JPH11312530A - Solid polymer electrolyte type fuel cell - Google Patents

Solid polymer electrolyte type fuel cell

Info

Publication number
JPH11312530A
JPH11312530A JP10118843A JP11884398A JPH11312530A JP H11312530 A JPH11312530 A JP H11312530A JP 10118843 A JP10118843 A JP 10118843A JP 11884398 A JP11884398 A JP 11884398A JP H11312530 A JPH11312530 A JP H11312530A
Authority
JP
Japan
Prior art keywords
electrode
polymer electrolyte
fuel cell
solid polymer
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10118843A
Other languages
Japanese (ja)
Inventor
Yasuo Kuwabara
保雄 桑原
Itsushin So
一新 曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10118843A priority Critical patent/JPH11312530A/en
Publication of JPH11312530A publication Critical patent/JPH11312530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To prevent damages to an electrode or the like due to, excessive increase of pressure applied between a separator and the electrode due to swelling of a membrane from being generated, and to facilitate pressure control. SOLUTION: This is a solid polymer electrolyte type fuel cell in which electrodes 103, 105 are arranged in both sides of a solid polymer electrolyte membrane 101, a fuel gas is supplied to one-side faces of the electrodes 103, 105, and in which unit cells comprising two separators 201, 202 for supplying an oxidant gas is plurally stacked in the other side faces of the electrodes 103, 105. Plate members 301, 302 comprising corrugated spring materials are interposed between both the separators 201, 202 and the fuel electrodes 103, 105, a plurality of the first free spaces 401 formed by one separator 201 and the electrode 103 is formed for fuel gas flow channels, and a plurality of the second free spaces 402 formed by the other separator 202 and the oxidant electrode 105 is formed for oxidant gas flow channels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子電解質型
燃料電池に関する。
The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、使用される電解質の種類に
より、固体高分子電解型、リン酸型、溶融炭酸塩型、固
体酸化物型等の各種が知られている。このうち固体高分
子電解質型燃料電池は、分子中にプロトン交換基を有す
る高分子電解質膜を飽和に含水させるとプロトン伝導性
電解質として機能することを利用した燃料電池であっ
て、比較的低温度域で作動し、発電効率も優れているた
め、電気自動車搭載用を始めとして各種の用途が見込ま
れている。
2. Description of the Related Art Various types of fuel cells, such as a solid polymer electrolyte type, a phosphoric acid type, a molten carbonate type, and a solid oxide type, are known depending on the type of electrolyte used. Among them, the solid polymer electrolyte fuel cell is a fuel cell utilizing the fact that a polymer electrolyte membrane having a proton exchange group in a molecule functions as a proton conductive electrolyte when saturated with water, and has a relatively low temperature. It operates in a wide range and has excellent power generation efficiency, and is expected to be used in various applications, including those used in electric vehicles.

【0003】固体高分子型燃料電池では電気化学反応に
より発電を行う単位セル(単電池)を複数個積層させ、
それを加圧保持することにより電池(スタック)を構成
する。単位セルは高分子電解質膜とその両側に接合され
るアノード(燃料電極)とカソード(酸化剤電極)より
構成される。積層の為、各単位セル間にはセパレータと
呼ばれる部材を設けられている。このセパレータには酸
素あるいは水素が流通するガス流通溝が配設されてい
る。
In a polymer electrolyte fuel cell, a plurality of unit cells (unit cells) for generating electric power by an electrochemical reaction are stacked,
By holding it under pressure, a battery (stack) is formed. The unit cell is composed of a polymer electrolyte membrane, an anode (fuel electrode) and a cathode (oxidant electrode) joined to both sides thereof. For stacking, a member called a separator is provided between each unit cell. The separator is provided with a gas flow groove through which oxygen or hydrogen flows.

【0004】また、固体高分子型燃料電池では水素、二
酸化炭素、窒素、水蒸気の混合ガスがアノード側に、空
気及び水蒸気がカソード側に供給される。
In a polymer electrolyte fuel cell, a mixed gas of hydrogen, carbon dioxide, nitrogen and water vapor is supplied to an anode side, and air and water vapor are supplied to a cathode side.

【0005】それぞれのガスの温度は80〜90°Cの
高温状態であり、セパレータはそれぞれのガスにさらさ
れることにより、高い耐熱性が要求される。
The temperature of each gas is in a high temperature state of 80 to 90 ° C., and the separator is required to have high heat resistance by being exposed to each gas.

【0006】また、セパレータは各セル間を電気的に接
続させる為、高い電気伝導性、構成材料との低い接触抵
抗が必要とされる。
In addition, since the separator electrically connects the cells, high electrical conductivity and low contact resistance with constituent materials are required.

【0007】従来技術1として、特開平9−27492
6号公報には、セルとセパレータとの組み合わせが開示
されている。高分子電解質型燃料電池では電解質に吸水
製の高分子電解膜を用いており、この膜は吸水により膨
張する性質を有し、セパレータと電極間に過度の圧力が
加わり、アノードおよびカソードに損傷を生じさせる等
の問題があるが、従来技術1では、高分子電解質膜の両
主面に、電極触媒層と電極基材とからなる一対の電極を
配して形成される電解質膜と電極との接合体と、一方の
主面に形成された複数のリブの先端が接合体の電極基材
の外面に面して配設され、リブの相互の間に形成される
溝部をガス流通溝とするセパレータとを備えた高分子電
解質型燃料電池において、複数のリブの先端に、導電性
シリコーンゴムからなる導電性弾性構造体を備える技術
が開示されている。
As prior art 1, Japanese Patent Application Laid-Open No. 9-27492
No. 6 discloses a combination of a cell and a separator. In polymer electrolyte fuel cells, a polymer electrolyte membrane made of water absorption is used as the electrolyte.This membrane has the property of expanding due to water absorption, and excessive pressure is applied between the separator and the electrode, causing damage to the anode and cathode. However, in the prior art 1, there is a problem in that a pair of electrodes composed of an electrode catalyst layer and an electrode substrate are disposed on both main surfaces of the polymer electrolyte membrane. The joined body and the tips of the plurality of ribs formed on one main surface are disposed facing the outer surface of the electrode base material of the joined body, and a groove formed between the ribs serves as a gas flow groove. In a polymer electrolyte fuel cell provided with a separator, a technique is disclosed in which a conductive elastic structure made of conductive silicone rubber is provided at the tips of a plurality of ribs.

【0008】従来技術2として、特開平9−22708
号公報には、高分子電解質型燃料電池の単位セルは、そ
れぞれの保持体などの頂部に応力緩和用の構造体である
平板体を備えたセパレータを用いるようにしている。平
板体は保持体などと同一種類のステンレス鋼板などを用
いて製作され、保持体などの頂部に、溶接などを用いて
固着されている構造が開示されている。
As prior art 2, Japanese Patent Application Laid-Open No. 9-22708
According to the publication, a unit cell of a polymer electrolyte fuel cell uses a separator having a flat body serving as a structure for stress relaxation on the top of each holder or the like. A structure is disclosed in which the flat body is manufactured using a stainless steel plate of the same type as the holding body or the like, and is fixed to the top of the holding body or the like using welding or the like.

【0009】従来技術3として、特開平9−11553
1号公報には、セパレータ板と、電解質板と面接触する
エッジ板との間に介装するエッジスプリングとマニホー
ルドスプリングとを、互いにバネ特性が実質的に同一の
板状のスプリングによって構成された技術が開示されて
いる。
As prior art 3, Japanese Patent Application Laid-Open No. Hei 9-11553
In Japanese Patent Application Publication No. 2001-139, an edge spring and a manifold spring interposed between a separator plate and an edge plate that is in surface contact with an electrolyte plate are formed by plate-like springs having substantially the same spring characteristics. Techniques are disclosed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来技
術1は、導電性の確保だけでなく、高分子電解質膜の膨
潤による応力の緩和作用があるが、新たな部材を配設す
るため、組み付け性の悪さや、材料の部品代等からコス
トアップに繋がる。
However, the prior art 1 not only has the effect of securing the conductivity but also has the effect of relaxing the stress due to the swelling of the polymer electrolyte membrane. This leads to increased costs due to poor quality and material cost.

【0011】また従来技術2は、外周の保持部について
膜に加わる圧力の低減を行っているが、電極部材へ応力
が加わり、電極部材への損傷が生じる虞がある。
In the prior art 2, the pressure applied to the membrane is reduced in the outer peripheral holding portion. However, stress is applied to the electrode member, which may cause damage to the electrode member.

【0012】さらに従来技術3は、電極材部分との接触
部には設けてなく、この技術も電極材の損傷の虞があ
る。
Further, the prior art 3 is not provided at the contact portion with the electrode material portion, and this technology also has a risk of damaging the electrode material.

【0013】前述したように、従来技術全般として、図
3に示すようにセパレータ901、902とセル10
3、105との接触抵抗を低く抑えるため、積層された
セル103、105とセパレータ901、902にはあ
る程度の加圧力(例えば、50kg/cm2、燃料電池
全体で1トンの加圧力)が加えられる。図4は単位セル
Sを複数個積層させた燃料電池であり、複数のアングル
Aでこの積層された燃料電池をボルトBにより、四方八
方に締結しているが、この締結による加圧管理は非常に
難しい作業となっていた。
As described above, as a whole of the prior art, as shown in FIG.
In order to keep the contact resistance between the cells 103 and 105 low, a certain pressing force (for example, 50 kg / cm 2, a pressing force of 1 ton for the entire fuel cell) is applied to the stacked cells 103 and 105 and the separators 901 and 902. . FIG. 4 shows a fuel cell in which a plurality of unit cells S are stacked, and the stacked fuel cells are fastened in multiple directions by bolts B at a plurality of angles A. Was a difficult task.

【0014】また高分子電解質型燃料電池では、セルを
構成する電解質に高分子電解質膜が用いられるが、この
膜は吸湿性があり、水分を含んだ状態で良好なプロトン
導電性を示すが、この為、膜に水分を与えるため、アノ
ード側には加湿された水素ガスが流通される。またアノ
ード側での反応生成水によっても加湿される。しかしな
がら、この高分子電解質膜は吸湿による膨張が生じ厚さ
も増加する。
In a polymer electrolyte fuel cell, a polymer electrolyte membrane is used as an electrolyte constituting the cell. This membrane is hygroscopic and exhibits good proton conductivity in a state containing water. For this reason, humidified hydrogen gas flows through the anode side to give moisture to the membrane. It is also humidified by the reaction water on the anode side. However, the polymer electrolyte membrane expands due to moisture absorption and the thickness increases.

【0015】例えば、高分子電解質型膜としてスルホン
酸基を有するパーフルオロカーボン重合体膜(商品名;
ナフィオン112、デュポン株式会社)を使用し、吸水
率100%での膜の厚さを測定した結果、乾燥状態で5
0μの厚さが60μに厚さが増大し、1トンの加圧力が
2〜3倍まで加圧力が増大してしまっていた。このよう
に、積層された加圧された構成の燃料電池においては、
高分子電解質膜での吸湿により膜厚さが増大し、セルと
セパレータ間の加圧力がさらに増大することにより、セ
ルの電極材に損傷を生じることになる。
For example, as a polymer electrolyte type membrane, a perfluorocarbon polymer membrane having a sulfonic acid group (trade name;
(Nafion 112, DuPont Co., Ltd.) and the film thickness was measured at a water absorption of 100%.
The thickness of 0 μm increased to 60 μm, and the pressing force of one ton increased to 2-3 times. As described above, in the fuel cell having the stacked and pressurized configuration,
The film thickness increases due to moisture absorption in the polymer electrolyte membrane, and the pressing force between the cell and the separator further increases, thereby causing damage to the electrode material of the cell.

【0016】本発明は上記課題を解決したもので、セパ
レータと電極(アノード、カソード)間に加わる圧力が
膜の膨潤により過度に増大し、電極の損傷の発生等の問
題を解決し、加圧管理を容易にすること固体高分子電解
質型燃料電池を提供する。
The present invention has solved the above-mentioned problems, and solves the problem that the pressure applied between the separator and the electrodes (anode and cathode) is excessively increased due to the swelling of the membrane, causing damage to the electrodes and the like. A polymer electrolyte fuel cell that facilitates management is provided.

【0017】[0017]

【課題を解決するための手段】上記技術的課題を解決す
るために、本発明の請求項1において講じた技術的手段
(以下、第1の技術的手段と称する。)は、固体高分子
電解質膜の両側に電極を配し、該電極の一方の側面には
燃料ガスを供給し、該電極の他方の側面には酸化剤ガス
を供給する2つのセパレータからなる単位セルを複数個
積層させる固体高分子電解質型燃料電池であって、前記
両セパレータと燃料電極との間には、波状のバネ材料か
らなる板材を介装し、前記一方のセパレータと燃料電極
にて形成された複数の第1空隙部は、燃料ガス流路溝と
して形成され、他方のセパレータと酸化剤電極とで形成
された複数の第2空隙部は、酸化剤ガス流路溝として形
成されることを特徴とする固体高分子電解質型燃料電池
である。
Means for Solving the Problems In order to solve the above technical problems, the technical means (hereinafter referred to as first technical means) taken in claim 1 of the present invention is a solid polymer electrolyte. An electrode is arranged on both sides of the membrane, a fuel gas is supplied to one side of the electrode, and a plurality of unit cells composed of two separators are supplied to the other side of the electrode to supply an oxidizing gas. In a polymer electrolyte fuel cell, a plate member made of a wavy spring material is interposed between the two separators and a fuel electrode, and a plurality of first separators formed by the one separator and the fuel electrode are provided. The gap is formed as a fuel gas passage groove, and the plurality of second gaps formed by the other separator and the oxidant electrode are formed as oxidant gas passage grooves. It is a molecular electrolyte fuel cell.

【0018】上記第1の技術的手段による効果は、以下
のようである。
The effects of the first technical means are as follows.

【0019】即ち、セパレータと電極(アノード、カソ
ード)間に加わる圧力が膜の膨潤により過度に増大し、
電極の損傷の発生等の問題を解決し、加圧管理を容易に
するといった効果を有する。
That is, the pressure applied between the separator and the electrodes (anode, cathode) excessively increases due to swelling of the membrane,
This has the effect of solving problems such as the occurrence of electrode damage and facilitating pressure management.

【0020】上記技術的課題を解決するために、本発明
の請求項2において講じた技術的手段(以下、第1の技
術的手段と称する。)は、前記バネ材料は鉄系のバネ材
料、あるいはステンレス系のバネ材料、あるいは樹脂に
金属を混入した導電性樹脂材料からなることを特徴とす
る請求項1記載の固体高分子電解質型燃料電池である。
In order to solve the above technical problem, the technical means (hereinafter referred to as first technical means) taken in claim 2 of the present invention is that the spring material is an iron-based spring material, 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the solid polymer electrolyte fuel cell is made of a stainless spring material or a conductive resin material obtained by mixing a metal with a resin.

【0021】上記第2の技術的手段による効果は、以下
のようである。
The effects of the second technical means are as follows.

【0022】即ち、上記材料を使用することにより、電
極とセパレータとの間の加圧を効率的に吸収できるとい
った効果を有する。
That is, by using the above-mentioned material, there is an effect that the pressurization between the electrode and the separator can be efficiently absorbed.

【0023】上記技術的課題を解決するために、本発明
の請求項3において講じた技術的手段(以下、第3の技
術的手段と称する。)は、前記バネ材料の表面に、金、
白金、パラジウム等の貴金属メッキコーティングを施し
たことを特徴とする請求項1記載の固体高分子電解質型
燃料電池である。
In order to solve the above-mentioned technical problem, the technical means (hereinafter referred to as third technical means) taken in claim 3 of the present invention is that the surface of the spring material has gold,
The solid polymer electrolyte fuel cell according to claim 1, wherein a noble metal plating coating such as platinum or palladium is applied.

【0024】上記第3の技術的手段による効果は、以下
のようである。
The effects of the third technical means are as follows.

【0025】即ち、この手段により80°C前後の温度
で高い湿度環境に置かれる環境の下で耐熱性、耐湿性を
板材が有することができる。
That is, by this means, the plate material can have heat resistance and moisture resistance under an environment where the temperature is around 80 ° C. and the humidity is high.

【0026】上記技術的課題を解決するために、本発明
の請求項4において講じた技術的手段(以下、第4の技
術的手段と称する。)は、前記バネ材料の表面に、Cr
N、TiN、ZrN等のコーティングを施したことを特
徴とする請求項1記載の固体高分子電解質型燃料電池で
ある。
In order to solve the above technical problem, the technical means taken in claim 4 of the present invention (hereinafter, referred to as fourth technical means) is that the surface of the spring material is made of Cr
The solid polymer electrolyte fuel cell according to claim 1, wherein a coating of N, TiN, ZrN, or the like is applied.

【0027】上記第4の技術的手段による効果は、以下
のようである。
The effects of the fourth technical means are as follows.

【0028】即ち、請求項3と同様、この手段により8
0°C前後の温度で高い湿度環境に置かれる環境の下で
耐熱性、耐湿性を板材が有することができる。
That is, similar to the third aspect, this means enables
The plate material can have heat resistance and moisture resistance under an environment where the temperature is about 0 ° C. and a high humidity environment is set.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施例について、
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings.

【0030】図1は本発明の燃料電池の単位セル100
を表わした断面図である。固体高分子電解質膜101を
燃料電極103と酸化剤電極105とで挟持し、セパレ
ータ201、202で挟持した構造の単位セル100で
ある。この単位セルが複数個積層されて、燃料電池とな
る。
FIG. 1 shows a unit cell 100 of a fuel cell according to the present invention.
FIG. The unit cell 100 has a structure in which a solid polymer electrolyte membrane 101 is sandwiched between a fuel electrode 103 and an oxidant electrode 105 and is sandwiched between separators 201 and 202. A plurality of the unit cells are stacked to form a fuel cell.

【0031】両セパレータ201と燃料電極との間に
は、断面波状のバネ材料からなる板材301、302を
介装し、一方のセパレータ201と酸化剤電極103で
形成された複数の第1空隙部401は、燃料ガス流路溝
として形成され、他方のセパレータ202と断面波状か
ら形成される複数の第2空隙部402は、酸化剤ガス流
路溝として形成される。図2はバネ材料からなる板材3
01の斜視図である。
Between the separators 201 and the fuel electrode, plate members 301 and 302 made of a spring material having a wavy cross section are interposed, and a plurality of first voids formed by one of the separators 201 and the oxidant electrode 103 are provided. 401 is formed as a fuel gas passage groove, and the other separator 202 and a plurality of second void portions 402 formed in a wavy cross section are formed as oxidant gas passage grooves. FIG. 2 shows a plate material 3 made of a spring material.
It is a perspective view of No. 01.

【0032】この第1空隙部401には、燃料電極10
3に供給される燃料ガスが通過する通路となる。第2空
隙部402には、酸化剤電極105に供給される酸化剤
ガスが通過する通路となる。
The first gap 401 has a fuel electrode 10
3 is a passage through which the fuel gas supplied to the fuel cell 3 passes. The second gap 402 is a passage through which the oxidizing gas supplied to the oxidizing electrode 105 passes.

【0033】セパレータ201、202は、電極10
3、105に対して電気導電性をもち集電機能を有する
と共に、酸化剤ガスと燃料ガスとの混合を防止する仕切
機能を有する。
The separators 201 and 202 are connected to the electrode 10
3, 105 has electric conductivity and a current collecting function, and has a partitioning function for preventing mixing of the oxidizing gas and the fuel gas.

【0034】上記バネ材料からなる板材301、302
は夫々燃料電極103とセパレータ201、酸化剤電極
105とセパレータ202との間に介装することによ
り、ガス通路機能を有するとともに、電極との接触を行
う。このバネ材料からなる板材301、302のバネ性
により固体高分子電解質膜101の吸湿による厚さの増
大を吸収し過度の加圧力が生じないようにできる。
The plate members 301 and 302 made of the above-mentioned spring material
By interposing between the fuel electrode 103 and the separator 201 and between the oxidant electrode 105 and the separator 202, respectively, has a gas passage function and makes contact with the electrodes. Due to the resiliency of the plate members 301 and 302 made of the spring material, an increase in the thickness of the solid polymer electrolyte membrane 101 due to moisture absorption can be absorbed to prevent an excessive pressing force from being generated.

【0035】このバネ材料からなる板材301、302
は導電性を有するとともに耐熱、耐湿性が要求され、固
体高分子電解質型燃料電池の運転温度としては常温から
100°C付近まで耐熱性の材料からなる。このバネ材
料としては鉄系のバネ材料、あるいはステンレス系のバ
ネ材料(SUS材等)、あるいは導電性樹脂材料からな
る。
Plates 301 and 302 made of this spring material
Is required to have electrical conductivity, heat resistance and moisture resistance, and is made of a heat-resistant material from a room temperature to around 100 ° C. as an operating temperature of a solid polymer electrolyte fuel cell. The spring material is made of an iron spring material, a stainless steel spring material (such as a SUS material), or a conductive resin material.

【0036】導電性樹脂材料は、それ自体の弾性を有す
る性質を有しバネ材料としても有効である。また、例え
ば、この導電性樹脂材料としては、大別して導電性樹脂
との混和物と、高分子化合物自体の導電性を示す樹脂が
ある。前者としては、樹脂、金属、炭素をそれぞれ超微
粒子にして混合した樹脂に導電性をもった充填物が連結
状態になっている樹脂である。後者としては、ポリアク
リロニトリルを空気の存在で加熱することにより、長い
共役系を持つ高分子化合物に変化し、このもの自体を半
導体としての性質を有し、金属塩と処理すると導電性を
示す樹脂である。
The conductive resin material has its own elasticity and is effective as a spring material. Further, for example, as the conductive resin material, there are roughly classified into a mixture with a conductive resin and a resin showing the conductivity of the polymer compound itself. The former is a resin in which a conductive filler is connected to a resin obtained by mixing a resin, a metal, and carbon as ultrafine particles, respectively. As the latter, by heating polyacrylonitrile in the presence of air, it changes into a polymer compound with a long conjugated system, which itself has the properties of a semiconductor, and becomes conductive when treated with a metal salt. It is.

【0037】さらに、バネ材料の表面に、金、白金、パ
ラジウム等の貴金属メッキコーティングを施す。あるい
は、バネ材料の表面に、CrN、TiN、ZrN等のコ
ーティングを施す。
Further, a noble metal plating coating of gold, platinum, palladium or the like is applied to the surface of the spring material. Alternatively, a coating of CrN, TiN, ZrN, or the like is applied to the surface of the spring material.

【0038】この板材301、302に、上記メッキの
表面被膜を作製するためのメッキ処理は、従来の電解メ
ッキ法、又は無電解メッキ法により10μmの厚さまで
メッキ処理を行う。
The plating process for forming the surface coating of the plating on the plate materials 301 and 302 is performed by a conventional electrolytic plating method or an electroless plating method to a thickness of 10 μm.

【0039】上記手段により80°C前後の温度で高い
湿度環境に置かれる環境の下で板材が耐熱性、耐湿性を
有することができる。
By the above-mentioned means, the plate material can have heat resistance and moisture resistance under an environment where the temperature is around 80 ° C. and the humidity is high.

【0040】上記構成からなるバネ材料からなる板材3
01、302を電極103、105とセパレータ20
1、202との間に介装することにより、単位セル10
0を積層した燃料電池に加圧した場合、その板材30
1、302のバネ特性により、電極103、105に過
度な加圧が加わったとしても板材により応力が緩和で
き、また高分子電解質膜による膨潤による加圧を吸収で
きることとなる。
The plate member 3 made of a spring material having the above structure
01 and 302 to the electrodes 103 and 105 and the separator 20
1 and 202, the unit cell 10
When the pressure is applied to the fuel cell in which
Due to the spring characteristics of the electrodes 1 and 302, even if excessive pressure is applied to the electrodes 103 and 105, the stress can be reduced by the plate material, and the pressure due to swelling by the polymer electrolyte membrane can be absorbed.

【0041】その結果、電極103、105の損傷を未
然に防ぐことができ、しかも加圧の管理も容易になる。
As a result, damage to the electrodes 103 and 105 can be prevented beforehand, and the management of pressurization becomes easy.

【0042】さらに、セパレータ201、202と波状
の板材301、302から形成された第1空隙部40
1、第2空隙部402には、夫々燃料ガス流通路、酸化
剤ガス流通路としての機能を有し、セパレータに流通溝
を形成するよりも、コスト的に有利なものとなる。
Further, the first gap portion 40 formed from the separators 201 and 202 and the corrugated plate members 301 and 302
The first and second gap portions 402 have a function as a fuel gas flow passage and an oxidizing gas flow passage, respectively, and are more cost-effective than forming a flow groove in the separator.

【0043】[0043]

【発明の効果】以上のように、本発明は、固体高分子電
解質膜の両側に電極を配し、該電極の一方の側面には燃
料ガスを供給し、該電極の他方の側面には酸化剤ガスを
供給する2つのセパレータからなる単位セルを複数個積
層させる固体高分子電解質型燃料電池であって、前記両
セパレータと燃料電極との間には、波状のバネ材料から
なる板材を介装し、前記一方のセパレータと燃料電極に
て形成された複数の第1空隙部は、燃料ガス流路溝とし
て形成され、他方のセパレータと酸化剤電極とで形成さ
れた複数の第2空隙部は、酸化剤ガス流路溝として形成
されることを特徴とする固体高分子電解質型燃料電池で
あるので、セパレータと電極間に加わる圧力が膜の膨潤
により過度に増大し、電極の損傷の発生等の問題を解決
し、加圧管理を容易にすることができる。
As described above, according to the present invention, the electrodes are arranged on both sides of the solid polymer electrolyte membrane, the fuel gas is supplied to one side of the electrodes, and the oxidized surface is supplied to the other side of the electrodes. A solid polymer electrolyte fuel cell in which a plurality of unit cells each composed of two separators for supplying an agent gas are stacked, wherein a plate member made of a wavy spring material is interposed between the separators and the fuel electrode. The plurality of first gaps formed by the one separator and the fuel electrode are formed as fuel gas flow grooves, and the plurality of second gaps formed by the other separator and the oxidant electrode are Since the solid polymer electrolyte fuel cell is formed as an oxidant gas flow channel, the pressure applied between the separator and the electrode is excessively increased due to the swelling of the membrane, and the electrode is damaged. Solves the problem of It can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の単位セルの断面図FIG. 1 is a sectional view of a unit cell according to an embodiment of the present invention.

【図2】本発明のバネ性を有した波状の板材の斜視図FIG. 2 is a perspective view of a wavy plate member having a spring property according to the present invention.

【図3】従来の単位セルの断面図FIG. 3 is a cross-sectional view of a conventional unit cell.

【図4】単位セルを複数積層させアングルおよびボルト
等により締結した燃料電池の斜視図
FIG. 4 is a perspective view of a fuel cell in which a plurality of unit cells are stacked and fastened by angles, bolts, and the like.

【符号の説明】[Explanation of symbols]

101…固体高分子電解質膜 103…電極(アノード) 105…電極(カソード) 201、202…セパレータ 301、302…板材 401…第1空隙部 402…第2空隙部 DESCRIPTION OF SYMBOLS 101 ... Solid polymer electrolyte membrane 103 ... Electrode (anode) 105 ... Electrode (cathode) 201, 202 ... Separator 301, 302 ... Plate material 401 ... 1st cavity 402 ... 2nd cavity

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜の両側に電極を配
し、該電極の一方の側面には燃料ガスを供給し、該電極
の他方の側面には酸化剤ガスを供給する2つのセパレー
タからなる単位セルを複数個積層させる固体高分子電解
質型燃料電池であって、前記両セパレータと燃料電極と
の間には、波状のバネ材料からなる板材を介装し、前記
一方のセパレータと燃料電極にて形成された複数の第1
空隙部は、燃料ガス流路溝として形成され、他方のセパ
レータと酸化剤電極とで形成された複数の第2空隙部
は、酸化剤ガス流路溝として形成されることを特徴とす
る固体高分子電解質型燃料電池。
An electrode is disposed on both sides of a solid polymer electrolyte membrane, a fuel gas is supplied to one side of the electrode, and an oxidant gas is supplied to the other side of the electrode from two separators. A solid polymer electrolyte fuel cell in which a plurality of unit cells are laminated, wherein a plate member made of a wavy spring material is interposed between the separators and the fuel electrode, and the one separator and the fuel electrode are interposed. A plurality of first formed by
The cavity is formed as a fuel gas passage groove, and the plurality of second gaps formed by the other separator and the oxidant electrode are formed as oxidant gas passage grooves. Molecular electrolyte fuel cell.
【請求項2】 前記バネ材料は鉄系のバネ材料、あるい
はステンレス系のバネ材料、あるいは樹脂に金属を混入
した導電性樹脂材料からなることを特徴とする請求項1
記載の固体高分子電解質型燃料電池。
2. The spring material is made of an iron-based spring material, a stainless-based spring material, or a conductive resin material obtained by mixing a metal with a resin.
The solid polymer electrolyte fuel cell according to the above.
【請求項3】 前記バネ材料の表面に、金、白金、パラ
ジウム等の貴金属メッキコーティングを施したことを特
徴とする請求項1記載の固体高分子電解質型燃料電池。
3. The solid polymer electrolyte fuel cell according to claim 1, wherein a surface of the spring material is coated with a noble metal plating such as gold, platinum or palladium.
【請求項4】 前記バネ材料の表面に、CrN、Ti
N、ZrN等のコーティングを施したことを特徴とする
請求項1記載の固体高分子電解質型燃料電池。
4. The method according to claim 1, wherein the surface of the spring material is CrN, Ti
The solid polymer electrolyte fuel cell according to claim 1, wherein a coating of N, ZrN, or the like is applied.
JP10118843A 1998-04-28 1998-04-28 Solid polymer electrolyte type fuel cell Pending JPH11312530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118843A JPH11312530A (en) 1998-04-28 1998-04-28 Solid polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118843A JPH11312530A (en) 1998-04-28 1998-04-28 Solid polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH11312530A true JPH11312530A (en) 1999-11-09

Family

ID=14746537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118843A Pending JPH11312530A (en) 1998-04-28 1998-04-28 Solid polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH11312530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013405A1 (en) * 2003-07-31 2005-02-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack, fuel cell system, and method for producing fuel cell stack
US6872483B2 (en) * 2001-06-08 2005-03-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack, method of holding fuel cell stack under pressure, and separators
JP2006527903A (en) * 2003-06-18 2006-12-07 レインツ デッチタングス ゲー エム ベー ハー Electrochemical structure with elastic partition structure
JP2010212061A (en) * 2009-03-10 2010-09-24 Railway Technical Res Inst Separator for fuel cell, and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872483B2 (en) * 2001-06-08 2005-03-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack, method of holding fuel cell stack under pressure, and separators
JP2006527903A (en) * 2003-06-18 2006-12-07 レインツ デッチタングス ゲー エム ベー ハー Electrochemical structure with elastic partition structure
JP4856539B2 (en) * 2003-06-18 2012-01-18 レインツ デッチタングス ゲー エム ベー ハー Electrochemical structure with elastic partition structure
WO2005013405A1 (en) * 2003-07-31 2005-02-10 Toyota Jidosha Kabushiki Kaisha Fuel cell stack, fuel cell system, and method for producing fuel cell stack
JPWO2005013405A1 (en) * 2003-07-31 2006-09-28 トヨタ自動車株式会社 FUEL CELL STACK, FUEL CELL SYSTEM, AND METHOD FOR PRODUCING FUEL CELL STACK
JP2010212061A (en) * 2009-03-10 2010-09-24 Railway Technical Res Inst Separator for fuel cell, and fuel cell

Similar Documents

Publication Publication Date Title
US7476459B2 (en) Membrane electrode assembly and fuel cell
JP3516892B2 (en) Polymer electrolyte fuel cell stack
JP4828841B2 (en) Fuel cell
JPH11204122A (en) Solid polyelectrolyte fuel cell
JP3913573B2 (en) Fuel cell
US8431284B2 (en) Low electrical resistance bipolar plate-diffusion media assembly
JP2008508679A (en) End-protected catalyst-coated diffusion medium and membrane electrode assembly
JP2001357869A (en) Solid high-polymer type fuel cell stack
JP2002352817A (en) Polymer electrolyte fuel cell
JP4213515B2 (en) Polymer electrolyte fuel cell
JP2001126750A (en) Polymer electrolytic fuel cell and clamping method thereof
KR20040047679A (en) Fuel cell
JPH11312530A (en) Solid polymer electrolyte type fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP3133301B2 (en) Polymer electrolyte fuel cell
JP4314696B2 (en) Polymer electrolyte fuel cell stack
JP2002093434A (en) Electrolyte layer/electrode joint body and fuel cell
JP2001167789A (en) High molecule electrolyte fuel cell
JP3115434U (en) Fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JP3580525B2 (en) Polymer electrolyte fuel cell
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JP2004349013A (en) Fuel cell stack