JPH11306857A - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JPH11306857A
JPH11306857A JP10106017A JP10601798A JPH11306857A JP H11306857 A JPH11306857 A JP H11306857A JP 10106017 A JP10106017 A JP 10106017A JP 10601798 A JP10601798 A JP 10601798A JP H11306857 A JPH11306857 A JP H11306857A
Authority
JP
Japan
Prior art keywords
formula
structural unit
ion
copolymer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10106017A
Other languages
Japanese (ja)
Inventor
Kenji Okada
賢治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP10106017A priority Critical patent/JPH11306857A/en
Publication of JPH11306857A publication Critical patent/JPH11306857A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous solid electrolyte with high ion conductivity and small temperature dependence that is suitable for a battery by blending, to a polysiloxane-polyether random copolymer, an electrolytic salt compound soluble. SOLUTION: This polymer solid electrolyte is formed of a polysiloxane- polyether copolymer, which is a solid random copolymer having a main chain structure consisting of a structural unit of formula I and a structural unit of formula II, wherein X<1> and X<2> in the formula I represent a substituent containing a cyclic ether, and an electrolytic salt compound soluble to this copolymer. This solid electrolyte is used for a battery for electronic equipment. The polysiloxane-polyether copolymer is suitably formed of 5-40 mol.% of the structural unit of the formula I and 95-60 mol.% of the structural unit of the formula II, and preferably 10-30 mol.% of the structural unit of formula I and 90-70 mol.% of the structural unit of the formula II. This solid electrolyte has high ion conductivity even at low temperatures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質に
関するものであり、イオン伝導度が高く、その温度依存
性が小さいことを特徴とする電池などに使用できる高分
子固体電解質を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte, and more particularly, to a solid polymer electrolyte which has high ionic conductivity and low temperature dependency and can be used for batteries and the like. is there.

【0002】[0002]

【従来の技術】高分子固体電解質をリチウムイオン電池
や電気化学的デバイスに使用していくためには、低温か
ら高温の広い温度範囲で高いイオン伝導度を有し、結晶
性を示さないことなどが必要不可欠である。しかしなが
ら、このような必要性能を総合的に満足するような高分
子固体電解質はこれまで開発されていない。例えば、従
来はプロピレンカーボネート、エチルメチルカーボネー
トなどの有機溶剤が幅広く使用されているが、これらは
沸点と蒸気圧の関係で一般に70〜90℃が高温域での
使用限界となっている。最近はこのような有機溶媒の安
全性を改良する方法として、ポリエチレンオキシド(以
下、PEOと記載する)を中心とした高分子固体電解質
の研究が行われている。PEOは周期表1族または2族
に属する金属塩、例えばLiCF3SO2、LiCl
4、NaCF3SO2、LiIなどと錯体を形成し、室
温以上の温度領域では比較的良好なイオン伝導性を示
し、さらに保存安定性も良好である。しかしながら、P
EOのイオン伝導性は温度依存性が大きく、60℃以上
では良好なイオン伝導度を示すものの20℃以下の温度
ではイオン伝導度が著しく低下する。従って低温で使用
するような汎用性のある商品に組み込むことは困難であ
った。低分子量PEOを用いてイオン伝導度を向上させ
る方法としてビニル系ポリマーの側鎖に低分子量PEO
を導入する方法が、D.J.Banistarらによっ
て、Polymer,25,1600(1984)に報
告されている。しかしながら、この高分子材料はLi塩
と錯体を形成するものの、低温でのイオン伝導度が不十
分であった。さらにポリシロキサンの側鎖に低分子量P
EOを導入した材料が、Journal of Pow
er Sourse,20,327(1987)や特開
昭63−136409号、特開平2−265927に記
載されているが、低温でのイオン伝導度が不十分あるい
は非晶質でない、合成処方が容易ではないなどの理由で
実用化はされていない。
2. Description of the Related Art In order to use a polymer solid electrolyte in a lithium ion battery or an electrochemical device, it must have high ionic conductivity in a wide temperature range from low to high and exhibit no crystallinity. Is essential. However, a solid polymer electrolyte that satisfies such required performance comprehensively has not been developed so far. For example, conventionally, organic solvents such as propylene carbonate and ethyl methyl carbonate have been widely used, but generally 70 to 90 ° C. is a limit of use in a high temperature range due to a relationship between a boiling point and a vapor pressure. Recently, as a method for improving the safety of such an organic solvent, research on a polymer solid electrolyte centered on polyethylene oxide (hereinafter referred to as PEO) has been conducted. PEO is a metal salt belonging to Group 1 or 2 of the periodic table, for example, LiCF 3 SO 2 , LiCl
It forms a complex with O 4 , NaCF 3 SO 2 , LiI, etc., exhibits relatively good ionic conductivity in a temperature range of room temperature or higher, and has good storage stability. However, P
The ionic conductivity of EO has a large temperature dependence, and shows good ionic conductivity at 60 ° C or higher, but significantly lowers at a temperature of 20 ° C or lower. Therefore, it has been difficult to incorporate it into general-purpose products used at low temperatures. As a method for improving ionic conductivity by using low molecular weight PEO, low molecular weight PEO is added to the side chain of a vinyl polymer.
Is introduced by D. J. Banistar et al., Polymer, 25 , 1600 (1984). However, although this polymer material forms a complex with the Li salt, the ionic conductivity at a low temperature is insufficient. Furthermore, low molecular weight P is added to the side chain of polysiloxane.
EO introduced material is Journal of Pow
er Source, 20 , 327 (1987), JP-A-63-136409, and JP-A-2-265927, but the ionic conductivity at low temperatures is insufficient or not amorphous. It has not been put to practical use because it is not available.

【0003】[0003]

【発明が解決しようとする課題】本発明は、低温でも高
いイオン伝導度を示す非晶質性高分子固体電解質を提供
するものである。
SUMMARY OF THE INVENTION The present invention provides an amorphous solid polymer electrolyte having high ionic conductivity even at a low temperature.

【0004】[0004]

【課題を解決するための手段】本発明者らは、各けい素
上に環状エーテルを含有する置換基を2つ有するシロキ
サン構造単位とエチレンオキシドを共重合成分とした、
ポリシロキサン−ポリエーテルランダム共重合体に、可
溶性の電解質塩化合物を配合することによって、著しく
イオン伝導性の増大した高分子固体電解質が得られるこ
とをみいだしたものである。すなわち本発明は、主鎖構
造が下記(1)式の構造単位と(2)式の構造単位から
なる固体状のランダム共重合体であって、(1)式のX
1、X2は環状エーテルを含有する置換基であるポリシロ
キサンとポリエーテルの共重合体および該共重合体に可
溶性の電解質塩化合物からなることを特徴とする高分子
固体電解質およびこれを用いた電池である。本発明で用
いられるポリシロキサン−ポリエーテル共重合体は、
(1)式の構造単位5〜40%と(2)式の構造単位9
5〜60%のものが適するが、好ましくは(1)式の構
造単位10〜30%と(2)式の構造単位90〜70%
のもの、さらに好ましくは(1)式の構造単位15〜3
0%と(2)式の構造単位85〜70%のものが用いら
れる。(2)式のモル比が95モル%を超えるとガラス
転移点の上昇と結晶化が見られ高分子固体電解質のイオ
ン伝導度を著しく低下させてしまう。一方、(2)式の
モル比が70モル%より少ないと共重合体の軟化温度が
低下して室温で固体状の電解質を得ることが困難とな
る。ただし(1)式中のX1、X2は環状エーテルを含有
する置換基である本発明において、(1)式で表わされ
るシロキサン構造単位は、好ましくは一般式
Means for Solving the Problems The present inventors have made a copolymer component a siloxane structural unit having two substituents containing a cyclic ether on each silicon and ethylene oxide,
It has been found that by blending a soluble electrolyte salt compound with a polysiloxane-polyether random copolymer, it is possible to obtain a solid polymer electrolyte having significantly increased ionic conductivity. That is, the present invention provides a solid random copolymer having a main chain structure comprising a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2):
1 , X 2 is a polymer solid electrolyte comprising a copolymer of polysiloxane and polyether, which are substituents containing a cyclic ether, and an electrolyte salt compound soluble in the copolymer. Battery. Polysiloxane-polyether copolymer used in the present invention,
5 to 40% of the structural unit of the formula (1) and the structural unit 9 of the formula (2)
Suitable are those having 5 to 60%, preferably 10 to 30% of the structural unit of the formula (1) and 90 to 70% of the structural unit of the formula (2).
And more preferably the structural units 15 to 3 of the formula (1)
Those having 0% and a structural unit of 85 to 70% of the formula (2) are used. If the molar ratio of the formula (2) exceeds 95 mol%, an increase in the glass transition point and crystallization are observed, and the ionic conductivity of the solid polymer electrolyte is significantly reduced. On the other hand, if the molar ratio of the formula (2) is less than 70 mol%, the softening temperature of the copolymer decreases, and it becomes difficult to obtain a solid electrolyte at room temperature. However, in the present invention, X 1 and X 2 in the formula (1) are substituents containing a cyclic ether. In the present invention, the siloxane structural unit represented by the formula (1) is preferably a compound represented by the general formula:

【0005】[0005]

【化5】 Embedded image

【0006】または[0006] or

【0007】[0007]

【化6】 Embedded image

【0008】で表わされるシロキサン構造単位である。
ただし、式中A1、A2、A3、A4は、置換または非置換
のアルキル基、アリール基、またはオキシアルキレン基
を、nは1以上の整数を表す。以下に本発明におけるシ
ロキサン構造単位の化合物例を示すが、本発明はこの例
に限定されるものではない。なお化合物1〜6におい
て、nは1以上の整数を表す。 (化合物例1)
Is a siloxane structural unit represented by
In the formula, A 1 , A 2 , A 3 , and A 4 each represent a substituted or unsubstituted alkyl group, aryl group, or oxyalkylene group, and n represents an integer of 1 or more. Examples of the compound of the siloxane structural unit in the present invention are shown below, but the present invention is not limited to these examples. In the compounds 1 to 6, n represents an integer of 1 or more. (Compound Example 1)

【0009】[0009]

【化7】 Embedded image

【0010】(化合物例2)(Compound Example 2)

【0011】[0011]

【化8】 Embedded image

【0012】(化合物例3)(Compound Example 3)

【0013】[0013]

【化9】 Embedded image

【0014】(化合物例4)(Compound Example 4)

【0015】[0015]

【化10】 Embedded image

【0016】(化合物例5)(Compound Example 5)

【0017】[0017]

【化11】 Embedded image

【0018】(化合物例6)(Compound Example 6)

【0019】[0019]

【化12】 Embedded image

【0020】本発明において用いられる電解質塩化合物
としては、本発明のポリシロキサン−ポリエーテル共重
合体に可溶のものならば特に限定はされないが、本発明
においては以下に挙げるものが好ましく用いられる。即
ち、金属陽イオン、アンモニウムイオン、アミジニウム
イオン、およびグアニジウムイオンから選ばれた陽イオ
ンと、塩素イオン、臭素イオン、要素イオン、過塩素酸
イオン、チオシアン酸イオン、テチラフルオロホウ素酸
イオン、硝酸イオン、AsF6 -、PF6―、ステアリル
スルホン酸イオン、オクチルスルホン酸イオン、ドデシ
ルベンゼンスルホン酸イオン、ナフタレンスルホン酸イ
オン、ドデシルナフタレンスルホン酸イオン、R1SO3
-、(R1SO2)(R2SO2)N-、および(R1SO2
(R2SO2)(R3SO2)C-、から選ばれた陰イオン
とからなる化合物が挙げられる。ただしR1,R2、R3
は電子吸引性基である。好ましくはR1、R2、R3は各
々独立して炭素数が1から6までのパーフルオロアルキ
ル基またはパーフルオロアリール基である。R1、R2
およびR3は各々同一であっても、異なっていても良
い。金属陽イオンとしては遷移金属の陽イオンを用いる
ことができる。好ましくは周期表1族または2族に属す
る金属の陽イオンが用いられる。またMn、Fe、C
o、Ni、Cu、ZnおよびAg金属から選ばれた金属
の陽イオンを用いることも好ましい。電解質塩化合物と
して上記化合物を1種または2種以上の混合物として使
用することができる。本発明において、上記可溶性電解
質塩化合物の使用量はポリシロキサンおよびポリエーテ
ル共重合体の配合割合が、電解質塩化合物のモル数/共
重合体中に含まれる酸素原子の総モル数の値で0.00
01〜3、好ましくは0.0005〜0.3の範囲であ
る。
The electrolyte salt compound used in the present invention is not particularly limited as long as it is soluble in the polysiloxane-polyether copolymer of the present invention, but the following compounds are preferably used in the present invention. . That is, metal cations, ammonium ions, amidinium ions, and cations selected from guanidinium ions, chloride ions, bromide ions, element ions, perchlorate ions, thiocyanate ions, tetirafluoroboronate ions, nitrate ion, AsF 6 -, PF 6 - , stearyl sulfonate ion, octylsulfonate ion, dodecylbenzenesulfonate ion, naphthalenesulfonate ion, dodecyl naphthalenesulfonate ion, R 1 SO 3
-, (R 1 SO 2) (R 2 SO 2) N -, and (R 1 SO 2)
And an anion selected from (R 2 SO 2 ) (R 3 SO 2 ) C . Where R 1 , R 2 , R 3
Is an electron-withdrawing group. Preferably, R 1 , R 2 and R 3 are each independently a perfluoroalkyl group or a perfluoroaryl group having 1 to 6 carbon atoms. R 1 , R 2 ,
And R 3 may be the same or different. A transition metal cation can be used as the metal cation. Preferably, a cation of a metal belonging to Group 1 or 2 of the periodic table is used. Mn, Fe, C
It is also preferable to use a cation of a metal selected from o, Ni, Cu, Zn and Ag metals. One of the above compounds can be used as an electrolyte salt compound or a mixture of two or more thereof. In the present invention, the amount of the soluble electrolyte salt compound used is such that the mixing ratio of the polysiloxane and the polyether copolymer is 0 in the value of the number of moles of the electrolyte salt compound / the total number of oxygen atoms contained in the copolymer. .00
01 to 3, preferably 0.0005 to 0.3.

【0021】[0021]

【発明の実施の形態】本発明の高分子固体電解質の製造
方法は特に制約はないが、通常各々の成分を機械的に混
合するか、あるいは溶剤に溶解させて混合した後、溶剤
を除去するなどの方法によって製造される。本発明にお
いては反応容器の種類は重要でない。しかしながら副反
応を防ぐため、非反応性材料で形成された反応容器中で
おこなうのが好ましい。本発明方法は、バッチ法、セミ
バッチ法または連続式で実施しうる。この反応容器は、
例えば連続的攪拌タンク反応容器でありうる。この方法
はバッチ式あるいは連続式でおこなうのが好ましい。本
発明の高分子化合物は、例えば以下に示すように合成さ
れるが、この方法に限定されるものではない。本発明の
主鎖構造が前述(1)式の構造単位と(2)式の構造単
位からなる固体状のランダム共重合体は、アルキレング
リコールとアミン化合物を溶媒に溶解させたものに対し
て、不活性ガス雰囲気下で室温にて一般式
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a solid polymer electrolyte according to the present invention is not particularly limited, but usually, the respective components are mixed mechanically or dissolved in a solvent and mixed, and then the solvent is removed. It is manufactured by such a method. In the present invention, the type of the reaction vessel is not important. However, in order to prevent side reactions, the reaction is preferably performed in a reaction vessel formed of a non-reactive material. The method of the present invention can be carried out in a batch, semi-batch or continuous mode. This reaction vessel
For example, it may be a continuous stirred tank reaction vessel. This method is preferably performed in a batch system or a continuous system. The polymer compound of the present invention is synthesized, for example, as described below, but is not limited to this method. The solid random copolymer in which the main chain structure of the present invention comprises the structural unit represented by the above formula (1) and the structural unit represented by the formula (2) is obtained by dissolving an alkylene glycol and an amine compound in a solvent. General formula at room temperature under inert gas atmosphere

【0022】[0022]

【化13】 Embedded image

【0023】(式中、X1、X2は環状エーテル基を含有
する置換基で、それぞれ同一でも異なっていても良い)
で示されるジクロロシラン誘導体を溶媒で希釈したもの
を滴下することにより得られる。ここで使用するアミン
化合物は特に限定されるものではないが、例えばピリジ
ンなどが挙げられる。また溶媒は特に限定されるもので
はないが、例えばトルエンなどが挙げられる。一般式
(Wherein X 1 and X 2 are substituents containing a cyclic ether group and may be the same or different)
Obtained by diluting a dichlorosilane derivative represented by the following formula with a solvent. The amine compound used here is not particularly limited, and examples thereof include pyridine. The solvent is not particularly limited, and examples thereof include toluene. General formula

【0024】[0024]

【化14】 Embedded image

【0025】(式中X1、X2は環状のエーテルを有する
置換基であり、それぞれ同種または異種であってもよ
い)で示されるジクロロシランは例えば次のような方法
で製造される。ジクロロシラン(H2SiCl2)および
環状エーテル基を含有し末端に二重結合を有する化合物
を、ヒドロシリル化反応用触媒である白金化合物触媒あ
るいはロジウム化合物触媒と接触させ付加反応をするこ
とにより得られる。この種のジクロロシランを合成する
別の方法としては、例えば、テトラクロロシラン(Si
Cl4)に対して相当するグルニヤール反応剤を反応さ
せて得る方法がある。前記して得られたジクロロシラン
化合物を溶媒に溶解させたものを、アルキレングリコー
ルとアミン化合物を溶媒に溶解させたものに対して滴下
させて反応をおこなうが、その際の反応温度は特に限定
されるものではないが、好ましくは0℃〜200℃の範
囲で、さらに好ましくは10℃〜150℃の範囲で、特
に好ましくは50℃〜70℃の範囲で行われる。
(Wherein X 1 and X 2 are substituents having a cyclic ether and may be the same or different), for example, is produced by the following method. It is obtained by contacting a compound containing dichlorosilane (H 2 SiCl 2 ) and a cyclic ether group and having a double bond at a terminal with a platinum compound catalyst or a rhodium compound catalyst, which is a hydrosilylation reaction catalyst, to perform an addition reaction. . As another method for synthesizing this kind of dichlorosilane, for example, tetrachlorosilane (Si
There is a method obtained by reacting a corresponding Grignard reactant with Cl 4 ). A solution obtained by dissolving the dichlorosilane compound obtained above in a solvent is reacted dropwise with a solution obtained by dissolving an alkylene glycol and an amine compound in a solvent.The reaction temperature at that time is particularly limited. Although not limited, the reaction is preferably performed in the range of 0 ° C to 200 ° C, more preferably in the range of 10 ° C to 150 ° C, and particularly preferably in the range of 50 ° C to 70 ° C.

【0026】[0026]

【実施例】次に本発明の実施例について具体的に説明す
るが、本発明は以下の実施例に限定されるものではな
い。 (実施例1)ガラス内筒を備えたステンレス製オートク
レーブに、(化合物7)
EXAMPLES Next, examples of the present invention will be described specifically, but the present invention is not limited to the following examples. (Example 1) In a stainless steel autoclave equipped with a glass inner cylinder, (Compound 7)

【0027】[0027]

【化15】 Embedded image

【0028】9.5g(60mmol)および白金ビニ
ルシロキサンキシレン溶液1.0mg(1.0×10-4
mmol)を秤取し、空気中でそのオートクレーブに、
ジクロロシラン2.0g(20mmol)を加え、60
℃に加熱して攪拌した。6時間後反応を終了し反応混合
物をクーゲルロールを使用して蒸留した。その結果ケイ
素上に環状エーテルを含有する置換基を2つ有するジク
ロロシラン誘導体が、7.5g(18mmol、収率9
0%)得られた。またこの物質のGC−MSによる分子
量測定では親ピークが417に現れた。次に得られたジ
クロロシラン誘導体4.2g(10mmol)をトルエ
ン20mlに溶解させたものを、テトラエチレングリコ
ール2.0g(10mmol)とピリジン1.7g(2
1mmol)をトルエン15mlに溶解したものに、窒
素ガス雰囲気下で、20分かけて滴下した。その後50
〜60℃で5時間反応した。反応後析出したピリジンの
塩酸塩を取り除き、溶媒を減圧留去して目的物5.1g
(9.6mmol、収率96%)を得た。こうして得ら
れたポリマー0.8gと過塩素酸リチウム0.2gとを
アセトンに溶解させ均一溶液とし、それを基板上に流延
した後、アルゴンガス雰囲気下で加熱して溶媒を除去し
薄膜を得た。この薄膜のイオン伝導度は極めて高い値を
示した。
9.5 g (60 mmol) and 1.0 mg of platinum vinylsiloxane xylene solution (1.0 × 10 −4)
mmol) in an autoclave in air,
2.0 g (20 mmol) of dichlorosilane was added, and 60
C. and stirred. After 6 hours, the reaction was terminated and the reaction mixture was distilled using Kugelrohr. As a result, 7.5 g (18 mmol, yield 9) of a dichlorosilane derivative having two substituents containing a cyclic ether on silicon was obtained.
0%). The parent peak appeared at 417 in the molecular weight measurement of this substance by GC-MS. Next, a solution obtained by dissolving 4.2 g (10 mmol) of the obtained dichlorosilane derivative in 20 ml of toluene was added to 2.0 g (10 mmol) of tetraethylene glycol and 1.7 g of pyridine (2 g).
(1 mmol) dissolved in 15 ml of toluene was added dropwise over 20 minutes under a nitrogen gas atmosphere. Then 50
Reaction was performed at 6060 ° C. for 5 hours. The pyridine hydrochloride precipitated after the reaction was removed, and the solvent was distilled off under reduced pressure to obtain 5.1 g of the desired product.
(9.6 mmol, 96% yield). 0.8 g of the polymer thus obtained and 0.2 g of lithium perchlorate are dissolved in acetone to form a uniform solution, which is cast on a substrate, and then heated under an argon gas atmosphere to remove the solvent and form a thin film. Obtained. The ionic conductivity of this thin film showed an extremely high value.

【0029】[0029]

【発明の効果】本発明の各ケイ素上に環状エーテル構造
を含有する置換基を2つ有するポリシロキサンとポリエ
ーテルとの共重合体および該共重合体に可溶性の電解質
塩化合物からなる高分子固体電解質は、加工性、成形
性、機械的強度、柔軟性などに優れており、また低温で
も高いイオン伝導度を有することから電池などの電子機
器への応用が期待できる。
According to the present invention, a polymer solid comprising a copolymer of a polysiloxane having two substituents having a cyclic ether structure on each silicon and a polyether and an electrolyte salt compound soluble in the copolymer according to the present invention. The electrolyte is excellent in processability, moldability, mechanical strength, flexibility, and the like, and has high ionic conductivity even at a low temperature, so that it can be expected to be applied to electronic devices such as batteries.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】主鎖構造が下記(1)式の構造単位と
(2)式の構造単位からなる固体状のランダム共重合体
であって、(1)式のX1、X2は環状エーテルを含有す
る置換基であるポリシロキサンとポリエーテルの共重合
体および該共重合体に可溶性の電解質塩化合物からなる
ことを特徴とする高分子固体電解質。 【化1】 【化2】
1. A solid random copolymer having a main chain structure comprising a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2), wherein X 1 and X 2 in the formula (1) are cyclic. A polymer solid electrolyte comprising a copolymer of polysiloxane and a polyether, which is a substituent containing ether, and an electrolyte salt compound soluble in the copolymer. Embedded image Embedded image
【請求項2】(1)式の構造単位5〜40モル%と
(2)式の構造単位95〜60モル%のポリエーテル共
重合体を用いる請求項1記載の高分子固体電解質。
2. The polymer solid electrolyte according to claim 1, wherein a polyether copolymer comprising 5 to 40 mol% of the structural unit of the formula (1) and 95 to 60 mol% of the structural unit of the formula (2) is used.
【請求項3】主鎖が一般式 【化3】 で示される、各ケイ素上に環状エーテルを含有する置換
基を2つ有するシロキサン構造単位と(2)式の構造単
位からなる固体状のポリシロキサン−ポリエーテルのラ
ンダム共重合体および該共重合体に可溶性の電解質塩化
合物からなることを特徴とする請求項1に記載の高分子
固体電解質。ただし、式中A1、A2は、置換または非置
換のアルキル基、アリール基、またはオキシアルキレン
基を、nは1以上の整数を表す。
(3) a main chain represented by the general formula: And a solid polysiloxane-polyether random copolymer comprising a siloxane structural unit having two substituents each containing a cyclic ether on each silicon and a structural unit of the formula (2), and the copolymer The solid polymer electrolyte according to claim 1, comprising an electrolyte salt compound soluble in water. However, in the formula, A 1 and A 2 represent a substituted or unsubstituted alkyl group, aryl group, or oxyalkylene group, and n represents an integer of 1 or more.
【請求項4】主鎖が一般式 【化4】 で示される、各ケイ素上に環状エーテルを含有する置換
基を2つ有するシロキサン構造単位と(2)式の構造単
位からなる固体状のポリシロキサン−ポリエーテルのラ
ンダム共重合体および該共重合体に可溶性の電解質塩化
合物からなることを特徴とする請求項1に記載の高分子
固体電解質。ただし、式中A3、A4は、置換または非置
換のアルキル基、アリール基、またはオキシアルキレン
基を、nは1以上の整数を表す。
(4) a main chain represented by the general formula: And a solid polysiloxane-polyether random copolymer comprising a siloxane structural unit having two substituents each containing a cyclic ether on each silicon and a structural unit of the formula (2), and the copolymer The solid polymer electrolyte according to claim 1, comprising an electrolyte salt compound soluble in water. However, in the formula, A 3 and A 4 represent a substituted or unsubstituted alkyl group, aryl group, or oxyalkylene group, and n represents an integer of 1 or more.
【請求項5】電解質塩化合物が金属陽イオン、アンモニ
ウムイオン、アミジニウムイオン、およびグアニジウム
イオンから選ばれた陽イオンと、塩素イオン、臭素イオ
ン、要素イオン、過塩素酸イオン、チオシアン酸イオ
ン、テチラフルオロホウ素酸イオン、硝酸イオン、As
6 -、PF6―、ステアリルスルホン酸イオン、オクチ
ルスルホン酸イオン、ドデシルベンゼンスルホン酸イオ
ン、ナフタレンスルホン酸イオン、ドデシルナフタレン
スルホン酸イオン、R1SO3 -、(R1SO2)(R2SO
2)N-、および(R1SO2)(R2SO2)(R3SO2
-、から選ばれた陰イオンとからなる化合物である請
求項1〜4に記載の高分子固体電解質。ただし、R1
2、R3は電子吸引性基である。
5. An electrolyte salt compound comprising a cation selected from a metal cation, an ammonium ion, an amidinium ion, and a guanidinium ion, a chloride ion, a bromine ion, an element ion, a perchlorate ion, and a thiocyanate ion. , Tetirafluoroboronate ion, nitrate ion, As
F 6 , PF 6 —, stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, R 1 SO 3 , (R 1 SO 2 ) (R 2 SO
2) N -, and (R 1 SO 2) (R 2 SO 2) (R 3 SO 2)
C -, polymer solid electrolyte according to claim 1 which is a compound consisting of selected anions from. Where R 1 ,
R 2 and R 3 are electron-withdrawing groups.
【請求項6】R1、R2、R3は各々独立して炭素数が1
から6までのパーフルオロアルキル基またはパーフルオ
ロアリール基である請求項5記載の高分子固体電解質。
6. R 1 , R 2 and R 3 each independently have 1 carbon atom.
The polymer solid electrolyte according to claim 5, which is a perfluoroalkyl group or a perfluoroaryl group from 1 to 6.
【請求項7】金属陽イオンが周期表1族または2族に属
する金属から選ばれた金属の陽イオンである請求項5ま
たは6に記載の高分子固体電解質。
7. The polymer solid electrolyte according to claim 5, wherein the metal cation is a cation of a metal selected from metals belonging to Group 1 or 2 of the periodic table.
【請求項8】金属陽イオンが遷移金属の陽イオンである
請求項5または6に記載の高分子固体電解質。
8. The solid polymer electrolyte according to claim 5, wherein the metal cation is a cation of a transition metal.
【請求項9】金属陽イオンがMn、Fe、Co、Ni、
Cu、ZnおよびAg金属から選ばれた金属の陽イオン
である請求項5または6に記載の高分子固体電解質。
9. The method according to claim 8, wherein the metal cation is Mn, Fe, Co, Ni,
7. The polymer solid electrolyte according to claim 5, which is a cation of a metal selected from Cu, Zn and Ag metals.
【請求項10】電解質塩化合物と、ポリシロキサンおよ
びポリエーテル共重合体の配合割合が、電解質塩化合物
のモル数/共重合体中に含まれる酸素原子の総モル数の
値で0.0001〜3である請求項1〜9のいずれかに
記載の高分子固体電解質。
10. The compounding ratio of the electrolyte salt compound to the polysiloxane and the polyether copolymer is 0.0001 to 0.0001 mol / mol of the electrolyte salt compound / total mol number of oxygen atoms contained in the copolymer. The solid polymer electrolyte according to any one of claims 1 to 9, which is 3.
【請求項11】請求項1〜10のいずれかに記載の高分
子固体電解質を用いた電池。
11. A battery using the solid polymer electrolyte according to claim 1.
JP10106017A 1998-04-16 1998-04-16 Polymer solid electrolyte Pending JPH11306857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10106017A JPH11306857A (en) 1998-04-16 1998-04-16 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10106017A JPH11306857A (en) 1998-04-16 1998-04-16 Polymer solid electrolyte

Publications (1)

Publication Number Publication Date
JPH11306857A true JPH11306857A (en) 1999-11-05

Family

ID=14422898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10106017A Pending JPH11306857A (en) 1998-04-16 1998-04-16 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH11306857A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
JP2012014892A (en) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
JP2012014892A (en) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
JPH11306856A (en) Polymer solid electrolyte
JP3215440B2 (en) Polymer solid electrolyte
US6172152B1 (en) Sol-gel compositions and polymeric ion conductive film prepared therefrom
TW510062B (en) Silane compounds as additives in electrolytes for electrochemical cells
JP3491539B2 (en) Polymer solid electrolyte and its use
US8809483B1 (en) Functionalization of poly(phenylene) by the attachment of sidechains
JP2004511879A (en) Conductive polymer composition for lithium battery
WO2000025323A1 (en) Curable composition for solid polymer electrolyte
JPH11306857A (en) Polymer solid electrolyte
WO1998025990A1 (en) Copolyether and solid polymer electrolyte
EP0460876B1 (en) Ion-conductive polymer electrolyte
WO2016027902A1 (en) Anion exchange resin, electrolyte membrane for fuel cell, binder for forming electrode catalyst layer, cell electrode catalyst layer, and fuel cell
KR100726888B1 (en) Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery
WO1998058983A1 (en) Polyether copolymer, solid polymer electrolyte, and battery
JP3282565B2 (en) Crosslinked polymer solid electrolyte and its use
US11031624B2 (en) Polysilsesquioxane polyalkylene glycol polymer having urethane bonds, solid polymer electrolyte composition comprising the same and method of preparing the same
JPH11302383A (en) Polysiloxane having cyclic carbonate group on side chain and its production
JPH04270762A (en) Non-liquid conductive polymer composition
US20120164558A1 (en) Biphenyltetrasulfonic acid compound, method for producing same, polymer and polymer electrolyte
US20090035655A1 (en) Crosslinkable composition for a battery electrolyte
JPH11302384A (en) Polysiloxane having cyclic ether group on side chain and its production
WO2012133769A1 (en) Polyether compound and electrolyte composition
JP6051757B2 (en) Ionic liquid
KR100344910B1 (en) Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same