[0003] This type of ceramic heater is shown in FIG.
As shown in FIG. 5B, a heating pattern R consisting of a single linear heating element 15 as shown in FIG. 5 is embedded in the ceramic body 12, for example, as shown in FIG. In some cases, the upper surface of the ceramic body 12 is used as the mounting surface 13 for the object to be heated. Reference numeral 16 denotes a power supply terminal for supplying electricity to the linear heating element 15 embedded in the ceramic body 12.

【0004】また、このようなセラミックヒータ11
は、セラミックグリーンシート上に導体ペーストを印刷
により図5に示すような発熱パターンRに敷設し、該発
熱パターンRを覆うように別のセラミックグリーンシー
トを積層してグリーンシート積層体を形成したあと焼成
することにより発熱体15を埋設してなるセラミック体
12を製作し、該セラミック体12の一方の主面に研磨
加工等を施して載置面13を形成するとともに、他方の
主面に発熱体15と連通する凹部を設け、該凹部に給電
端子16を接合することにより製作したものがあった
(実開平2−56443号公報参照)。
Further, such a ceramic heater 11
After laying a conductor paste on a ceramic green sheet by printing in a heating pattern R as shown in FIG. 5, and forming another green sheet by laminating another ceramic green sheet so as to cover the heating pattern R, a green sheet laminate is formed. By firing, a ceramic body 12 in which the heating element 15 is buried is manufactured, and one main surface of the ceramic body 12 is subjected to polishing or the like to form the mounting surface 13 and heat is generated on the other main surface. There has been a device manufactured by providing a concave portion communicating with the body 15 and joining the power supply terminal 16 to the concave portion (see Japanese Utility Model Laid-Open No. 2-56443).

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、ウエ
ハサイズが大きくなり、当初その直径が6インチであっ
たものが8インチ、さらには12インチと年々大きくな
っており、大型のウエハサイズに対応したセラミックヒ
ータ11が要求されている。また、処理温度も年々高く
なり、当初400℃程度であったものが550〜850
℃の高温が要求されるようになり、さらにはセラミック
ヒータ1の載置面における温度バラツキ(平均温度に対
する最低温度と最高温度との差)を±1%以下と、高度
な均熱性が要求されていた。
By the way, in recent years, the wafer size has increased, and the diameter of the wafer was initially 6 inches, but it has increased to 8 inches and further 12 inches year by year. The required ceramic heater 11 is required. In addition, the processing temperature is increasing year by year, and the temperature at the beginning was about 400 ° C.
℃ is required, and the temperature variation (difference between the minimum temperature and the maximum temperature with respect to the average temperature) on the mounting surface of the ceramic heater 1 is ± 1% or less, and a high level of uniformity is required. I was

【0006】しかしながら、前述した製法により図5に
示すような発熱パターンRを埋設してなるセラミックヒ
ータ11では、このような特性を満足することができな
かった。
However, the ceramic heater 11 in which the heat generation pattern R as shown in FIG. 5 is buried by the above-described manufacturing method cannot satisfy such characteristics.

【0007】即ち、セラミックグリーンシート上に発熱
体14をなす導体ペーストを印刷する工程において、印
刷機における精度の問題から印刷バラツキを小さくする
には限界があり、この印刷バラツキによって発熱体14
の抵抗値が部分的にばらつくことから載置面13の温度
分布をさらに均一化することは難しくなっていた。
That is, in the process of printing the conductive paste forming the heating element 14 on the ceramic green sheet, there is a limit in reducing the printing variation due to the problem of accuracy in the printing press.
Has a difficulty in further uniformizing the temperature distribution on the mounting surface 13 because the resistance value of the substrate varies partially.

【0008】特に、載置面13の温度分布は発熱温度が
高くなればなるほど、また、セラミックヒータ11の大
きさが大きくなればなるほど均熱性が悪くなるといった
傾向があり、例えば発熱温度400℃における温度分布
が±1%であったセラミックヒータ11の発熱温度を8
00℃にまで上げるとその温度バラツキが±3%程度に
まで悪化するというように、従来のセラミックヒータ1
1では均熱化の要求を満足することが難しかった。
In particular, the temperature distribution of the mounting surface 13 tends to deteriorate as the heat generation temperature increases and as the size of the ceramic heater 11 increases, for example, at a heat generation temperature of 400 ° C. The heat generation temperature of the ceramic heater 11 whose temperature distribution was ± 1% was set to 8
When the temperature is raised to 00 ° C., the temperature variation deteriorates to about ± 3%.
In the case of 1, it was difficult to satisfy the requirement of soaking.

【0009】[0009]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、並列接続された2本以上の線状発熱体からな
る抵抗発熱群を所要箇所に形成した発熱パターンをセラ
ミック体中に埋設してセラミックヒータを構成したもの
である。
SUMMARY OF THE INVENTION In view of the above problems, the present invention embeds a heating pattern in which a resistance heating group consisting of two or more linear heating elements connected in parallel is formed at a required position in a ceramic body. Thus, a ceramic heater is formed.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1(a)は本発明のセラミックヒータを示
す斜視図、(b)は(a)のX−X線断面図、図2は図
1のセラミックヒータに埋設する発熱パターンの一例を
示す平面図である。
Embodiments of the present invention will be described below. 1A is a perspective view showing a ceramic heater of the present invention, FIG. 1B is a cross-sectional view taken along line XX of FIG. 1A, and FIG. 2 is a plan view showing an example of a heating pattern embedded in the ceramic heater of FIG. It is.

【0011】図1に示すセラミックヒータ1は、発熱体
4を埋設してなる円盤状をしたセラミック体2からな
り、該セラミック体2の上面を半導体ウエハ等の被加熱
物を支持する載置面3としたものであり、上記セラミッ
ク体2の下面には上記発熱体4に通電するための給電端
子6を接合してある。
A ceramic heater 1 shown in FIG. 1 comprises a disc-shaped ceramic body 2 in which a heating element 4 is buried, and the upper surface of the ceramic body 2 is placed on a mounting surface for supporting an object to be heated such as a semiconductor wafer. The power supply terminal 6 for supplying electricity to the heating element 4 is joined to the lower surface of the ceramic body 2.

【0012】上記セラミック体2中に埋設する発熱体4
の発熱パターンとしては、例えば図2に示すような、並
列接続された7本の線状発熱体5からなる複数個の抵抗
発熱群q1 ,q2 ,q3 ,・・・同士を連続的に接続
し、略同心円状に構成したものであり、このように略同
心円状とすることで載置面3の温度分布をより均一にす
ることができる。なお、発熱パターンSの形状は図2に
示したものだけに限定されるものではなく、渦巻き状や
櫛歯状をしたものなどどのような形状をしたものであっ
ても構わない。また、図2では抵抗発熱群q1 ,q2
3 ,・・・ごとの線状発熱体5の数を7本とした例を
示したが、少なくとも2本以上であれば良い。
Heating element 4 embedded in ceramic body 2
As shown in FIG. 2, for example, a plurality of resistance heating groups q 1 , q 2 , q 3 ,... Composed of seven linear heating elements 5 connected in parallel as shown in FIG. And a substantially concentric configuration, so that the temperature distribution of the mounting surface 3 can be made more uniform by making it substantially concentric. The shape of the heat generation pattern S is not limited to the shape shown in FIG. 2, and may be any shape such as a spiral shape or a comb shape. In FIG. 2, the resistance heating groups q 1 , q 2 ,
Although the example in which the number of the linear heating elements 5 for each of q 3 ,... is seven has been described, at least two or more may be sufficient.

【0013】そして、上記発熱パターンSを構成する各
抵抗発熱群q1 ,q2 ,q3 ,・・・においては、抵抗
発熱群q1 ,q2 ,q3 ,・・・ごとに必要に応じて各
抵抗発熱群q1 ,q2 ,q3 ,・・・を構成する線状発
熱体5の少なくとも1本以上を切断し、各抵抗発熱群q
1 ,q2 ,q3 ,・・・ごとの抵抗値がほぼ一致するよ
うに調整してある。
In each of the resistance heating groups q 1 , q 2 , q 3 ,... Constituting the heating pattern S, the resistance heating groups q 1 , q 2 , q 3 ,. Accordingly, at least one or more linear heating elements 5 constituting each of the resistance heating groups q 1 , q 2 , q 3 ,.
1, q 2, q 3, the resistance value of each ... are are adjusted so as to coincide substantially.

【0014】即ち、載置面3の温度分布は発熱パターン
Sを構成する線状発熱体5の抵抗値と密接な関係があ
り、各抵抗発熱群q1 ,q2 ,q3 ,・・・ごとの抵抗
値にばらつきがあると、載置面3の温度分布を均一にす
ることができないのであるが、本発明では各抵抗発熱群
1 ,q2 ,q3 ,・・・が並列接続された複数本の線
状発熱体5からなるため、その切断する本数を調整する
ことにより各抵抗発熱群q1 ,q2 ,q3 ,・・・の抵
抗値を容易に調整することができる。
That is, the temperature distribution of the mounting surface 3 is closely related to the resistance value of the linear heating element 5 constituting the heating pattern S, and each of the resistance heating groups q 1 , q 2 , q 3 ,. If the resistance value varies from one to another, the temperature distribution on the mounting surface 3 cannot be made uniform. However, in the present invention, the resistance heating groups q 1 , q 2 , q 3 ,. , The resistance value of each of the resistance heating groups q 1 , q 2 , q 3 ,... Can be easily adjusted by adjusting the number of cuts. .

【0015】その為、このセラミックヒータ1を発熱さ
せれば、載置面3の温度分布を極めて均一にすることが
できるため、被加熱物を均一に加熱することができる。
Therefore, when the ceramic heater 1 generates heat, the temperature distribution on the mounting surface 3 can be made extremely uniform, so that the object to be heated can be heated uniformly.

【0016】このようなセラミック体2を構成する材質
としては、アルミナ、窒化珪素、窒化硼素、窒化アルミ
ニウム等を主成分として含むセラミックスを用いること
ができ、これらの中でも高熱伝導率を有するとともに、
成膜装置やエッチング装置等で使用されているハロゲン
系の腐食性ガスに対して優れた耐蝕性を有する窒化硼素
や窒化アルミニウムを主成分として含むセラミックスを
用いることが好ましい。特に、窒化アルミニウムの含有
量が99.8重量%以上の高純度窒化アルミニウムセラ
ミックスや窒化アルミニウム含有量が91〜99重量%
でかつY2 3やErなどの希土類元素の酸化物を1〜
9重量%の範囲で含む窒化アルミニウムセラミックスを
用いることが望ましい。
As a material constituting such a ceramic body 2, ceramics containing alumina, silicon nitride, boron nitride, aluminum nitride, or the like as a main component can be used.
It is preferable to use ceramics containing boron nitride or aluminum nitride as a main component and having excellent corrosion resistance to a halogen-based corrosive gas used in a film forming apparatus, an etching apparatus, or the like. In particular, a high-purity aluminum nitride ceramic having an aluminum nitride content of 99.8% by weight or more and an aluminum nitride content of 91 to 99% by weight
And oxides of rare earth elements such as Y 2 O 3 and Er
It is desirable to use aluminum nitride ceramics in the range of 9% by weight.

【0017】また、上記セラミック体2中に埋設する発
熱体4を構成する材質としては、タングステン、モリブ
デン、レニュウム等の高融点金属やこれらの合金、ある
いは周期律表第4a,5a,6a族元素の炭化物や窒化
物を用いることができる。
The material constituting the heating element 4 buried in the ceramic body 2 is a high melting point metal such as tungsten, molybdenum, or rhenium, an alloy thereof, or an element belonging to Groups 4a, 5a and 6a of the periodic table. Can be used.

【0018】次に、図1に示すセラミックヒータ1の製
造方法について説明する。
Next, a method of manufacturing the ceramic heater 1 shown in FIG. 1 will be described.

【0019】まず、各種セラミック原料に対して溶媒や
バインダー等を添加混練して泥漿を作製し、ドクターブ
レード法等のテープ成型法にてセラミックグリーンシー
トを複数枚形成する。このうち、数枚のセラミックグリ
ーンシートを積み重ねた上に、導体ペーストをスクリー
ン印刷機等にて図2に示す発熱パターンSに敷設する。
即ち、並列接続された7本の線状発熱体5からなる複数
個の抵抗発熱群q1 ,q2 ,q3 ,・・・同士を連続的
に接続した略同心円状とする。
First, a slurry or the like is prepared by adding and kneading a solvent or a binder to various ceramic raw materials, and a plurality of ceramic green sheets are formed by a tape molding method such as a doctor blade method. Of these, several ceramic green sheets are stacked, and a conductor paste is laid on the heat generation pattern S shown in FIG. 2 by a screen printing machine or the like.
That is, a plurality of resistance heating groups q 1 , q 2 , q 3 ,... Composed of seven linear heating elements 5 connected in parallel are formed in a substantially concentric shape in which they are continuously connected.

【0020】この時、スクリーン印刷機の精度の問題か
ら各線状発熱体5には厚みばらつきがあるが、本発明は
各抵抗発熱群q1 ,q2 ,q3 ,・・・を構成する線状
発熱体5の断面積をそれぞれ測定し、例えば、同一円周
上にある各抵抗発熱群q1 ,q2 ,q3 ,・・・ごとの
断面積の合計を算出し、その値の最も小さい抵抗発熱群
を基準とし、この基準となる抵抗発熱群に対して断面積
が大きすぎる抵抗発熱群については線状発熱体5を切断
して、各抵抗発熱群q1 ,q2 ,q3 ,・・・ごとの抵
抗値がほぼ一致するように調整する。
At this time, the thickness of each linear heating element 5 varies due to the problem of the accuracy of the screen printing machine. However, according to the present invention, the lines constituting the resistance heating groups q 1 , q 2 , q 3 ,. The cross-sectional area of each of the heating elements 5 is measured, and for example, the sum of the cross-sectional areas of each of the resistance heating groups q 1 , q 2 , q 3 ,. With reference to the small resistance heating group, the linear heating element 5 is cut for the resistance heating group having a cross section that is too large for the reference resistance heating group, and each of the resistance heating groups q 1 , q 2 , q 3 is cut. ,... Are adjusted so that the resistance values substantially match.

【0021】ただし、各抵抗発熱群q1 ,q2 ,q3
・・・を構成する線状発熱体5の合計断面積に対して3
0%以上切断すると、局部的にその抵抗発熱群q1 ,q
2 ,q3 ,・・・の抵抗値が高くなりすぎ、載置面3の
均熱性を阻害することになるため、各抵抗発熱群q1
2 ,q3 ,・・・の線状発熱体5を切断する場合は各
抵抗発熱群q1 ,q2 ,q3 ,・・・を構成する線状発
熱体5の合計断面積に対して30%未満とすることが必
要である。
However, each resistance heating group q 1 , q 2 , q 3 ,
.. With respect to the total cross-sectional area of the linear heating element 5
When it is cut by more than 0%, the resistance heating groups q 1 , q
2, q 3, the resistance value of ... is too high, since that will inhibit the thermal uniformity of the mounting face 3, the resistance heating group q 1,
q 2, q 3, the resistance heating group q 1 When cutting the linear heating element 5 ···, q 2, q 3, the total cross-sectional area of the linear heating element 5 constituting the ... Less than 30%.

【0022】また、図2に示す発熱パターンSについて
は同一円周上に位置する抵抗発熱群ごとに抵抗値を調整
した例を示したが、発熱パターンSを構成する全ての抵
抗発熱群の中でも最も断面積の小さな抵抗発熱群を基準
とし、この基準となる抵抗発熱群に応じて他の抵抗発熱
群q1 ,q2 ,q3 ,・・・を構成する線状発熱体5を
切断し、全ての抵抗発熱群q1 ,q2 ,q3 ,・・・の
抵抗値がほぼ一致するように調整しても良い。
Further, in the heat generation pattern S shown in FIG. 2, an example is shown in which the resistance value is adjusted for each resistance heat generation group located on the same circumference, but among all the resistance heat generation groups constituting the heat generation pattern S, The linear heating elements 5 constituting the other resistance heating groups q 1 , q 2 , q 3 ,... Are cut in accordance with the reference resistance heating group having the smallest cross-sectional area. , May be adjusted so that the resistance values of all the resistance heating groups q 1 , q 2 , q 3 ,...

【0023】しかるのち、上記発熱パターンSを覆うよ
うに残りのセラミックグリーンシートを積層してグリー
ンシート積層体を形成し、このグリーンシート積層体を
各種セラミックス原料を焼結させることができる温度に
て焼成することにより発熱パターンSを埋設してなるセ
ラミック体2を製作し、得られたセラミック体2の一方
の主面に研磨加工等を施して載置面3を形成するととも
に、セラミック体2の他方の主面に発熱体4まで貫通す
る凹部を穿設し、該凹部に給電端子6をロウ付け等の手
段によって接合すれば良い。
Thereafter, the remaining ceramic green sheets are laminated so as to cover the heat generating pattern S to form a green sheet laminate, and the green sheet laminate is heated at a temperature at which various ceramic materials can be sintered. By firing, a ceramic body 2 in which the heat generation pattern S is embedded is manufactured, and one main surface of the obtained ceramic body 2 is polished to form a mounting surface 3. A recess penetrating the heating element 4 may be formed in the other main surface, and the power supply terminal 6 may be joined to the recess by means such as brazing.

【0024】かくして得られたセラミックヒータ1を発
熱させれば、発熱パターンSを構成する各抵抗発熱群q
1 ,q2 ,q3 ,・・・の抵抗値が調整されていること
から載置面3の温度バラツキを±1%以下に均熱化する
ことができる。
When the ceramic heater 1 thus obtained is heated, each of the resistance heating groups q forming the heating pattern S is generated.
Since the resistance values of 1 , q 2 , q 3 ,... Are adjusted, the temperature variation of the mounting surface 3 can be soaked to ± 1% or less.

【0025】なお、発熱パターンの構造としては、発熱
パターンの全体が抵抗発熱群q1 ,q2 ,q3 ,・・・
により連続的に構成された例を示したが、本発明におい
ては必ずしも発熱パターンの全体が抵抗発熱群q1 ,q
2 ,q3 ,・・・により連続的に構成されている必要は
なく、発熱パターンの所要箇所に抵抗発熱群q1
2 ,q3 ,・・・が連続的に形成されていれば良い。
例えば、スクリーン印刷によるバラツキが殆どない部分
がある場合には、図3に示すように印刷バラツキのない
部分を1本の線状発熱体7とし、印刷バラツキのある部
分を並列接続された2本以上の線状発熱体5からなる抵
抗発熱群q1 ,q2 ,q3 ,・・・により構成すること
ができる。この発熱パターンの場合、線状発熱体7の断
面積は、各抵抗発熱群q1 ,q2 ,q3 ,・・・を構成
する線状発熱体5の合計断面積より小さくしておき、線
状発熱体7の断面積を基準として、各抵抗発熱群q1
2 ,q3 ,・・・の線状発熱体5を切断して断面積が
ほぼ一致するように調整すれば良い。
As for the structure of the heat generation pattern, the entire heat generation pattern is composed of resistance heat generation groups q 1 , q 2 , q 3 ,.
In the present invention, the entire heating pattern is not necessarily formed by the resistance heating groups q 1 and q 1 .
2, q 3, need not be continuously formed by ..., resistance heating group q 1 to the required position of the heating pattern,
It suffices if q 2 , q 3 ,... are formed continuously.
For example, when there is a portion where there is almost no variation due to screen printing, a portion where there is no variation in printing is made into one linear heating element 7 as shown in FIG. .. Can be constituted by the resistance heating groups q 1 , q 2 , q 3 ,. In the case of this heating pattern, the cross-sectional area of the linear heating element 7 is set smaller than the total cross-sectional area of the linear heating elements 5 constituting each of the resistance heating groups q 1 , q 2 , q 3 ,. Based on the cross-sectional area of the linear heating element 7, each resistance heating group q 1 ,
The linear heating elements 5 of q 2 , q 3 ,... may be cut and adjusted so that the cross-sectional areas substantially match.

【0026】(実施例)以下、本発明の具体例について
説明する。
(Examples) Hereinafter, specific examples of the present invention will be described.

【0027】純度99.8%以上のAlN粉末に対して
溶媒、可塑剤、及びバインダーを加えて回転ミルにて2
4時間混合して泥漿を作製し、ドクターブレード法にて
AlNのグリーンシートを複数枚製作した。そして、数
枚のグリーンシートを積み重ねた上に、タングステンペ
ーストをスクリーン印刷法でもって図2に示す発熱パタ
ーンSに敷設した。なお、各抵抗発熱群q1 ,q2 ,q
3 ,・・・を構成する並列接続された線状発熱体5の数
は7本とし、内側から5%、5%、10%、20%、2
0%、20%、20%の線幅とした。
A solvent, a plasticizer, and a binder are added to AlN powder having a purity of 99.8% or more,
The mixture was mixed for 4 hours to produce a slurry, and a plurality of AlN green sheets were produced by a doctor blade method. Then, after stacking several green sheets, a tungsten paste was laid on the heat generation pattern S shown in FIG. 2 by a screen printing method. The resistance heating groups q 1 , q 2 , q
The number of the linear heating elements 5 connected in parallel constituting 3 ,... Is seven, and 5%, 5%, 10%, 20%, 2
The line widths were 0%, 20%, and 20%.

【0028】次に、上記発熱パターンSを敷設したグリ
ーンシートの積層体をX−Yテーブル上に載置し、各抵
抗発熱群q1 ,q2 ,q3 ,・・・を構成する線状発熱
体5の断面積を測定した。この断面積の測定にあたって
は、レーザー変位計を使用し、印刷されたタングステン
ペーストの高さを測定するとともに、X−Yテーブルか
らの移動距離をもとにタングステンペーストの線幅を求
めて断面積を算出した。この結果は表1に示す通りであ
る。なお、表1は最外周パターンの抵抗発熱群q1 ,q
2 ,q3 ,・・・q24のみを示したものである。
Next, the green sheet laminate on which the heat generation pattern S is laid is placed on an XY table, and the linear heat generation groups q 1 , q 2 , q 3 ,. The cross-sectional area of the heating element 5 was measured. In measuring the cross-sectional area, a laser displacement meter was used to measure the height of the printed tungsten paste, and the line width of the tungsten paste was determined based on the distance moved from the XY table. Was calculated. The results are as shown in Table 1. Table 1 shows the resistance heating groups q 1 and q of the outermost peripheral pattern.
2 , q 3 ,..., Q 24 only.

【0029】そして、得られたデータより各抵抗発熱群
1 ,q2 ,q3 ,・・・ごとに断面積を計算し、断面
積の最も小さい抵抗発熱群q19を基準として基準以外の
抵抗発熱群の断面積のばらつきを求めた。この結果、表
1において基準となる抵抗発熱群q19の断面積に近いも
のは抵抗発熱群q6 ,q7 ,q18で、基準となる抵抗発
熱群q19の断面積に対して非常に大きいものは抵抗発熱
群q1 ,q2 ,q11,q12,q13,q14,q24であっ
た。
Then, a cross-sectional area is calculated for each of the resistance heating groups q 1 , q 2 , q 3 ,... From the obtained data, and the resistance heating group q 19 having the smallest cross-sectional area is used as a reference. The variation in the cross-sectional area of the resistance heating group was determined. As a result, a table resistance heating group close to the cross-sectional area of the resistive heating group q 19 serving as a reference in 1 q 6, q 7, q 18, very with respect to the cross-sectional area of the resistive heating group q 19 serving as a reference large ones resistance heating group q 1, q 2, q 11 , q 12, q 13, was q 14, q 24.

【0030】そして、これらのデータより、各抵抗発熱
群q1 ,q2 ,q3 ,・・・の抵抗値がほぼ一定になる
ように、基準となる抵抗発熱群q19の断面積に対して非
常に大きい抵抗発熱群q1 ,q2 ,q11,q12,q13
14,q24を構成する線状発熱体5の少なくとも1本以
上を切断して抵抗値の調整を行った。その結果は表2に
示す通りである。この結果、断面積のばらつきが最大2
6%であったものを5%にまで小さくすることができ
た。
[0030] Then, from these data, the resistance heating group q 1, q 2, q 3 , as the resistance value of ... is almost constant with respect to the cross-sectional area of the resistive heating group q 19 serving as a reference And very large resistance heating groups q 1 , q 2 , q 11 , q 12 , q 13 ,
by cutting or at least one linear heating element 5 constituting the q 14, q 24 was adjusted resistance value. The results are as shown in Table 2. As a result, the variation in cross-sectional area is up to 2
What was 6% could be reduced to 5%.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】そして、このように抵抗値の調整を行った
発熱パターンS上に残りのAlNからなるセラミックグ
リーンシートを積層してグリーンシート積層体を形成
し、該グリーンシート積層体を窒素雰囲気中にて190
0〜2100℃の焼成温度で1〜数時間程度焼成するこ
とにより、発熱体4を埋設してなるセラミック体2を得
た。なお、このセラミック体2の組成をICPにて測定
したところ、窒化アルミニウムの含有量が99.8重量
%である高純度窒化アルミニウムセラミックスからなる
ものであった。
Then, the remaining ceramic green sheets made of AlN are laminated on the heating pattern S whose resistance value has been adjusted as described above to form a green sheet laminate, and the green sheet laminate is placed in a nitrogen atmosphere. 190
By firing at a firing temperature of 0 to 2100 ° C. for about 1 to several hours, a ceramic body 2 in which the heating element 4 was embedded was obtained. When the composition of the ceramic body 2 was measured by ICP, the ceramic body 2 was composed of a high-purity aluminum nitride ceramic having a content of aluminum nitride of 99.8% by weight.

【0034】しかるのち、上記セラミック体2の一方の
主面を中心線平均粗さ(Ra)0.8μm以下に研磨加
工を施して載置面3を形成するとともに、上記セラミッ
ク体2の他方の主面にセラミック体2中に埋設する発熱
体4に連通する凹部を設け、該凹部にFe−Co−Ni
合金からなる給電端子6をロウ付け固定して窒化アルミ
ニウムセラミックスからなるセラミックヒータ1を製作
した。
Thereafter, one main surface of the ceramic body 2 is polished to a center line average roughness (Ra) of 0.8 μm or less to form the mounting surface 3 and the other main surface of the ceramic body 2 is formed. A concave portion communicating with the heating element 4 embedded in the ceramic body 2 is provided on the main surface, and Fe-Co-Ni is formed in the concave portion.
A power supply terminal 6 made of an alloy was brazed and fixed to manufacture a ceramic heater 1 made of an aluminum nitride ceramic.

【0035】そこで、抵抗発熱群q1 ,q2 ,q3 ,・
・・ごとに表2のように抵抗調整した本発明のセラミッ
クヒータ1と、従来例として図5に示す発熱パターンR
を埋設してなるセラミックヒータ11を用意し、それぞ
れ800℃に発熱させて載置面3,13の温度バラツキ
を測定したところ、従来のセラミックヒータは載置面1
3の温度バラツキが±10%もあったが、抵抗調整した
本発明のセラミックヒータ1は載置面3の温度バラツキ
を±0.8%程度にまで抑えることができた。
Then, the resistance heating groups q 1 , q 2 , q 3 ,.
Each of the ceramic heaters 1 of the present invention whose resistance was adjusted as shown in Table 2 and a heat generation pattern R shown in FIG.
Are prepared, and the temperature variation of the mounting surfaces 3 and 13 is measured by generating heat at 800 ° C., respectively.
Although the temperature variation of No. 3 was ± 10%, the ceramic heater 1 of the present invention whose resistance was adjusted could suppress the temperature variation of the mounting surface 3 to about ± 0.8%.

【0036】[0036]

【発明の効果】以上のように、本発明によれば、並列接
続された2本以上の線状発熱体からなる抵抗発熱群を所
要箇所に形成した発熱パターンをセラミック体中に埋設
してセラミックヒータを構成したことから、セラミック
体中に発熱体を埋設する前に発熱パターンの抵抗値を容
易に調整することができ、載置面の温度バラツキを±1
%以下にまで均熱化することができる。
As described above, according to the present invention, a heating pattern in which a resistance heating group consisting of two or more linear heating elements connected in parallel is formed at a required location is embedded in a ceramic body. Since the heater is configured, the resistance value of the heating pattern can be easily adjusted before the heating element is buried in the ceramic body, and the temperature variation of the mounting surface is ± 1.
% Or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の製法によるセラミックヒータ
を示す斜視図、(b)は(a)のX−X線断面図であ
る。
FIG. 1A is a perspective view showing a ceramic heater according to a manufacturing method of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG.

【図2】図1のセラミックヒータに埋設する発熱パター
ンの一例を示す平面図である。
FIG. 2 is a plan view showing an example of a heat generation pattern embedded in the ceramic heater of FIG.

【図3】発熱パターンの他の例を示す平面図である。FIG. 3 is a plan view showing another example of the heat generation pattern.

【図4】(a)は従来のセラミックヒータを示す斜視
図、(b)は(a)のY−Y線断面図である。
FIG. 4A is a perspective view showing a conventional ceramic heater, and FIG. 4B is a sectional view taken along line YY in FIG.

【図5】図4のセラミックヒータに埋設する発熱パター
ンの一例を示す平面図である。
FIG. 5 is a plan view showing an example of a heat generation pattern embedded in the ceramic heater of FIG.

【符号の説明】[Explanation of symbols]

1,11・・・セラミックヒータ 2,12・・・セラ
ミック体 3,13・・・載置面 4・・・発熱体 5,15・・
・線状発熱体 6,16・・・給電端子 q1 ,q2 ,q3 ,・・・抵
抗発熱群 S,R・・・発熱パターン
1, 11 ceramic heater 2, 12 ceramic body 3, 13 mounting surface 4 heating element 5, 15
· Linear heating elements 6, 16 ··· Power supply terminals q 1 , q 2 , q 3 ··· Resistive heating group S, R ··· Heat generation pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】並列接続された2本以上の線状発熱体から
なる抵抗発熱群を所要箇所に形成した発熱パターンをセ
ラミック体中に埋設してなるセラミックヒータ。
1. A ceramic heater comprising a ceramic body embedded with a heating pattern in which a resistance heating group consisting of two or more linear heating elements connected in parallel is formed at required locations.
JP12258898A 1998-05-06 1998-05-06 Ceramic heater Expired - Fee Related JP3515900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12258898A JP3515900B2 (en) 1998-05-06 1998-05-06 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12258898A JP3515900B2 (en) 1998-05-06 1998-05-06 Ceramic heater

Publications (2)

Publication Number Publication Date
JPH11317283A true JPH11317283A (en) 1999-11-16
JP3515900B2 JP3515900B2 (en) 2004-04-05

Family

ID=14839647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12258898A Expired - Fee Related JP3515900B2 (en) 1998-05-06 1998-05-06 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3515900B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023600A1 (en) * 2000-09-13 2002-03-21 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing and inspecting equipment
JP2002110317A (en) * 2000-09-28 2002-04-12 Kyocera Corp Disc-shaped heater and heating device as well as wafer processing device
JP2002348658A (en) * 2001-05-23 2002-12-04 Anelva Corp Evaporation source, thin-film forming method and forming apparatus therewith
US6664515B2 (en) 2001-04-18 2003-12-16 Sumitomo Electric Industries, Ltd. Circuit pattern of resistance heating elements and substrate-treating apparatus incorporating the pattern
WO2004032187A3 (en) * 2002-09-19 2004-07-01 Applied Materials Inc Multi-zone resitive heater
US6967312B2 (en) * 2000-07-19 2005-11-22 Ibiden Co., Ltd. Semiconductor manufacturing/testing ceramic heater, production method for the ceramic heater and production system for the ceramic heater
JP2006049270A (en) * 2004-06-28 2006-02-16 Kyocera Corp Heater, and wafer heater and wafer heating device using it
JP2009543996A (en) * 2006-07-12 2009-12-10 アプライド マテリアルズ インコーポレイテッド Multi-zone heater for furnace
US8168050B2 (en) 2006-07-05 2012-05-01 Momentive Performance Materials Inc. Electrode pattern for resistance heating element and wafer processing apparatus
JP2017152537A (en) * 2016-02-24 2017-08-31 日本特殊陶業株式会社 Heater, electrostatic chuck, and member for plasma generation
JP2017182890A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Heater and honeycomb structure equipped with heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967312B2 (en) * 2000-07-19 2005-11-22 Ibiden Co., Ltd. Semiconductor manufacturing/testing ceramic heater, production method for the ceramic heater and production system for the ceramic heater
WO2002023600A1 (en) * 2000-09-13 2002-03-21 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing and inspecting equipment
JP2002110317A (en) * 2000-09-28 2002-04-12 Kyocera Corp Disc-shaped heater and heating device as well as wafer processing device
US6664515B2 (en) 2001-04-18 2003-12-16 Sumitomo Electric Industries, Ltd. Circuit pattern of resistance heating elements and substrate-treating apparatus incorporating the pattern
KR100879848B1 (en) * 2001-04-18 2009-01-22 스미토모덴키고교가부시키가이샤 Circuit pattern of resistance heating elements and substrate-treating apparatus incorporating the pattern
JP4593008B2 (en) * 2001-05-23 2010-12-08 キヤノンアネルバ株式会社 Vapor deposition source and thin film forming method and apparatus using the same
JP2002348658A (en) * 2001-05-23 2002-12-04 Anelva Corp Evaporation source, thin-film forming method and forming apparatus therewith
WO2004032187A3 (en) * 2002-09-19 2004-07-01 Applied Materials Inc Multi-zone resitive heater
JP2006049270A (en) * 2004-06-28 2006-02-16 Kyocera Corp Heater, and wafer heater and wafer heating device using it
US8168050B2 (en) 2006-07-05 2012-05-01 Momentive Performance Materials Inc. Electrode pattern for resistance heating element and wafer processing apparatus
JP2009543996A (en) * 2006-07-12 2009-12-10 アプライド マテリアルズ インコーポレイテッド Multi-zone heater for furnace
JP4912463B2 (en) * 2006-07-12 2012-04-11 アプライド マテリアルズ インコーポレイテッド Multi-zone heater for furnace
JP2017152537A (en) * 2016-02-24 2017-08-31 日本特殊陶業株式会社 Heater, electrostatic chuck, and member for plasma generation
JP2017182890A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Heater and honeycomb structure equipped with heater

Also Published As

Publication number Publication date
JP3515900B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
KR100438881B1 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
CA2329816C (en) Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
JP3477062B2 (en) Wafer heating device
US6878907B2 (en) Ceramic substrate and process for producing the same
US6753601B2 (en) Ceramic substrate for semiconductor fabricating device
JP3515900B2 (en) Ceramic heater
EP1383168A1 (en) Method of producing electrostatic chucks and method of producing ceramic heaters
JP2001033484A (en) Wafer prober
JPH11251040A (en) Ceramic heater and its manufacture
JP2003077783A (en) Ceramic heater for semiconductor manufacturing/ inspecting device and manufacturing method therefor
JP4744016B2 (en) Manufacturing method of ceramic heater
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP3559549B2 (en) Wafer heating device
JP2004153288A (en) Wafer prober device
JP2001319967A (en) Method for manufacturing ceramic substrate
JP3186750B2 (en) Ceramic plate for semiconductor manufacturing and inspection equipment
JP3367995B2 (en) Multilayer ceramic heater
JP2001338747A (en) Ceramic heater for semiconductor manufacturing and inspection apparatus
JP2001135681A (en) Wafer prober device
JP2001237304A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP3614764B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP2001223260A (en) Electrostatic chuck
JP2003151728A (en) Ceramic heater and its manufacturing method
JP2000323263A (en) Heating element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees