JPH1130544A - Capacitance-type liquid level measuring apparatus - Google Patents

Capacitance-type liquid level measuring apparatus

Info

Publication number
JPH1130544A
JPH1130544A JP9187891A JP18789197A JPH1130544A JP H1130544 A JPH1130544 A JP H1130544A JP 9187891 A JP9187891 A JP 9187891A JP 18789197 A JP18789197 A JP 18789197A JP H1130544 A JPH1130544 A JP H1130544A
Authority
JP
Japan
Prior art keywords
liquid level
voltage
level sensor
capacitance
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9187891A
Other languages
Japanese (ja)
Other versions
JP3841239B2 (en
Inventor
Naoaki Kitagawa
直明 北川
Yosoji Tanji
與宗治 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18789197A priority Critical patent/JP3841239B2/en
Publication of JPH1130544A publication Critical patent/JPH1130544A/en
Application granted granted Critical
Publication of JP3841239B2 publication Critical patent/JP3841239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a capacitance-type liquid level measuring apparatus by which the level of a liquid inside a tank can be measured in real time and continuously, by applying a high frequency across both electrodes of a level sensor, which is composed of a detecting electrode and a shielding electrode, and measuring the interelectrode voltage. SOLUTION: A level sensor 20 is composed of a rod-shaped detecting electrode 22 and of a cylindrical shielding electrode 24 which is arranged coaxially. When the level sensor 20 is inserted into a liquid inside a tank, the liquid flows into the level sensor 20, and both levels become equal. Then, when a high frequency is applied across both electrodes by an oscillator 12, the capacitance of the level sensor 20 is changed due to a change in the levels. An interelectrode voltage which is changed due to the change is measured by a voltage measuring device 14. Thereby, the change in the levels of the liquid inside the tank can be detected continuously. At this time, by using a linearity correction resistance 16 which is corrected to an optimum value by a correction resistance setter 30, the nonlinearity of an interelectrode voltage-capacitance characteristic can be corrected to be linear.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンク内の液体量
を検出する測定装置に関し、より詳しくは、タンク内の
液体の液面レベル(液面高さ)をリアルタイム且つ連続
的に測定することのできる液面レベル測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for detecting the amount of liquid in a tank, and more particularly, to measuring the liquid level (liquid level) of the liquid in a tank in real time and continuously. The present invention relates to a liquid level measuring device that can perform the measurement.

【0002】[0002]

【従来の技術】液面レベル(液面高さ)を電気的に検出
する測定装置としては、電極式レベルセンサや静電容量
式レベルセンサ等がよく知られている。電極式レベルセ
ンサは、液中に電極を差し込んで、液中を流れる電流値
により液面レベルの測定を行うものである。また、静電
容量式レベルセンサは、金属性タンク内に1本の電極を
差し込んで、電極とタンク間の静電容量により液面レベ
ルの測定を行うものである。
2. Description of the Related Art As a measuring device for electrically detecting a liquid level (liquid level), an electrode type level sensor and a capacitance type level sensor are well known. The electrode type level sensor measures the liquid level by inserting an electrode into the liquid and measuring the current value flowing through the liquid. In addition, the capacitance type level sensor is a device in which one electrode is inserted into a metal tank and the liquid level is measured by the capacitance between the electrode and the tank.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電極式
レベルセンサは、その原理から導電性の液体にしか使用
することはできず、更には、液体に直接電流を流すため
に、感電等の事故の危険性がある等の問題を抱えてい
る。また、静電容量式レベルセンサは、その原理からタ
ンクは金属製に限られ、更には、タンク自体を電極とし
て用いているために、液体流入用バルブが開いている場
合と閉じている場合とでは静電容量が違ってくる等、タ
ンクの状態によっても静電容量が変化してしまう等の問
題を抱えている。
However, the electrode type level sensor can be used only for a conductive liquid due to its principle. Further, since an electric current is directly applied to the liquid, an accident such as an electric shock may occur. There are problems such as danger. In addition, in the capacitance type level sensor, the tank is limited to metal by its principle, and furthermore, since the tank itself is used as an electrode, there are cases where the liquid inflow valve is open and closed. However, there is a problem that the capacitance varies depending on the state of the tank, for example, the capacitance varies.

【0004】その解決策として、例えば、特開平2−4
9119号公報に開示されているような静電容量式レベ
ルセンサ等がある。この液面レベルセンサは、電極とこ
の電極を同軸状に囲むシールド管とから構成され、電極
とシールド管間の静電容量を測定することにより液面レ
ベルの測定を行うものである。具体的には、電極とシー
ルド管間の電圧を測定することにより静電容量の変化を
検出している。
As a solution, for example, Japanese Patent Laid-Open No. 2-4
There is a capacitance type level sensor and the like as disclosed in JP-A-9119. This liquid level sensor is composed of an electrode and a shield tube surrounding the electrode coaxially, and measures the liquid level by measuring the capacitance between the electrode and the shield tube. Specifically, a change in capacitance is detected by measuring a voltage between the electrode and the shield tube.

【0005】しかしながら、液面レベルと静電容量との
関係は直線となるが、電極間電圧と静電容量との関係は
非直線(曲線)となる。そのため、電極間電圧の変化か
ら静電容量の変化を直接求めることはできず、別途電極
間電圧の変化から静電容量の変化を導き出す変換装置等
が必要になる。
[0005] However, while the relationship between the liquid level and the capacitance is linear, the relationship between the inter-electrode voltage and the capacitance is non-linear (curved). Therefore, a change in capacitance cannot be directly obtained from a change in inter-electrode voltage, and a conversion device or the like that separately derives a change in capacitance from a change in inter-electrode voltage is required.

【0006】そこで、本発明者は、このような課題を解
決するべく、鋭意研究を重ねた結果、本発明に至ったの
である。
The inventor of the present invention has conducted intensive studies to solve such problems, and as a result, has arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】本発明の静電容量式液面
レベル測定装置の要旨とするところは、棒状の検知電極
と該検知電極を中心として同軸状に配置された筒状のシ
ールド電極とからなる液面レベルセンサと、該液面レベ
ルセンサの両電極に接続して高周波を印加する発振器
と、前記液面レベルセンサの電極間電圧の測定を行う電
圧測定器と、該発振器と該液面レベルセンサ間に接続さ
れ、該液面レベルセンサの静電容量変化に対する該電極
間電圧変化の直線補正を行う直線補正抵抗と、該直線補
正抵抗に接続して該直線補正抵抗の抵抗値設定を行う補
正抵抗設定器とから構成されたことにある。
The gist of the capacitance type liquid level measuring device of the present invention is that a rod-shaped detection electrode and a cylindrical shield electrode arranged coaxially around the detection electrode. A liquid level sensor comprising: an oscillator connected to both electrodes of the liquid level sensor to apply a high frequency; a voltage measuring device for measuring a voltage between the electrodes of the liquid level sensor; A linear correction resistor connected between the liquid level sensors for linearly correcting the interelectrode voltage change with respect to the capacitance change of the liquid level sensor; and a resistance value of the linear correction resistor connected to the linear correction resistor And a correction resistor setting device for setting.

【0008】また、本発明の静電容量式液面レベル測定
装置の要旨とするところは、前記補正抵抗設定器が、複
数の直線補正抵抗値に対する前記電極間電圧変化の非直
線誤差の算出を行う非直線誤差算出手段と、算出された
非直線誤差の中から非直線誤差が最小となる直線補正抵
抗値の選択を行う抵抗値選択手段と、該抵抗値選択手段
により選択された抵抗値に前記直線補正抵抗を設定する
抵抗値設定手段とから構成されていることにある。
The gist of the capacitance type liquid level measuring apparatus of the present invention is that the correction resistance setting device calculates a non-linear error of the inter-electrode voltage change with respect to a plurality of linear correction resistance values. A non-linear error calculating means for performing, a resistance value selecting means for selecting a linear correction resistance value that minimizes the non-linear error from the calculated non-linear errors, and a resistance value selected by the resistance value selecting means. And a resistance value setting means for setting the linear correction resistance.

【0009】図5に示すような、半径a〔m〕,長さL
=L1 +LS 〔m〕の円柱棒状の検知電極22と、検知
電極22を中心として同軸状に配置された内面半径b
〔m〕,長さL〔m〕の円筒状のシールド電極24とか
ら構成された液面レベルセンサ20において、比誘電率
εS の液体が下端から高さLS 〔m〕まで満たされてい
る場合の静電容量Cは数1で表すことができ、この数1
より数2が導かれる。ただし、ε1 は空気の誘電率,ε
2 は液体の誘電率,L1 は空気部の長さ(L1 =L−L
S 〔m〕)である。
A radius a [m] and a length L as shown in FIG.
= L 1 + L S [m] A cylindrical rod-shaped detection electrode 22 and an inner surface radius b coaxially arranged around the detection electrode 22
[M] and a liquid level sensor 20 composed of a cylindrical shield electrode 24 having a length L [m], the liquid having a relative permittivity ε S is filled from the lower end to a height L S [m]. The capacitance C can be expressed by Equation 1;
This leads to Equation 2. Where ε 1 is the dielectric constant of air, ε
2 is the dielectric constant of the liquid, L 1 is the length of the air portion (L 1 = L−L
S [m]).

【0010】[0010]

【数1】 (Equation 1)

【0011】[0011]

【数2】 (Equation 2)

【0012】また、この液面レベルセンサ20と直列に
抵抗R及び発振器12(発振周波数f,入力電圧Vi
を接続した場合の等価回路は図6のように表せ、このと
きの液面レベルセンサ20の電極間電圧VO は、数3で
表すことができる。ただし、Cは液面レベルセンサの静
電容量〔F〕,Rは抵抗〔Ω〕,ω=2πfである。
A resistor R and an oscillator 12 (oscillation frequency f, input voltage V i ) are connected in series with the liquid level sensor 20.
6 can be expressed as shown in FIG. 6, and the voltage V O between the electrodes of the liquid level sensor 20 at this time can be expressed by Expression 3. Here, C is the capacitance [F] of the liquid level sensor, R is the resistance [Ω], and ω = 2πf.

【0013】[0013]

【数3】 (Equation 3)

【0014】そして、数2より液面レベルセンサ20の
静電容量Cは液面レベルLS によって変化し、数3より
液面レベルセンサの電極間電圧VO は静電容量Cによっ
て変化することがわかる。そのため、液面レベルLS
変化を電極間電圧VO の変化として捕らえることができ
る。よって、電極間電圧VO を測定することにより液面
レベルLS をリアルタイム且つ連続的に測定することが
できる。
From equation (2), the capacitance C of the liquid level sensor 20 changes according to the liquid level L S , and from equation (3), the voltage V O between the electrodes of the liquid level sensor changes according to the capacitance C. I understand. Therefore, a change in the liquid level L S can be captured as a change in the inter-electrode voltage V O. Therefore, the liquid level L S can be measured in real time and continuously by measuring the voltage V O between the electrodes.

【0015】しかしながら、液面レベルセンサ20の静
電容量Cと液面レベルLS との関係は数2より直線とな
ることがわかるが、電極間電圧VO と液面レベルセンサ
20の静電容量Cとの関係は図7に示すような曲線Vと
なり直線性はない。そのため、抵抗Rを直線補正用の抵
抗として用い、この直線補正抵抗Rを調整することによ
り電極間電圧VO −静電容量C特性曲線Vの直線補正を
行う。具体的には、図7に示すように、液面レベルの下
限値LL における静電容量及び電極間電圧(C L
L )と液面レベルの上限値LH における静電容量及び
電極間電圧(CH ,VH )とを結んだ直線(数4)を理
想直線Qとし、この理想直線Qと数3より求められる電
極間電圧VO (理論曲線V)間の誤差(図の斜線部分)
が最も小さくなるように直線補正抵抗Rの設定を行う。
これにより、測定される電極間電圧V O (曲線V)の直
線補正が行われ、測定電圧VO (曲線V)の非直線性を
改善することができる。
However, the static level sensor 20
Electric capacity C and liquid level LSIs a straight line from Equation 2.
It can be seen that the electrode voltage VOAnd liquid level sensor
The relationship between the capacitance C of FIG.
There is no linearity. Therefore, the resistance R is changed to the resistance for linear correction.
By adjusting this linear correction resistor R
Electrode voltage VO-Linear correction of the capacitance C characteristic curve V
Do. Specifically, as shown in FIG.
Limit value LLAnd the voltage between electrodes (C L,
VL) And the upper limit L of the liquid levelHAnd the capacitance at
Electrode voltage (CH, VH) And the straight line (Equation 4)
The ideal straight line Q and the power obtained from this ideal straight line Q and Equation 3
Voltage V between contactsOError between (theoretical curve V) (shaded area in the figure)
Is set so that is the smallest.
As a result, the measured inter-electrode voltage V O(Curve V)
Line correction is performed and the measured voltage VO(Curve V)
Can be improved.

【0016】[0016]

【数4】 (Equation 4)

【0017】[0017]

【発明の実施の形態】次に、本発明に係る静電容量式液
面レベル測定装置の実施の形態について、図面に基づい
て詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a capacitance type liquid level measuring apparatus according to the present invention will be described in detail with reference to the drawings.

【0018】図1は本発明の静電容量式液面レベル測定
装置10であり、棒状の検知電極22と検知電極22を
中心として同軸状に配置された筒状のシールド電極24
とからなる液面レベルセンサ20と、液面レベルセンサ
20の両電極22,24に接続して高周波を印加する発
振器12と、液面レベルセンサ20の電極間電圧の測定
を行う電圧測定器14と、発振器12と液面レベルセン
サ20間に接続され、液面レベルセンサ20の静電容量
変化に対する電極間電圧の非直線変化の直線補正を行う
直線補正抵抗16と、直線補正抵抗16に接続して直線
補正抵抗16の抵抗値設定を行う補正抵抗設定器30と
から構成されている。
FIG. 1 shows a capacitance type liquid level measuring apparatus 10 according to the present invention, in which a rod-shaped detection electrode 22 and a cylindrical shield electrode 24 arranged coaxially with the detection electrode 22 as a center.
, An oscillator 12 connected to both electrodes 22 and 24 of the liquid level sensor 20 to apply a high frequency, and a voltage measuring device 14 for measuring a voltage between the electrodes of the liquid level sensor 20. A linear correction resistor 16 connected between the oscillator 12 and the liquid level sensor 20 for linearly correcting the non-linear change of the voltage between the electrodes with respect to the capacitance change of the liquid level sensor 20; And a correction resistance setting unit 30 for setting the resistance value of the linear correction resistance 16.

【0019】液面レベルセンサ20は、図3及び図4に
示すように、断面が円形状の棒状の検知電極22と、こ
の検知電極22に対して同軸状に配置された円筒状のシ
ールド電極24とから構成されており、センサ20の上
端部及び下端部には絶縁性のキャップ26,28が取り
付けられ、検知電極22とシールド電極24の固定を行
っている。また、シールド電極24の上端部付近及び下
端部付近にはシールド電極24内に液体40がスムーズ
に入り込むように、空気流入口46及び液体流入口48
が設けられている。また、すくなくとも検知電極22の
表面には絶縁皮膜が施されている。更に、検知電極22
が細く線状である場合には、キャップ26,28により
検知電極22にテンションをかけて検知電極22の曲折
や緩みを防止している。
As shown in FIGS. 3 and 4, the liquid level sensor 20 has a rod-shaped detection electrode 22 having a circular cross section, and a cylindrical shield electrode disposed coaxially with the detection electrode 22. Insulating caps 26 and 28 are attached to the upper end and the lower end of the sensor 20, and fix the detection electrode 22 and the shield electrode 24. An air inlet 46 and a liquid inlet 48 are provided near the upper end and the lower end of the shield electrode 24 so that the liquid 40 can smoothly enter the shield electrode 24.
Is provided. At least the surface of the detection electrode 22 is coated with an insulating film. Further, the detection electrode 22
Is thin and linear, tension is applied to the detection electrode 22 by the caps 26 and 28 to prevent the detection electrode 22 from bending or loosening.

【0020】発振器12は液面レベルセンサ20の両電
極22,24に接続して高周波を印加するものであり、
電圧測定器14は液面レベルセンサ20の両電極22,
24に接続して電極間の電圧VO を測定するものであ
る。また、直線補正抵抗16は液面レベルセンサ20と
直列に接続して、液面レベルセンサ20の電極間電圧−
静電容量特性の直線補正を行うものであり、補正抵抗設
定器30は直線補正抵抗16に接続して、直線性が最も
よくなるような抵抗値に直線補正抵抗16を設定するも
のである。そして、これら発振器12,電圧測定器1
4,直線補正抵抗16及び補正抵抗設定器30は、液面
レベルセンサ20の上端部に一体的にまとめられてい
る。
The oscillator 12 is connected to both electrodes 22 and 24 of the liquid level sensor 20 to apply a high frequency.
The voltage measuring device 14 includes both electrodes 22 of the liquid level sensor 20,
24 to measure the voltage V O between the electrodes. Further, the linear correction resistor 16 is connected in series with the liquid level sensor 20 so that the voltage between the electrodes of the liquid level sensor 20 is reduced.
The correction resistor setting unit 30 is connected to the linear correction resistor 16 to set the linear correction resistor 16 to a resistance value that provides the best linearity. The oscillator 12 and the voltage measuring device 1
4, the linear correction resistor 16 and the correction resistor setting device 30 are integrally arranged at the upper end of the liquid level sensor 20.

【0021】また、補正抵抗設定器30は、図2に示す
ように、複数の直線補正抵抗値に対する非直線誤差の算
出を行う非直線誤差算出手段32と、算出された非直線
誤差の中から非直線誤差が最小となる直線補正抵抗値の
選択を行う抵抗値選択手段34と、抵抗値選択手段34
により選択された抵抗値に直線補正抵抗16を設定する
抵抗値設定手段36とから構成されている。
As shown in FIG. 2, the correction resistance setting device 30 includes a non-linear error calculating means 32 for calculating a non-linear error with respect to a plurality of linear correction resistance values, and Resistance value selection means 34 for selecting a linear correction resistance value that minimizes the non-linear error, and resistance value selection means 34
And a resistance value setting means 36 for setting the linear correction resistor 16 to the resistance value selected by the above.

【0022】非直線誤差算出手段32は、検知電極22
の半径,シールド電極24の内半径,液面レベルセンサ
部の長さ,発振器12の入力電圧及び発振周波数などの
測定条件にもとづいて、複数の異なる直線補正抵抗値に
ついての非直線誤差の算出を行うものである。具体的に
は、図7に示すように、液面レベルの下限値LL におけ
る静電容量及び電極間電圧(CL ,VL )と液面レベル
の上限値LH における静電容量及び電極間電圧(CH
H )を結んだ理想直線Qと、静電容量C−電極間電圧
V特性の理論曲線Vとの誤差(図の斜線部分)を算出す
ることにより、異なる直線補正抵抗値ごとの非直線誤差
を算出している。
The non-linear error calculating means 32 detects the detection electrode 22
, The inner radius of the shield electrode 24, the length of the liquid level sensor, the input voltage of the oscillator 12, and the oscillation frequency. Is what you do. Specifically, as shown in FIG. 7, the electrostatic capacity at the lower limit L L of the liquid level and the inter-electrode voltage (C L, V L) and capacitance and electrodes in the upper limit value L H of the liquid level Voltage (C H ,
VH ) and the theoretical curve V of the capacitance C-electrode voltage V characteristic (the hatched portion in the figure) calculates the non-linear error for each different linear correction resistance value. Is calculated.

【0023】また、抵抗値選択手段34は非直線誤差算
出手段32により算出された非直線誤差の中から、非直
線誤差が最小となる直線補正抵抗値を選択するものであ
り、抵抗値設定手段36は、直線補正抵抗16に接続し
て、抵抗値選択手段34により選択された抵抗値に、直
線補正抵抗16を設定するものである。
The resistance value selecting means 34 selects, from the nonlinear errors calculated by the nonlinear error calculating means 32, a linear correction resistance value which minimizes the nonlinear error. A reference numeral 36 is connected to the linear correction resistor 16 and sets the linear correction resistor 16 to the resistance value selected by the resistance value selecting means 34.

【0024】次に、このような静電容量式液面レベル測
定装置10を用いてタンク44内の液面レベル42の測
定を行う場合について、その作用を説明する。
Next, the operation of the case where the liquid level 42 in the tank 44 is measured by using the capacitance type liquid level measuring apparatus 10 will be described.

【0025】図3は、タンク44内に液面レベルセンサ
20を挿入して液面レベル測定を行う状態を示してお
り、タンク44の上部側の蓋部より、液面レベルセンサ
20が液体20中に挿入されている。そして、液面レベ
ルセンサ20のシールド電極24には液体流入口48と
空気流入口46が設けられているため、タンク44内の
液体40は液体流入口48よりセンサ20内に流入し、
タンク44内の液面レベル42とセンサ20内の液面レ
ベルが常に等しくなるようになっている。
FIG. 3 shows a state in which the liquid level sensor 20 is inserted into the tank 44 to measure the liquid level. The liquid level sensor 20 is moved from the lid on the upper side of the tank 44. Is inserted inside. Since the shield electrode 24 of the liquid level sensor 20 is provided with the liquid inlet 48 and the air inlet 46, the liquid 40 in the tank 44 flows into the sensor 20 from the liquid inlet 48,
The liquid level 42 in the tank 44 and the liquid level in the sensor 20 are always equal.

【0026】そして、発振器12より高周波を印加する
と、液面レベルLS の変化によりセンサ20の静電容量
C(数2)が変化し、静電容量Cが変化することにより
電極間電圧VO (数3)が変化するため、電圧測定器1
4でセンサ20の電極間電圧VO の変化を測定すること
により、液面レベルLS の変化を検出することができ
る。
When a high frequency is applied from the oscillator 12, the capacitance C (Equation 2) of the sensor 20 changes due to a change in the liquid level L S , and the interelectrode voltage V O changes due to the change in the capacitance C. Since (Equation 3) changes, the voltage measurement device 1
By measuring the change in the inter-electrode voltage V O of the sensor 20 in 4, the change in the liquid level L S can be detected.

【0027】このように、本発明の静電容量式液面レベ
ル測定装置10を用いることにより、タンク44内の液
面レベル変化を測定電圧VO の変化によりリアルタイム
且つ連続的に求めることができる。なお、実際の電極間
電圧の測定の際には、図6に示す端子にダイオードを
接続して直流信号に変換して測定を行っている。
As described above, by using the capacitance type liquid level measuring device 10 of the present invention, a change in the liquid level in the tank 44 can be obtained in real time and continuously by a change in the measurement voltage V O. . When the actual voltage between the electrodes is measured, a diode is connected to the terminal shown in FIG. 6 and converted into a DC signal for measurement.

【0028】また、本発明の静電容量式液面レベル測定
装置10には補正抵抗設定器30が用いられており、非
直線誤差算出手段32により直線補正抵抗16の抵抗値
ごとに理想直線Qと測定電圧VO の理論曲線Vとの誤差
が算出される。詳しく述べると、検知電極20の半径
a,シールド電極24の内半径b,液面レベルセンサ部
の長さL,発振器12の入力電圧VO 及び発振周波数f
などの測定条件にもとづいて、図7に示すような、液面
レベルの下限値LL における静電容量及び電極間電圧
(CL ,VL )と液面レベルの上限値LH における静電
容量及び電極間電圧(CH ,VH )を結んだ理想直線Q
(数4)と、測定される静電容量C−電極間電圧VO
理論曲線V(数3)との誤差(図の斜線部分)を算出す
るのである。
The capacitance type liquid level measuring device 10 of the present invention uses a correction resistance setting device 30. The nonlinear error calculating means 32 calculates an ideal straight line Q for each resistance value of the linear correction resistor 16. An error between the measured voltage V O and the theoretical curve V is calculated. More specifically, the radius a of the detection electrode 20, the inner radius b of the shield electrode 24, the length L of the liquid level sensor, the input voltage V O of the oscillator 12, and the oscillation frequency f
Based on the measurement conditions such as, as shown in FIG. 7, the electrostatic capacitance and the inter-electrode voltage (C L, V L) in the lower limit L L of the liquid level and the electrostatic in the upper limit value L H of the liquid level Ideal straight line Q connecting capacitance and electrode voltage (C H , V H )
The error (the hatched portion in the figure) between (Equation 4) and the theoretical curve V (Equation 3) of the measured capacitance C-electrode voltage V O is calculated.

【0029】なお、非直線誤差の算出については、例え
ば、図9に示すように、CL からC H 間をいくつかに等
分割した各静電容量についての平均誤差を算出するな
ど、任意の方法で誤差を算出することができる。すなわ
ち、理想直線Qと理論電圧曲線Vとで囲まれた領域(図
の斜線部)を厳密に算出する必要は必ずしもなく、例え
ば、図9においては、静電容量C1 〜C13の各々につい
て数3と数4の誤差を算出し、これらの平均誤差を非直
線誤差としている。
The calculation of the non-linear error is, for example, as follows.
For example, as shown in FIG.LTo C HSome time in between
Do not calculate the average error for each divided capacitance.
The error can be calculated by any method. Sand
That is, an area surrounded by an ideal straight line Q and a theoretical voltage curve V (see FIG.
It is not always necessary to calculate strictly the shaded area of
For example, in FIG.1~ C13About each of
Calculate the errors of Equations 3 and 4 and calculate the average error
Line error is assumed.

【0030】そして、抵抗値選択手段34により、直線
補正抵抗16ごとに算出された非直線誤差の中から非直
線誤差が最小となる直線補正抵抗値が選択される。そし
て、抵抗値設定手段36により、選択された抵抗値に直
線補正抵抗16が設定される。これにより、測定電圧V
O と静電容量C(液面レベルLS )特性の直線性が最も
良い状態で、液面レベル42の測定を行うことができる
ようになる。
Then, the resistance value selecting means 34 selects a linear correction resistance value that minimizes the non-linear error from the non-linear errors calculated for each of the linear correction resistors 16. Then, the linear correction resistor 16 is set to the selected resistance value by the resistance value setting means 36. As a result, the measured voltage V
The liquid level 42 can be measured in a state where the linearity between the O and the capacitance C (liquid level L S ) characteristics is the best.

【0031】このように、本発明の直線補正抵抗16及
び補正抵抗設定器30を備えた静電容量式液面レベル測
定装置10を用いることにより、直線補正抵抗16が最
適値に設定された状態で測定を行えるため、直線性の良
い測定電圧VO −静電容量C(液面レベルLS )特性を
得ることができる。これにより、測定電圧VO の変化か
ら直接に液面レベルLS の変化を求めることができる。
As described above, by using the capacitance type liquid level measuring device 10 provided with the linear correction resistor 16 and the correction resistor setting device 30 according to the present invention, the linear correction resistor 16 is set to the optimum value. Therefore, the measurement voltage V O -capacitance C (liquid level L S ) characteristic with good linearity can be obtained. Thus, a change in the liquid level L S can be obtained directly from a change in the measured voltage V O.

【0032】図8は、直線補正抵抗16の設定の一実施
例であり、検知電極22の半径aが1.5〔mm〕,シ
ールド電極24の内半径bが10〔mm〕,液面レベル
センサ部の長さLが2〔m〕,液面レベルの下限が0.
1〔m〕,上限が1.9〔m〕,発振器12の入力電圧
Vo が3〔V〕,発振周波数fが1〔MHz〕,液体4
0の非誘電率εs が2の測定条件において、直線補正抵
抗16が1〔kΩ〕,1.5〔kΩ〕,2〔kΩ〕,
2.5〔kΩ〕の各場合についての理想直線(破線で図
示)と出力電圧VO −液面レベルLS 特性の理論曲線
(実線で図示)との関係を示している。この図面より、
直線補正抵抗16を変えることにより、出力電圧VO
液面レベルLS 特性の直線性が補正されることが分か
る。
FIG. 8 shows an embodiment of the setting of the linear correction resistor 16, in which the radius a of the detection electrode 22 is 1.5 mm, the inner radius b of the shield electrode 24 is 10 mm, and the liquid level is The length L of the sensor section is 2 [m], and the lower limit of the liquid level is 0.
1 [m], the upper limit is 1.9 [m], the input voltage Vo of the oscillator 12 is 3 [V], the oscillation frequency f is 1 [MHz], and the liquid 4
Under the measurement condition where the non-dielectric constant ε s of 0 is 2 and the linear correction resistor 16 is 1 [kΩ], 1.5 [kΩ], 2 [kΩ],
2.5 ideal straight line (shown in phantom) for each case of [kΩ] and the output voltage V O - shows the relationship between the theoretical curve of the liquid surface level L S characteristic (shown by a solid line). From this drawing,
By changing the linear correction resistor 16, the output voltage V O
It can be seen that the linearity of the liquid level L S characteristic is corrected.

【0033】以上、本発明の一実施例について説明した
が、本発明に係る静電容量式液面レベル測定装置はその
他の態様でも実施し得るものである。例えば、検知電極
及びシールド電極の形状は円柱及び円筒形に限定はされ
ず、電極間の測定電圧(静電容量)が液面レベルの変動
により変化するものならば任意の形状のものを用いるこ
とができる。また、液面レベルセンサの長さ(検知電極
及びシールド電極の長さ)も任意の長さとすることがで
きる。ただし、液面レベルセンサのインダクタンス分は
センサの長さに比例して大きくなるため、インダクタン
ス分が無視できなくなった場合は、直列にキャパシタン
スを挿入してインダクタンス分を相殺する必要がある。
Although the embodiment of the present invention has been described above, the capacitance type liquid level measuring apparatus according to the present invention can be implemented in other embodiments. For example, the shape of the detection electrode and the shield electrode is not limited to a cylinder and a cylinder, and any shape may be used as long as the measured voltage (capacitance) between the electrodes changes due to a change in the liquid level. Can be. In addition, the length of the liquid level sensor (the length of the detection electrode and the length of the shield electrode) can be set to an arbitrary length. However, since the inductance of the liquid level sensor increases in proportion to the length of the sensor, when the inductance cannot be ignored, it is necessary to insert a capacitance in series to cancel the inductance.

【0034】また、直線補正抵抗の設定においても、出
力電圧−液面レベル(静電容量)特性の直線補正が行え
るものならばその方法を問わず、例えば、予め所望の非
直線誤差を設定しておき、この設定値以下の非直線誤差
となるような抵抗値に直線補正抵抗を設定させるなど、
任意の方法で直線補正抵抗を設定することができる。ま
た、理想直線についても、実施例で示した下限値
(CL ,VL )と上限値(C H ,VH )を結んだ直線に
限定する必要はなく、例えば、最小2乗法等で求めた回
帰直線を理想直線とするなど、理想直線Qを任意の方法
で決めることができる。
In setting the linear correction resistor, the output is also
Linear correction of force voltage-liquid level (capacitance) characteristics
Irrespective of the method, for example,
Set a linear error, and set a non-linear error below this set value.
Such as setting a linear correction resistor to a resistance value such that
The linear correction resistor can be set by any method. Ma
In addition, the lower limit value shown in the working example
(CL, VL) And the upper limit (C H, VH) To a straight line
It is not necessary to limit, for example, the number of times determined by the least squares method
Any method for the ideal straight line Q, such as making the return straight line an ideal straight line
Can be determined by

【0035】また、非直線誤差の算出においても、理想
直線Qと理論電圧曲線Vとの誤差は任意の方法で求める
ことができ、例えば、測定範囲内の理想直線Qと理論電
圧曲線Vで囲まれた領域の面積を積分計算により求めて
非直線誤差としたり、測定範囲内の理想直線Qと理論電
圧曲線Vの最大誤差を非直線誤差とするなど、非直線誤
差は任意の方法で算出することができる。
In the calculation of the non-linear error, the error between the ideal straight line Q and the theoretical voltage curve V can be obtained by an arbitrary method. For example, the error between the ideal straight line Q and the theoretical voltage curve V within the measuring range is obtained. The non-linear error is calculated by an arbitrary method, such as obtaining the area of the obtained region by integral calculation and setting the non-linear error, or setting the maximum error between the ideal straight line Q and the theoretical voltage curve V within the measurement range to the non-linear error. be able to.

【0036】以上、本発明に係る静電容量式液面レベル
測定装置の実施例について、図面に基づいて種々説明し
たが、本発明は図示した静電容量式液面レベル測定装置
に限定されるものではない。例えば、図6の端子にダ
イオードを接続して直流信号に変換する方法では、ダイ
オードの順方向電圧が温度の影響を受けて変動するた
め、図10に示すような検出回路を用いてもよい。この
回路では、発振器12により端子−間において高周
波信号が得られ、この高周波信号はダイオードD 1 ,D
2 で直流信号となる。そして、抵抗R1 を調整して端子
−間の電圧がゼロとなるように調整する。これによ
り得られた信号は、ダイオードの順方向電圧の温度によ
る変動誤差を相殺し、ノイズにも強い差動信号(V+
- )となる。その他、本発明はその趣旨を逸脱しない
範囲で当業者の知識に基づき種々なる改良,修正,変形
を加えた態様で実施できるものである。
As described above, the capacitance type liquid level according to the present invention is described.
Various embodiments of the measuring device will be described based on the drawings.
However, the present invention relates to a capacitance type liquid level measuring device shown in the drawings.
However, the present invention is not limited to this. For example, the terminal shown in FIG.
In the method of connecting an electrode and converting it to a DC signal,
The forward voltage of an ode fluctuates under the influence of temperature.
Therefore, a detection circuit as shown in FIG. 10 may be used. this
In the circuit, the high frequency between the terminals
Wave signal is obtained, and this high-frequency signal is 1, D
TwoIs a DC signal. And the resistance R1Adjust the terminal
Adjust so that the voltage between-becomes zero. This
The resulting signal depends on the temperature of the forward voltage of the diode.
Differential signal (V+
V-). In addition, the present invention does not deviate from the gist.
Various improvements, modifications, and variations based on the knowledge of those skilled in the art.
Can be carried out in a mode in which is added.

【0037】[0037]

【発明の効果】本発明の静電容量式液面レベル測定装置
によれば、液面レベルの変動により液面レベルセンサの
静電容量が変化するため、液面レベルセンサの電極間電
圧を測定することにより、液面レベルの変動をリアルタ
イム且つ連続的に検出することができる。そして、直線
補正抵抗により電極間電圧−静電容量特性の非直線性の
補正を行うことができる。
According to the capacitance type liquid level measuring apparatus of the present invention, the capacitance of the liquid level sensor changes due to the fluctuation of the liquid level, so that the voltage between the electrodes of the liquid level sensor is measured. By doing so, the fluctuation of the liquid level can be detected in real time and continuously. Then, the non-linearity of the interelectrode voltage-capacitance characteristic can be corrected by the linear correction resistance.

【0038】また、本発明の静電容量式液面レベル測定
装置によれば、補正抵抗設定器により直線補正抵抗を、
測定電圧の直線性が最良となる抵抗値に設定することが
できる。これにより、電極間電圧−液面レベル特性の直
線性が最適に補正された状態で液面レベル測定を行うこ
とができる。
Further, according to the capacitance type liquid level measuring apparatus of the present invention, the linear correction resistance is set by the correction resistance setting device.
The resistance value at which the linearity of the measured voltage is the best can be set. As a result, the liquid level measurement can be performed in a state where the linearity of the inter-electrode voltage-liquid level characteristic is optimally corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る静電容量式液面レベル測定装置の
一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a capacitance type liquid level measuring device according to the present invention.

【図2】本発明に係る静電容量式液面レベル測定装置の
補正抵抗設定器の一実施例を示すブロック図である。
FIG. 2 is a block diagram showing one embodiment of a correction resistance setting device of the capacitance type liquid level measuring device according to the present invention.

【図3】図1に示す静電容量式液面レベル測定装置の測
定状態を示す側面断面図である。
FIG. 3 is a side sectional view showing a measurement state of the capacitance type liquid level measuring device shown in FIG. 1;

【図4】図3に示す静電容量式液面レベル測定装置の上
面断面図である。
4 is a top sectional view of the capacitance type liquid level measuring device shown in FIG. 3;

【図5】図1に示す静電容量式液面レベル測定装置の要
部拡大説明図である。
FIG. 5 is an enlarged explanatory view of a main part of the capacitance type liquid level measuring device shown in FIG. 1;

【図6】図5に示す静電容量式液面レベル測定装置の等
価回路図である。
6 is an equivalent circuit diagram of the capacitance type liquid level measuring device shown in FIG.

【図7】図1に示す静電容量式液面レベル測定装置の測
定電圧特性及び理想直線を示す図である。
FIG. 7 is a diagram showing a measured voltage characteristic and an ideal straight line of the capacitance type liquid level measuring device shown in FIG.

【図8】図2に示す補正抵抗設定器による直線補正の状
態を示す図である。
FIG. 8 is a diagram showing a state of linear correction by the correction resistance setting device shown in FIG. 2;

【図9】図2に示す非直線誤差算出手段による非直線誤
差の算出方法の一実施例を示す図である。
FIG. 9 is a diagram showing one embodiment of a method of calculating a non-linear error by the non-linear error calculating means shown in FIG. 2;

【図10】本発明に係る静電容量式液面レベル測定装置
の他の実施例を示す回路図である。
FIG. 10 is a circuit diagram showing another embodiment of the capacitance type liquid level measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

10,50:静電容量式液面レベル測定装置 12:発振器 14:電圧測定器 16:直線補正抵抗 20:液面レベルセンサ 22:検知電極 24:シールド電極 26,28:キャップ 30:補正抵抗設定器 32:非直線誤差算出手段 34:抵抗値選択手段 36:抵抗値設定手段 40:液体 42:液面レベル 44:タンク 46:空気流入口 48:液体流入口 10, 50: Capacitance type liquid level measuring device 12: Oscillator 14: Voltage measuring device 16: Linear correction resistance 20: Liquid level sensor 22: Detection electrode 24: Shield electrode 26, 28: Cap 30: Correction resistance setting Container 32: non-linear error calculating means 34: resistance value selecting means 36: resistance value setting means 40: liquid 42: liquid level 44: tank 46: air inlet 48: liquid inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 棒状の検知電極と該検知電極を中心とし
て同軸状に配置された筒状のシールド電極とからなる液
面レベルセンサと、該液面レベルセンサの両電極に接続
して高周波を印加する発振器と、前記液面レベルセンサ
の電極間電圧の測定を行う電圧測定器と、該発振器と該
液面レベルセンサ間に接続され、該液面レベルセンサの
静電容量変化に対する該電極間電圧変化の直線補正を行
う直線補正抵抗と、該直線補正抵抗に接続して該直線補
正抵抗の抵抗値設定を行う補正抵抗設定器とから構成さ
れたことを特徴とする静電容量式液面レベル測定装置。
1. A liquid level sensor comprising a rod-shaped detection electrode and a cylindrical shield electrode arranged coaxially with the detection electrode as a center, and a high-frequency wave connected to both electrodes of the liquid level sensor. An oscillator to be applied, a voltage measuring device for measuring a voltage between the electrodes of the liquid level sensor, and a voltage measuring device connected between the oscillator and the liquid level sensor to detect a change in capacitance of the liquid level sensor. A capacitance type liquid surface comprising: a linear correction resistor for performing a linear correction of a voltage change; and a correction resistor setting device connected to the linear correction resistor for setting a resistance value of the linear correction resistor. Level measuring device.
【請求項2】 前記補正抵抗設定器が、複数の直線補正
抵抗値に対する前記電極間電圧変化の非直線誤差の算出
を行う非直線誤差算出手段と、算出された非直線誤差の
中から非直線誤差が最小となる直線補正抵抗値の選択を
行う抵抗値選択手段と、該抵抗値選択手段により選択さ
れた抵抗値に前記直線補正抵抗を設定する抵抗値設定手
段とから構成されていることを特徴とする請求項1に記
載する静電容量式液面レベル測定装置。
2. A non-linear error calculating means for calculating a non-linear error of the inter-electrode voltage change with respect to a plurality of linear correction resistance values, and a non-linear error from the calculated non-linear errors. A resistance value selecting means for selecting a linear correction resistance value that minimizes an error, and a resistance value setting means for setting the linear correction resistance to the resistance value selected by the resistance value selecting means. The capacitance type liquid level measuring device according to claim 1, wherein:
JP18789197A 1997-07-14 1997-07-14 Capacitive liquid level measuring device Expired - Fee Related JP3841239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18789197A JP3841239B2 (en) 1997-07-14 1997-07-14 Capacitive liquid level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18789197A JP3841239B2 (en) 1997-07-14 1997-07-14 Capacitive liquid level measuring device

Publications (2)

Publication Number Publication Date
JPH1130544A true JPH1130544A (en) 1999-02-02
JP3841239B2 JP3841239B2 (en) 2006-11-01

Family

ID=16214011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18789197A Expired - Fee Related JP3841239B2 (en) 1997-07-14 1997-07-14 Capacitive liquid level measuring device

Country Status (1)

Country Link
JP (1) JP3841239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490921B2 (en) 1999-12-15 2002-12-10 Fuji Xerox Co., Ltd. Oscillating liquid level measuring apparatus
US6541758B2 (en) 2001-03-15 2003-04-01 Ntt Advanced Technology Corporation Liquid-level gauge
KR100517305B1 (en) * 2002-12-09 2005-09-27 손덕수 Fuel Gauge For Car Vehicle using The Transmission Line
CN103912538A (en) * 2014-03-25 2014-07-09 攀钢集团西昌钢钒有限公司 Hydraulic oil level monitoring method and hydraulic oil level monitoring equipment
CN113442576A (en) * 2020-03-25 2021-09-28 京瓷办公信息***株式会社 Liquid level detection device and image forming apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672681B (en) * 2008-09-10 2012-09-05 海尔集团公司 Water level measurement device, water level measurement method and water level correction method
KR20230057812A (en) * 2021-10-22 2023-05-02 한국해양과학기술원 Nonlinear wave height gauge calibration system and wave height gauge calibration method using thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490921B2 (en) 1999-12-15 2002-12-10 Fuji Xerox Co., Ltd. Oscillating liquid level measuring apparatus
US6541758B2 (en) 2001-03-15 2003-04-01 Ntt Advanced Technology Corporation Liquid-level gauge
KR100517305B1 (en) * 2002-12-09 2005-09-27 손덕수 Fuel Gauge For Car Vehicle using The Transmission Line
US7055385B2 (en) 2002-12-09 2006-06-06 Kyung Chang Industrial Co., Ltd. Apparatus and method for measuring the amount of fuel in a vehicle using transmission lines
CN103912538A (en) * 2014-03-25 2014-07-09 攀钢集团西昌钢钒有限公司 Hydraulic oil level monitoring method and hydraulic oil level monitoring equipment
CN113442576A (en) * 2020-03-25 2021-09-28 京瓷办公信息***株式会社 Liquid level detection device and image forming apparatus

Also Published As

Publication number Publication date
JP3841239B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US3901079A (en) Two-mode capacitive liquid level sensing system
EP1955025B1 (en) Variable frequency charge pump in capacitive level sensor
US5210500A (en) Process for contactless measurement of the electrical resistance of a test material
EP3346248B1 (en) An improved pressure sensor structure
JP5934562B2 (en) Liquid level detector
US20170115153A1 (en) Method and Apparatus for Monitoring Fill Level of a Medium in a Container
CN102870327B (en) The detection of dielectric object
JPH1130544A (en) Capacitance-type liquid level measuring apparatus
JPS631524B2 (en)
JP2007064933A (en) Correction method for liquid level detection device, and the liquid level detection device
JPH035863Y2 (en)
JPH0476408B2 (en)
US20210123785A1 (en) Probe unit
WO1994016542A1 (en) Instrument for measuring plasma excited by high-frequency
JP2010025782A (en) Liquid level sensor
EP4177618A1 (en) Circuit for impedance measurements
EP0057278B1 (en) Capacitance circuit for level measurement
US20180246050A1 (en) Electrical conductivity meter
GB1603793A (en) Apparatus and method for measuring the level of electrically conducting liquids
JP4100186B2 (en) Liquid level detection sensor
JPH063313A (en) Concentration meter for liquid
GB2218812A (en) A capacitive apparatus for measuring liquid volume and flow rate
JP2705257B2 (en) Liquid level detector
KR100302459B1 (en) Nonlinearity compensation method and its apparatus of capacitive sensor controller sensing the position precisely
KR20040063996A (en) Pressure transducer with dual slope output

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees