JPH11307130A - Manufacture of curved battery - Google Patents

Manufacture of curved battery

Info

Publication number
JPH11307130A
JPH11307130A JP10114779A JP11477998A JPH11307130A JP H11307130 A JPH11307130 A JP H11307130A JP 10114779 A JP10114779 A JP 10114779A JP 11477998 A JP11477998 A JP 11477998A JP H11307130 A JPH11307130 A JP H11307130A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte
positive electrode
plasticizer
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114779A
Other languages
Japanese (ja)
Inventor
Kenji Shimazu
健児 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10114779A priority Critical patent/JPH11307130A/en
Publication of JPH11307130A publication Critical patent/JPH11307130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To hold excellent performance, and to provide a curved shape by thermocompression bonding an electrolyte layer between a positive electrode and a negative electrode each containing a plasticizer and being not impregnated with a nonaqueous electrolyte using two rolls mutually different in diameter. SOLUTION: Positive electrode/negative electrode raw materials are obtained by molding kneaded paste of an an active material capable of storing/releasing a lithium ion, a binder, a plasticizer, a solvent and the like on a current collector, and a gel-like electrolyte raw material is obtained by forming a film of kneaded paste of a binder, a plasticizer, a granular material and a solvent. Positive electrode, electrolyte and negative electrode raw materials are respectively arranged in order between a first roller 13 having a suitable diameter of less than 1 cm to 5 cm and 5 to 20 cm and a second roller having a large diameter to be thermoconpression bonded to become an uncracked downward curved body. Compatibility with the binder is excellent, flexibility and meltability at thermocompression bonding are imparted to the raw material, and after removing the easily removable pasticizer by a solvent extraction or the like, a nonaqueous electrolyte is impregnated. Charge/discharge performance is maintained, and curvature can also be freely adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湾曲した電池の製
造方法に関する。
[0001] The present invention relates to a method of manufacturing a curved battery.

【0002】[0002]

【従来の技術】近年、電子機器の発達にともない、小型
で軽量、かつエネルギー密度が高く、更に繰り返し充放
電が可能な非水電解液二次電池の開発が要望されてい
る。このような二次電池としては、リチウムまたはリチ
ウム合金を活物質とする負極と、モリブデン、バナジウ
ム、チタンあるいはニオブなどの酸化物、硫化物もしく
はセレン化物を活物質として含む正極と、非水電解液と
を具備したリチウム二次電池が知られている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a non-aqueous electrolyte secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. Such a secondary battery includes a negative electrode containing lithium or a lithium alloy as an active material, a positive electrode containing an oxide, sulfide, or selenide such as molybdenum, vanadium, titanium, or niobium as an active material, and a nonaqueous electrolyte. There is known a lithium secondary battery including:

【0003】また、最近では負極に例えばコークス、黒
鉛、炭素繊維、樹脂焼成体、熱分解気相炭素のようなリ
チウムイオンを吸蔵放出する炭素質材料を含むものを用
い、正極としてリチウムコバルト酸化物やリチウムマン
ガン酸化物を含むものを用いるリチウムイオン二次電池
の開発、商品化が活発に行われている。
In recent years, a negative electrode containing a carbonaceous material that absorbs and releases lithium ions, such as coke, graphite, carbon fiber, a resin fired body, and pyrolytic gas phase carbon, has been used as a negative electrode. The development and commercialization of lithium ion secondary batteries using lithium and lithium manganese oxide-containing batteries are being actively pursued.

【0004】ところで、二次電池のさらなる軽量化及び
小型化を目的として、例えば米国特許公報第5,29
6,318号に開示されているように、ポリマー電解質
二次電池が開発されている。このポリマー電解質二次電
池は、図2に示すようなシート状の発電要素を水蒸気に
対してバリア機能を有するフィルム材内に密封した構造
を有する。すなわち、前記シート状の発電要素は、シー
ト状の正極11と、シート状の負極12と、前記正極1
1及び前記負極12の間に配置されたゲル状電解質層1
3とを備える。前記正極11は、リチウムイオンを吸蔵
・放出する活物質、非水電解液及びこの電解液を保持す
るポリマーを含む正極層14が多孔質集電体15に担持
されたものからなる。前記負極12は、リチウムイオン
を吸蔵・放出する活物質、非水電解液及びこの電解液を
保持するポリマーを含む負極層16が多孔質集電体17
に担持されたものからなる。前記電解質層13は、非水
電解液及びこの電解液を保持するバインダーを含むシー
トからなる。帯状の正極端子18は、前記正極11の集
電体15に接続されている。帯状の負極端子19は、前
記負極12の集電体17に接続されている。
Meanwhile, in order to further reduce the weight and size of the secondary battery, for example, US Pat.
As disclosed in US Pat. No. 6,318,318, a polymer electrolyte secondary battery has been developed. This polymer electrolyte secondary battery has a structure in which a sheet-like power generating element as shown in FIG. 2 is sealed in a film material having a barrier function against water vapor. That is, the sheet-like power generating element includes a sheet-like positive electrode 11, a sheet-like negative electrode 12,
1 and a gel electrolyte layer 1 disposed between the negative electrode 12
3 is provided. The positive electrode 11 is composed of a porous current collector 15 in which a positive electrode layer 14 containing an active material for absorbing and releasing lithium ions, a non-aqueous electrolyte, and a polymer holding the electrolyte is supported. The negative electrode 12 includes an active material that absorbs and releases lithium ions, a nonaqueous electrolyte, and a negative electrode layer 16 containing a polymer that holds the electrolyte.
It consists of what was carried on. The electrolyte layer 13 is formed of a sheet containing a non-aqueous electrolyte and a binder holding the electrolyte. The strip-shaped positive electrode terminal 18 is connected to the current collector 15 of the positive electrode 11. The strip-shaped negative electrode terminal 19 is connected to the current collector 17 of the negative electrode 12.

【0005】このポリマー電解質二次電池においては、
PHSや、携帯電話のような曲面を持つ電子機器に組み
込みやすくするために湾曲させることが考えられてい
る。
[0005] In this polymer electrolyte secondary battery,
Curving is considered to be easy to incorporate into a PHS or an electronic device having a curved surface such as a mobile phone.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記発
電要素を湾曲させても、しばらくすると元の形に戻って
しまうという問題点がある。また、湾曲形状を保持させ
るために成形の際に力を加えると、前記発電要素にひび
割れを生じ、ポリマー電解質二次電池の性能が損なわれ
るという問題点を生じる。
However, there is a problem that even if the power generating element is bent, it returns to its original shape after a while. In addition, when a force is applied during molding to maintain the curved shape, the power generating element is cracked, and the performance of the polymer electrolyte secondary battery is impaired.

【0007】本発明は、優れた性能を保持する湾曲した
電池の製造方法を提供しようとするものである。
[0007] The present invention seeks to provide a method of manufacturing a curved battery that retains excellent performance.

【0008】[0008]

【課題を解決するための手段】本発明に係る湾曲した電
池の製造方法は、可塑剤を含む非水電解液未含浸の正極
と、可塑剤を含む非水電解液未含浸の負極と、前記正極
及び前記負極の間に配置された可塑剤を含む非水電解液
未含浸の電解質層とを互いに径の異なる2つのロールで
熱圧着させる工程を具備することを特徴とするものであ
る。
A method of manufacturing a curved battery according to the present invention comprises a positive electrode not impregnated with a non-aqueous electrolyte containing a plasticizer, a negative electrode not impregnated with a non-aqueous electrolyte containing a plasticizer, The method further comprises a step of thermocompression bonding the non-aqueous electrolyte-impregnated electrolyte layer containing a plasticizer between the positive electrode and the negative electrode with two rolls having different diameters.

【0009】[0009]

【発明の実施の形態】まず、本発明に係る方法で製造さ
れる湾曲した電池の発電要素を図1を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a power generating element of a curved battery manufactured by the method according to the present invention will be described with reference to FIG.

【0010】すなわち、発電要素は、下方に湾曲した正
極1、負極2及びゲル状電解質層3とを備える。前記正
極1は、リチウムイオンを吸蔵・放出する活物質、非水
電解液及びこの電解液を保持するバインダーを含む正極
層4が多孔質集電体5に担持されたものからなる。前記
負極2は、リチウムイオンを吸蔵・放出する活物質、非
水電解液及びこの電解液を保持するバインダーを含む負
極層6が多孔質集電体7に担持されたものからなる。前
記電解質層3は、非水電解液及びこの電解液を保持する
バインダーを含むシートからなり、前記正極層4及び前
記負極層6の間に配置されている。帯状の正極端子8
は、前記正極1の集電体5に接続されている。帯状の負
極端子9は、前記負極2の集電体7に接続されている。
That is, the power generating element includes the positive electrode 1, the negative electrode 2, and the gel electrolyte layer 3 that are curved downward. The positive electrode 1 is composed of a porous current collector 5 in which a positive electrode layer 4 containing an active material for inserting and extracting lithium ions, a non-aqueous electrolyte, and a binder for holding the electrolyte is supported. The negative electrode 2 is composed of a porous current collector 7 on which a negative electrode layer 6 containing an active material for occluding and releasing lithium ions, a non-aqueous electrolyte, and a binder for holding the electrolyte is supported. The electrolyte layer 3 is made of a sheet containing a non-aqueous electrolyte and a binder holding the electrolyte, and is disposed between the positive electrode layer 4 and the negative electrode layer 6. Strip-shaped positive electrode terminal 8
Is connected to the current collector 5 of the positive electrode 1. The strip-shaped negative electrode terminal 9 is connected to the current collector 7 of the negative electrode 2.

【0011】以下、この湾曲した形状の発電要素を備え
る電池の製造方法について説明する。
Hereinafter, a method of manufacturing a battery having the curved power generating element will be described.

【0012】(第1工程)可塑剤を含む正極用素材と、
可塑剤を含む負極用素材と、可塑剤を含む電解質層用素
材とを作製する。
(First step) A positive electrode material containing a plasticizer,
A material for a negative electrode containing a plasticizer and a material for an electrolyte layer containing a plasticizer are produced.

【0013】<正極用素材>前記正極用素材は、例え
ば、(a)正極活物質、バインダー、可塑剤及び必要に
応じて導電性材料を溶媒の存在下で混練してペーストを
調製し、前記ペーストをシート状に成形した後、得られ
たシートを集電体に積層することにより作製されるか、
あるいは(b)正極活物質、バインダー、可塑剤及び必
要に応じて導電性材料を溶媒の存在下で混練してペース
トを調製し、前記ペーストを集電体に塗布し、加圧成形
を施すことにより作製される。
<Material for Positive Electrode> For the material for positive electrode, for example, (a) a paste is prepared by kneading a positive electrode active material, a binder, a plasticizer and, if necessary, a conductive material in the presence of a solvent. After the paste is formed into a sheet, the obtained sheet is laminated on a current collector,
Alternatively, (b) preparing a paste by kneading a positive electrode active material, a binder, a plasticizer and, if necessary, a conductive material in the presence of a solvent, applying the paste to a current collector, and performing pressure molding. It is produced by

【0014】前記正極活物質としては、種々の酸化物
(例えばLiMn2 4 などのリチウムマンガン複合酸
化物、二酸化マンガン、例えばLiNiO2 などのリチ
ウム含有ニッケル酸化物、例えばLiCoO2 などのリ
チウム含有コバルト酸化物、リチウム含有ニッケルコバ
ルト酸化物、リチウムを含む非晶質五酸化バナジウムな
ど)や、カルコゲン化合物(例えば、二硫化チタン、二
硫化モリブテンなど)等を挙げることができる。中で
も、リチウムマンガン複合酸化物、リチウム含有コバル
ト酸化物、リチウム含有ニッケル酸化物を用いるのが好
ましい。
Examples of the positive electrode active material include various oxides (eg, lithium-manganese composite oxide such as LiMn 2 O 4 , manganese dioxide, lithium-containing nickel oxide such as LiNiO 2, and lithium-containing cobalt oxide such as LiCoO 2 , for example). Oxide, lithium-containing nickel-cobalt oxide, lithium-containing amorphous vanadium pentoxide and the like, and chalcogen compounds (for example, titanium disulfide and molybdenum disulfide). Among them, it is preferable to use a lithium manganese composite oxide, a lithium-containing cobalt oxide, and a lithium-containing nickel oxide.

【0015】前記バインダーは、非水電解液を保持する
性質を有する。かかるバインダーとしては、例えば、ポ
リエチレンオキサイド誘導体、ポリプロピレンオキサイ
ド誘導体、前記誘導体を含むポリマー、ポリテトラフル
オロプロピレン、ビニリデンフロライド(VdF)とヘ
キサフルオロプロピレン(HFP)との共重合体、ポリ
ビニリデンフロライド(PVdF)等を用いることがで
きる。中でも、VdF―HFP共重合体が好ましい。
The binder has a property of retaining a non-aqueous electrolyte. Examples of such a binder include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative, polytetrafluoropropylene, a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP), and polyvinylidene fluoride ( PVdF) or the like can be used. Among them, a VdF-HFP copolymer is preferred.

【0016】前記可塑剤としては、バインダーとの相溶
性に優れ、素材に柔軟性を付与することができ、熱圧着
の際には素材を溶融させることができ、かつ容易に除去
されるという4つの性質を有しているものが良い。前記
可塑剤としては、例えば、フタル酸ジブチル(DB
P)、フタル酸ジメチル(DMP)、エチルフタリルエ
チルグリコレート(EPEG)等を挙げることができ
る。
The plasticizer has excellent compatibility with the binder, can impart flexibility to the material, can melt the material during thermocompression bonding, and is easily removed. One that has two properties is good. As the plasticizer, for example, dibutyl phthalate (DB
P), dimethyl phthalate (DMP), ethylphthalylethyl glycolate (EPEG) and the like.

【0017】前記正極用素材は、導電性を向上する観点
から導電性材料を含んでいてもよい。前記導電性材料と
しては、例えば、人造黒鉛、カーボンブラック(例えば
アセチレンブラックなど)、ニッケル粉末等を挙げるこ
とができる。
The material for the positive electrode may contain a conductive material from the viewpoint of improving conductivity. Examples of the conductive material include artificial graphite, carbon black (eg, acetylene black), nickel powder, and the like.

【0018】前記多孔質集電体としては、例えば、アル
ミニウム製エキスパンドメタル、アルミニウム製メッシ
ュ、アルミニウム製パンチドメタル等を挙げることがで
きる。また、前記多孔質集電体の代わりにアルミニウム
箔のような金属箔を用いても良い。この場合、前記金属
箔の片面に前記組成のシートを積層するか、あるいは前
記組成のペーストを塗布する。
Examples of the porous current collector include expanded metal made of aluminum, mesh made of aluminum, and punched metal made of aluminum. Further, a metal foil such as an aluminum foil may be used instead of the porous current collector. In this case, a sheet of the composition is laminated on one side of the metal foil, or a paste of the composition is applied.

【0019】<負極用素材>前記負極用素材は、例え
ば、(a)負極活物質、バインダー、可塑剤及び必要に
応じて導電性材料を溶媒の存在下で混練してペーストを
調製し、前記ペーストをシート状に成形した後、得られ
たシートを集電体に積層することにより作製されるか、
あるいは(b)負極活物質、バインダー、可塑剤及び必
要に応じて導電性材料を溶媒の存在下で混練してペース
トを調製し、前記ペーストを集電体に塗布し、加圧成形
を施すことにより作製される。
<Material for Negative Electrode> The material for the negative electrode is prepared by, for example, kneading (a) a negative electrode active material, a binder, a plasticizer and, if necessary, a conductive material in the presence of a solvent to prepare a paste. After the paste is formed into a sheet, the obtained sheet is laminated on a current collector,
Alternatively, (b) preparing a paste by kneading a negative electrode active material, a binder, a plasticizer and, if necessary, a conductive material in the presence of a solvent, applying the paste to a current collector, and performing pressure molding. It is produced by

【0020】前記負極活物質としては、リチウムイオン
を吸蔵・放出する炭素質材料を挙げることができる。か
かる炭素質材料としては、例えば、有機高分子化合物
(例えば、フェノール樹脂、ポリアクリロニトリル、セ
ルロース等)を焼成することにより得られるもの、コー
クスや、メソフェーズピッチを焼成することにより得ら
れるもの、人造グラファイト、天然グラファイト等に代
表される炭素質材料を挙げることができる。中でも、5
00℃〜3000℃の温度で、常圧または減圧下にて前
記メソフェーズピッチを焼成して得られる炭素質材料を
用いるのが好ましい。
Examples of the negative electrode active material include carbonaceous materials that occlude and release lithium ions. Such carbonaceous materials include, for example, those obtained by firing organic polymer compounds (eg, phenolic resin, polyacrylonitrile, cellulose, etc.), those obtained by firing coke and mesophase pitch, and those made by artificial graphite. And carbonaceous materials represented by natural graphite and the like. Among them, 5
It is preferable to use a carbonaceous material obtained by firing the mesophase pitch at a temperature of 00 ° C to 3000 ° C under normal pressure or reduced pressure.

【0021】前記集電体としては、例えば、銅製エキス
パンドメタル、銅製メッシュ、銅製パンチドメタル等を
挙げることができる。また、前記多孔質集電体の代わり
に銅箔のような金属箔を用いても良い。この場合、前記
金属箔の片面に前記組成のシートを積層するか、あるい
は前記組成のペーストを塗布する。
Examples of the current collector include a copper expanded metal, a copper mesh, and a copper punched metal. Further, a metal foil such as a copper foil may be used instead of the porous current collector. In this case, a sheet of the composition is laminated on one side of the metal foil, or a paste of the composition is applied.

【0022】前記バインダー、可塑剤及び導電性材料と
しては、前述した正極用素材で説明したのと同様なもの
が用いられる。
As the binder, plasticizer and conductive material, the same materials as described in the above-mentioned positive electrode material are used.

【0023】<電解質層用素材>この電解質用素材は、
例えば、バインダー及び可塑剤を溶媒の存在下で混練し
てペーストを調製し、製膜することにより作製される。
<Material for electrolyte layer>
For example, it is produced by kneading a binder and a plasticizer in the presence of a solvent to prepare a paste, and forming a film.

【0024】前記バインダー及び前記可塑剤としては、
前述した正極用素材で説明したものと同様なものが用い
られる。
As the binder and the plasticizer,
The same material as described in the above-described positive electrode material is used.

【0025】前記ペーストに有機物粒子、あるいは酸化
硅素粉末のような無機粒子を添加することによって、電
解質層の強度を向上させることができる。
By adding organic particles or inorganic particles such as silicon oxide powder to the paste, the strength of the electrolyte layer can be improved.

【0026】(第2工程)前記正極用素材及び前記負極
用素材の間に前記電解質層用素材を配置し、前記正極用
素材側に第1ロールを配置し、前記負極用素材側に前記
第1ロールに比べて径の大きい第2ロールを配置し、前
記第1,2ロールで熱圧着させることにより、下方に湾
曲した形状の積層物を得る。
(Second step) The raw material for the electrolyte layer is disposed between the raw material for the positive electrode and the raw material for the negative electrode, a first roll is disposed on the raw material for the positive electrode, and the first roll is disposed on the raw material side for the negative electrode. A second roll having a diameter larger than that of the first roll is arranged and thermocompression-bonded by the first and second rolls to obtain a laminate having a downwardly curved shape.

【0027】前記第1ロールの径は、1cm以上で、か
つ5cm未満にすることが好ましい。これは次のような
理由によるものである。前記第1ロールの径を1cm未
満にすると、熱圧着の際に前記正負極用素材及び前記電
解質層用素材が伸びる場合がある。これら素材に伸びが
生じると、得られた積層物の寸法が目的とする値から外
れるため、歩留まりが低下する等の不具合を生じる。一
方、前記第1ロールの径が5cmを越えると、前記積層
物を湾曲させることが困難になる恐れがある。前記第1
ロールの径のより好ましい範囲は、2〜4cmである。
The diameter of the first roll is preferably 1 cm or more and less than 5 cm. This is due to the following reasons. If the diameter of the first roll is less than 1 cm, the material for the positive and negative electrodes and the material for the electrolyte layer may be stretched during thermocompression bonding. If the elongation occurs in these materials, the dimensions of the obtained laminate will deviate from the desired values, causing problems such as a decrease in yield. On the other hand, if the diameter of the first roll exceeds 5 cm, it may be difficult to bend the laminate. The first
A more preferable range of the diameter of the roll is 2 to 4 cm.

【0028】前記第2ロールの径は、5〜20cmにす
ることが好ましい。これは次のような理由によるもので
ある。前記第2ロールの径を5cm未満にすると、熱圧
着の際に前記正負極用素材及び前記電解質層用素材が伸
びる場合がある。一方、前記第2ロールの径が20cm
を越えると、前記積層物を湾曲させることが困難になる
恐れがある。前記第2ロールの径のより好ましい範囲
は、7〜15cmである。
The diameter of the second roll is preferably 5 to 20 cm. This is due to the following reasons. If the diameter of the second roll is less than 5 cm, the material for the positive and negative electrodes and the material for the electrolyte layer may be stretched during thermocompression bonding. On the other hand, the diameter of the second roll is 20 cm.
If it exceeds, it may be difficult to bend the laminate. A more preferable range of the diameter of the second roll is 7 to 15 cm.

【0029】前記積層物の湾曲度合いを大きくするに
は、前記第1ロールの硬度を前記第2ロールの硬度に比
べて高くすると良い。本発明の方法によれば、ロールの
径、必要に応じてロール硬度を併せて調節することによ
り積層物の湾曲度合いを目的に応じて変更することが可
能である。
In order to increase the degree of curvature of the laminate, it is preferable that the hardness of the first roll is higher than the hardness of the second roll. According to the method of the present invention, it is possible to change the degree of curvature of the laminate according to the purpose by adjusting the roll diameter and, if necessary, the roll hardness.

【0030】(第3工程)前記湾曲した積層物中の可塑
剤を除去する。
(Third Step) The plasticizer in the curved laminate is removed.

【0031】この可塑剤の除去は、溶媒抽出によって行
うことが好ましい。
The removal of the plasticizer is preferably performed by solvent extraction.

【0032】前記溶媒抽出は、溶媒に超音波を加えた
り、雰囲気を減圧にすることが好ましい。使用する溶媒
は、電池材料にダメージを与えにくく、かつ可塑剤との
相溶性が良いものであれば特に限定されない。例えば、
アルコール類、飽和炭化水素化合物などの有機溶媒が好
ましい。
In the solvent extraction, it is preferable to apply ultrasonic waves to the solvent or reduce the pressure of the atmosphere. The solvent used is not particularly limited as long as it does not easily damage the battery material and has good compatibility with the plasticizer. For example,
Organic solvents such as alcohols and saturated hydrocarbon compounds are preferred.

【0033】(第4工程)前記湾曲した積層物に非水電
解液を含浸させる。
(Fourth Step) The curved laminate is impregnated with a non-aqueous electrolyte.

【0034】前記非水電解液は、非水溶媒に電解質を溶
解することにより調製される。
The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.

【0035】前記非水溶媒としては、エチレンカーボネ
ート(EC)、プロピレンカーボネート(PC)、ブチ
レンカーボネート(BC)、ジメチルカーボネート(D
MC)、ジエチルカーボネート(DEC)、エチルメチ
ルカーボネート(EMC)、γ−ブチロラクトン(γ−
BL)、スルホラン、アセトニトリル、1,2−ジメト
キシエタン、1,3−ジメトキシプロパン、ジメチルエ
ーテル、テトラヒドロフラン(THF)、2−メチルテ
トラヒドロフラン等を挙げることができる。前記非水溶
媒は、単独で使用しても、2種以上混合して使用しても
良い。
Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and dimethyl carbonate (D
MC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ-
BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. The non-aqueous solvents may be used alone or as a mixture of two or more.

【0036】前記電解質としては、例えば、過塩素酸リ
チウム(LiClO4 )、六フッ化リン酸リチウム(L
iPF6 )、ホウ四フッ化リチウム(LiBF4 )、六
フッ化砒素リチウム(LiAsF6 )、トリフルオロメ
タンスルホン酸リチウム(LiCF3 SO3 )等のリチ
ウム塩を挙げることができる。
Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (L
iPF 6), boric tetrafluoride lithium (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium salts such as lithium trifluoromethane sulfonate (LiCF 3 SO 3) may be mentioned.

【0037】前記電解質の前記非水溶媒に対する溶解量
は、0.2mol/l〜2mol/lとすることが望ま
しい。
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / l to 2 mol / l.

【0038】前記第1〜4工程を具備する方法により湾
曲した形状の電池を得ることができる。
A battery having a curved shape can be obtained by the method including the first to fourth steps.

【0039】なお、図1においては、シート状の発電要
素を下方に湾曲させたが、上方に湾曲させる場合には、
前記第1ロールを負極用素材側に配置し、前記第1ロー
ルに比べて径の大きい前記第2ロールを正極用素材側に
配置して熱圧着を行えば良い。
In FIG. 1, the sheet-like power generating element is curved downward.
The first roll may be disposed on the negative electrode material side, and the second roll having a larger diameter than the first roll may be disposed on the positive electrode material side to perform thermocompression bonding.

【0040】以上詳述したように本発明に係わる製造方
法によれば、可塑剤を含む非水電解液未含浸の正極と、
可塑剤を含む非水電解液未含浸の負極と、前記正極及び
前記負極の間に配置された可塑剤を含む非水電解液未含
浸の電解質層とを互いに径の異なる2つのロールで熱圧
着させることによって、ひび割れ等の損傷を生じさせる
ことなく、積層物を湾曲させることができる。得られた
積層物は、可塑剤の除去及び非水電解液の含浸を行った
後も湾曲した形状を保持することができる。従って、本
発明によれば、充放電性能を損なうことなく、かつ簡単
に湾曲した形状の電池を製造することができる。
As described in detail above, according to the production method of the present invention, a positive electrode not impregnated with a non-aqueous electrolyte containing a plasticizer,
A negative electrode not impregnated with a non-aqueous electrolyte containing a plasticizer and an electrolyte layer not impregnated with a non-aqueous electrolyte containing a plasticizer disposed between the positive electrode and the negative electrode are thermocompressed with two rolls having different diameters from each other. By doing so, the laminate can be curved without causing damage such as cracks. The obtained laminate can maintain a curved shape even after removing the plasticizer and impregnating with the non-aqueous electrolyte. Therefore, according to the present invention, a battery having a curved shape can be easily manufactured without impairing the charge / discharge performance.

【0041】また、小さいロールの径を1cm以上、か
つ5cm未満にし、大きいロールの径を5〜20cmに
することによって、目的とする寸法を維持したまま積層
物を湾曲させることができるため、生産性を向上するこ
とができる。
Further, by setting the diameter of the small roll to 1 cm or more and less than 5 cm, and setting the diameter of the large roll to 5 to 20 cm, the laminate can be bent while maintaining the desired dimensions. Performance can be improved.

【0042】[0042]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0043】(実施例) <正極用素材の作製>活物質として組成式がLiMn2
4 で表されるリチウムマンガン複合酸化物を56重量
%と、カーボンブラックを5重量%と、バインダーとし
てビニリデンフロライド−ヘキサフルオロプロピレン
(VdF−HFP)の共重合体粉末を17重量%と、フ
タル酸ジブチル(DBP)22重量%をアセトン中で混
合し、ペーストを調製した。得られたペーストをポリエ
チレンテレフタレートフィルム(PETフィルム)上に
塗布し、シート化した。得られた正極シートをアルミニ
ウム製エキスパンドメタルからなる正極端子付き集電体
の両面に熱ロールで加熱圧着することにより正極用素材
を作製した。
(Example) <Preparation of Material for Positive Electrode> As an active material, the composition formula is LiMn 2
56% by weight of a lithium manganese composite oxide represented by O 4 , 5% by weight of carbon black, and 17% by weight of a vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer powder as a binder; A paste was prepared by mixing 22% by weight of dibutyl phthalate (DBP) in acetone. The obtained paste was applied on a polyethylene terephthalate film (PET film) to form a sheet. The obtained positive electrode sheet was heat-pressed on both surfaces of a current collector with a positive electrode terminal made of expanded metal made of aluminum using a hot roll to prepare a positive electrode material.

【0044】<負極用素材の作製>活物質としてメソフ
ェーズピッチ炭素繊維58重量%と、バインダーとして
VdF−HFPの共重合体粉末17重量%と、DBP2
5重量%をアセトン中で混合し、ペーストを調製した。
得られたペーストをPETフィルム上に塗布し、シート
化した。得られた負極シートを銅製エキスパンドメタル
からなる負極端子付き集電体の両面に熱ロールで加熱圧
着することにより負極用素材を作製した。
<Preparation of Material for Negative Electrode> Mesophase pitch carbon fiber as active material 58% by weight, VdF-HFP copolymer powder 17% by weight as binder, DBP2
5% by weight was mixed in acetone to prepare a paste.
The obtained paste was applied on a PET film to form a sheet. The obtained negative electrode sheet was heat-pressed with heat rolls on both surfaces of a current collector with a negative electrode terminal made of copper expanded metal to prepare a negative electrode material.

【0045】<電解質層用素材の作製>酸化硅素粉末を
33.3重量部と、バインダーとしてVdF−HFPの
共重合体粉末を22.2重量部と、DBP44.5重量
部をアセトン中で混合し、ペースト状にした。得られた
ペーストをPETフィルム上に塗布し、シート化し、ゲ
ル状電解質層用素材を作製した。
<Preparation of Material for Electrolyte Layer> 33.3 parts by weight of silicon oxide powder, 22.2 parts by weight of a VdF-HFP copolymer powder as a binder, and 44.5 parts by weight of DBP were mixed in acetone. And made into a paste. The obtained paste was applied on a PET film and formed into a sheet to prepare a material for a gel electrolyte layer.

【0046】<非水電解液の調製>エチレンカーボネー
ト(EC)とジメチルカーボネート(DMC)が体積比
で2:1の割合で混合された非水溶媒に電解質としての
LiPF6 をその濃度が1mol/lになるように溶解
させて非水電解液を調製した。
<Preparation of Nonaqueous Electrolyte> LiPF 6 as an electrolyte was mixed with a nonaqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 2: 1 at a concentration of 1 mol / mol. 1 to prepare a non-aqueous electrolyte.

【0047】<電池の組立>得られた正極用素材及び負
極用素材の間に前記電解質層用素材を配置した。前記正
極用素材側に径が2cmで、硬度が95゜の第1ロール
を配置し、かつ前記負極用素材側に径が10cmで、硬
度が60゜の第2ロールを配置した。前記第1,2ロー
ルを145℃に加熱し、この第1,2ロールによってこ
れらを熱圧着させることにより、下方(負極用素材側)
に湾曲した形状の積層物を作製した。
<Assembly of Battery> The material for the electrolyte layer was arranged between the obtained material for the positive electrode and the material for the negative electrode. A first roll having a diameter of 2 cm and a hardness of 95 ° was disposed on the positive electrode material side, and a second roll having a diameter of 10 cm and a hardness of 60 ° was disposed on the negative electrode material side. The first and second rolls are heated to 145 ° C., and they are thermocompression-bonded by the first and second rolls, so that the lower side (the negative electrode material side)
A laminate having a curved shape was prepared.

【0048】このような積層物をメタノール中に浸漬
し、マグネチックスターラーで攪拌しながら放置した。
この操作をガスクロマトグラフィーによるDBPの濃度
が20ppm以下になるまで繰り返し行うことにより前
記積層物中の可塑剤を除去した。前記積層物を乾燥させ
た後、前記組成の非水電解液を含浸させることにより、
前述した図1に示すように湾曲した厚さが0.6mmの
発電要素を作製した。前記発電要素を水蒸気に対してバ
リア機能を有する外装フィルムによって密封することに
より、理論容量が110mAhの湾曲したポリマー電解
質二次電池を製造した。
[0048] Such a laminate was immersed in methanol and left with stirring with a magnetic stirrer.
This operation was repeated until the concentration of DBP by gas chromatography became 20 ppm or less, thereby removing the plasticizer in the laminate. After drying the laminate, by impregnating a non-aqueous electrolyte of the composition,
As shown in FIG. 1 described above, a power generating element having a curved thickness of 0.6 mm was manufactured. By sealing the power generation element with an exterior film having a barrier function against water vapor, a curved polymer electrolyte secondary battery having a theoretical capacity of 110 mAh was manufactured.

【0049】(比較例)実施例で説明したのと同様な正
極用素材及び負極用素材の間に実施例で説明したのと同
様な電解質層用素材を配置した。これらを、145℃に
加熱された1対のロール間(各ロールの径は10cm
で、硬度が95゜である)を通過させ、熱圧着させるこ
とにより積層物を作製した。
Comparative Example A material for an electrolyte layer similar to that described in the example was disposed between a material for a positive electrode and a material for a negative electrode as described in the example. These were placed between a pair of rolls heated to 145 ° C. (the diameter of each roll was 10 cm).
, And the hardness is 95 °), followed by thermocompression bonding to produce a laminate.

【0050】このような積層物から前記実施例と同様に
して可塑剤を除去し、乾燥させた後、前記組成の非水電
解液を含浸させることにより前述した図2に示すような
シート形で、厚さが0.6mmの発電要素を作製した。
前記発電要素を水蒸気に対してバリア機能を有する外装
フィルムによって密封することにより、理論容量が11
0mAhのシート形ポリマー電解質二次電池を製造し
た。
After removing the plasticizer from such a laminate and drying it in the same manner as in the above-mentioned embodiment, the laminate was impregnated with a non-aqueous electrolyte having the above-mentioned composition to form a sheet as shown in FIG. A power generating element having a thickness of 0.6 mm was produced.
By sealing the power generating element with an exterior film having a barrier function against water vapor, the theoretical capacity becomes 11
A sheet-shaped polymer electrolyte secondary battery of 0 mAh was manufactured.

【0051】得られた実施例及び比較例の二次電池につ
いて、1C(110mAh)の定電流、かつ4.2Vの
定電圧で充電し、1C(110mAh)の定電流放電を
行う充放電サイクル試験を20℃で行い、20℃におけ
るサイクル寿命を測定し、その結果を下記表1に示す。
なお、サイクル寿命は、初期容量の80%に容量が低下
した際のサイクル数で示す。
The obtained secondary batteries of Examples and Comparative Examples were charged at a constant current of 1 C (110 mAh) and a constant voltage of 4.2 V, and were discharged at a constant current of 1 C (110 mAh). At 20 ° C., the cycle life at 20 ° C. was measured, and the results are shown in Table 1 below.
The cycle life is indicated by the number of cycles when the capacity is reduced to 80% of the initial capacity.

【0052】 表1 1サイクル目の放電容量 サイクル寿命 実施例 111mAh 245サイクル 比較例 109mAh 250サイクル 表1から明らかなように、実施例の二次電池は、比較例
とほぼ同等の高い放電容量及び長いサイクル寿命を維持
できることがわかる。
Table 1 Discharge capacity at the first cycle Cycle life Example 111 mAh 245 cycles Comparative example 109 mAh 250 cycles As is clear from Table 1, the secondary batteries of the examples have high discharge capacities and long lengths almost equivalent to the comparative examples. It can be seen that the cycle life can be maintained.

【0053】[0053]

【発明の効果】以上詳述したように本発明によれば、多
様な電子機器の形状に合わせて湾曲度合いを自在に調節
することができ、かつ優れた性能を有する湾曲した電池
の製造方法を提供することができる。
As described above in detail, according to the present invention, a method of manufacturing a curved battery which can freely adjust the degree of curvature according to the shape of various electronic devices and has excellent performance is provided. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る湾曲した電池の発電要素を示す断
面図。
FIG. 1 is a sectional view showing a power generating element of a curved battery according to the present invention.

【図2】シート形電池の発電要素を示す断面図。FIG. 2 is a cross-sectional view showing a power generation element of the sheet-type battery.

【符号の説明】[Explanation of symbols]

1…正極、 2…負極、 3…電解質層。 1 ... positive electrode, 2 ... negative electrode, 3 ... electrolyte layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可塑剤を含む非水電解液未含浸の正極
と、可塑剤を含む非水電解液未含浸の負極と、前記正極
及び前記負極の間に配置された可塑剤を含む非水電解液
未含浸の電解質層とを互いに径の異なる2つのロールで
熱圧着させる工程を具備することを特徴とする湾曲した
電池の製造方法。
1. A positive electrode not impregnated with a non-aqueous electrolyte containing a plasticizer, a negative electrode not impregnated with a non-aqueous electrolyte containing a plasticizer, and a non-aqueous solution containing a plasticizer disposed between the positive electrode and the negative electrode A method for producing a curved battery, comprising a step of thermocompression bonding an electrolyte layer not impregnated with an electrolyte with two rolls having different diameters.
【請求項2】 小さいロールの径は1cm以上、かつ5
cm未満で、大きいロールの径は5〜20cmであるこ
とを特徴とする請求項1記載の湾曲した電池の製造方
法。
2. The small roll has a diameter of 1 cm or more, and
The method for producing a curved battery according to claim 1, wherein the diameter of the large roll is less than 5 cm and less than 5 cm.
JP10114779A 1998-04-24 1998-04-24 Manufacture of curved battery Pending JPH11307130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114779A JPH11307130A (en) 1998-04-24 1998-04-24 Manufacture of curved battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114779A JPH11307130A (en) 1998-04-24 1998-04-24 Manufacture of curved battery

Publications (1)

Publication Number Publication Date
JPH11307130A true JPH11307130A (en) 1999-11-05

Family

ID=14646481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114779A Pending JPH11307130A (en) 1998-04-24 1998-04-24 Manufacture of curved battery

Country Status (1)

Country Link
JP (1) JPH11307130A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082393A2 (en) * 2000-04-25 2001-11-01 Polystor Corporation Custom geometry battery cells and methods and tools for their manufacture
WO2002043178A1 (en) * 2000-11-21 2002-05-30 Sony Corporation Polymer electrolyte battery and method of producing same
WO2003019698A3 (en) * 2001-08-24 2003-10-16 Koninkl Philips Electronics Nv Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
EP1277494A3 (en) * 2001-07-19 2005-05-04 Wilson Greatbatch Technologies, Inc. Contoured housing for an implantable medical device
US6977124B2 (en) 2001-07-19 2005-12-20 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrochemical cell
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
WO2009113799A2 (en) 2008-03-12 2009-09-17 주식회사 엘지화학 Curved battery cell, and a battery pack comprising the same
CN103441306A (en) * 2013-08-28 2013-12-11 惠州Tcl金能电池有限公司 Manufacturing method of curved battery
CN103579681A (en) * 2013-11-25 2014-02-12 江苏仙达能源科技有限公司 Manufacturing equipment and manufacturing method of lithium ion battery
WO2015016465A1 (en) 2013-07-31 2015-02-05 주식회사 엘지화학 Curved electrode stack and battery pack comprising same
WO2015016463A1 (en) * 2013-07-31 2015-02-05 주식회사 엘지화학 Curved electrode stacked body and battery cell comprising same
JP2016039133A (en) * 2014-08-11 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Curved secondary battery and method of manufacturing the same
WO2016208970A1 (en) * 2015-06-23 2016-12-29 주식회사 엘지화학 Method for manufacturing curved electrode assembly
WO2017014479A1 (en) * 2015-07-20 2017-01-26 주식회사 엘지화학 Method for producing secondary battery
US9912005B2 (en) 2013-10-29 2018-03-06 Samsung Sdi Co., Ltd. Method of manufacturing curved secondary battery

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082393A3 (en) * 2000-04-25 2002-10-03 Polystor Corp Custom geometry battery cells and methods and tools for their manufacture
WO2001082393A2 (en) * 2000-04-25 2001-11-01 Polystor Corporation Custom geometry battery cells and methods and tools for their manufacture
US7163762B2 (en) 2000-11-21 2007-01-16 Sony Corporation Polymer electrolyte battery and method of producing same
WO2002043178A1 (en) * 2000-11-21 2002-05-30 Sony Corporation Polymer electrolyte battery and method of producing same
US7704633B2 (en) 2000-11-21 2010-04-27 Sony Corporation Polymer electrolyte battery
EP1277494A3 (en) * 2001-07-19 2005-05-04 Wilson Greatbatch Technologies, Inc. Contoured housing for an implantable medical device
US6977124B2 (en) 2001-07-19 2005-12-20 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrochemical cell
US7074520B2 (en) 2001-07-19 2006-07-11 Wilson Greatbatch Technologies, Inc. Contoured casing of mating clamshell portions for an electrochemical cell
JP2005501385A (en) * 2001-08-24 2005-01-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lithium battery manufacturing method, lithium battery and electric device
CN1316645C (en) * 2001-08-24 2007-05-16 皇家飞利浦电子股份有限公司 Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
KR100936411B1 (en) * 2001-08-24 2010-01-12 코닌클리케 필립스 일렉트로닉스 엔.브이. Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
WO2003019698A3 (en) * 2001-08-24 2003-10-16 Koninkl Philips Electronics Nv Method of manufacturing a lithium battery, a lithium battery and an electrical appliance
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
WO2009113799A2 (en) 2008-03-12 2009-09-17 주식회사 엘지화학 Curved battery cell, and a battery pack comprising the same
US8802261B2 (en) 2008-03-12 2014-08-12 Lg Chem, Ltd. Battery cell of curved shape and battery pack employed with the same
US9385396B2 (en) 2008-03-12 2016-07-05 Lg Chem, Ltd. Battery cell of curved shape and battery pack employed with the same
WO2015016463A1 (en) * 2013-07-31 2015-02-05 주식회사 엘지화학 Curved electrode stacked body and battery cell comprising same
US9799926B2 (en) 2013-07-31 2017-10-24 Lg Chem, Ltd. Curved electrode stack and battery cell including the same
US9972868B2 (en) 2013-07-31 2018-05-15 Lg Chem, Ltd. Curved electrode stack and battery pack including the same
CN105229838A (en) * 2013-07-31 2016-01-06 株式会社Lg化学 Bending electrode stack and the battery cell comprising this electrode stack
WO2015016465A1 (en) 2013-07-31 2015-02-05 주식회사 엘지화학 Curved electrode stack and battery pack comprising same
JP2016525768A (en) * 2013-07-31 2016-08-25 エルジー・ケム・リミテッド Curved electrode laminate and battery pack including the same
JP2016521905A (en) * 2013-07-31 2016-07-25 エルジー・ケム・リミテッド Curved electrode laminate and battery cell including the same
CN103441306A (en) * 2013-08-28 2013-12-11 惠州Tcl金能电池有限公司 Manufacturing method of curved battery
US9912005B2 (en) 2013-10-29 2018-03-06 Samsung Sdi Co., Ltd. Method of manufacturing curved secondary battery
CN103579681A (en) * 2013-11-25 2014-02-12 江苏仙达能源科技有限公司 Manufacturing equipment and manufacturing method of lithium ion battery
US10446802B2 (en) 2014-08-11 2019-10-15 Samsung Sdi Co., Ltd. Curved secondary battery and method of manufacturing the same
JP2016039133A (en) * 2014-08-11 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Curved secondary battery and method of manufacturing the same
US20180076442A1 (en) * 2015-06-23 2018-03-15 Lg Chem, Ltd. A method for manufacturing a curved electrode assembly
CN107810569A (en) * 2015-06-23 2018-03-16 株式会社Lg化学 A kind of method for manufacturing meander electrode component
JP2018511144A (en) * 2015-06-23 2018-04-19 エルジー・ケム・リミテッド Method for manufacturing curved electrode assembly
KR20170000368A (en) * 2015-06-23 2017-01-02 주식회사 엘지화학 A method for manufacturing a curved electrode assembly
EP3261162A4 (en) * 2015-06-23 2018-11-07 LG Chem, Ltd. Method for manufacturing curved electrode assembly
TWI641176B (en) * 2015-06-23 2018-11-11 南韓商Lg化學股份有限公司 A method for manufacturing a curved electrode assembly
WO2016208970A1 (en) * 2015-06-23 2016-12-29 주식회사 엘지화학 Method for manufacturing curved electrode assembly
US10566604B2 (en) 2015-06-23 2020-02-18 Lg Chem, Ltd. Method for manufacturing a curved electrode assembly
CN107810569B (en) * 2015-06-23 2020-02-21 株式会社Lg化学 Method for manufacturing bent electrode assembly
WO2017014479A1 (en) * 2015-07-20 2017-01-26 주식회사 엘지화학 Method for producing secondary battery

Similar Documents

Publication Publication Date Title
JPH11307130A (en) Manufacture of curved battery
JP2001202931A (en) Thin battery
JP2000243383A (en) Manufacture of lithium secondary battery
JP2001084987A (en) Electrochemical device
JP3583589B2 (en) Sheet type battery
JPH10214639A (en) Manufacture of battery
JP2000133274A (en) Polymer lithium secondary battery
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JP2001023643A (en) Polymer lithium secondary battery
JPH11317221A (en) Manufacture of curved battery
JP2000294283A (en) Polymer lithium secondary battery
JP2002134173A (en) Method for manufacturing nonaqueous secondary battery
JPH1131496A (en) Battery
JP2001345093A (en) Positive electrode for nonaqueous secondary cell, negative electrode for nonaqueous secondary cell and nonaqueous secondary cell
JPH10208773A (en) Manufacture of polymer electrolyte secondary battery
JP2000058070A (en) Polymer lithium secondary battery
JP2000058127A (en) Polymer lithium secondary battery
JPH11144738A (en) Polymer electrolyte secondary battery
JP2000251881A (en) Manufacture of positive electrode material for polymer lithium secondary battery
JP2001085061A (en) Electrochemical device
JP2001076723A (en) Polymer lithium secondary battery
JP2001052750A (en) Polymer lithium secondary battery
JPH10208752A (en) Polymer electrolyte secondary battery
JP2000164253A (en) Manufacture of polymer electrolyte secondary battery
JP2000251878A (en) Manufacture of polymer lithium secondary battery