JPH11302764A - Aluminum alloy excellent in high temperature characteristic - Google Patents

Aluminum alloy excellent in high temperature characteristic

Info

Publication number
JPH11302764A
JPH11302764A JP10815398A JP10815398A JPH11302764A JP H11302764 A JPH11302764 A JP H11302764A JP 10815398 A JP10815398 A JP 10815398A JP 10815398 A JP10815398 A JP 10815398A JP H11302764 A JPH11302764 A JP H11302764A
Authority
JP
Japan
Prior art keywords
phase
alloy
temperature
aluminum alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10815398A
Other languages
Japanese (ja)
Inventor
Manabu Nakai
学 中井
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10815398A priority Critical patent/JPH11302764A/en
Publication of JPH11302764A publication Critical patent/JPH11302764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al alloy capable of assuring higher high temp. characteristics with high reproducibility. SOLUTION: In an Al alloy contg. 1.5 to 7.0% Cu and 0.01 to 2.0% Mg, the average size of θ' phases is regulated to <=120 nm, and furthermore, the average distance among precipitates in the θ' phases in regulated to <=100 nm, and moreover, in an aluminum alloy contg. 0.05 to 0.7% Ag and having Ωphases, the average size of the Ω phases is regulated to <=100 nm, and furthermore, the average distance among precipitates in the Ω phases is regulated to <=150 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温特性 (耐熱
性) に優れたAl-Cu-Mg系アルミニウム合金 (以下、アル
ミニウムを単にAlと言う) に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Cu-Mg-based aluminum alloy having excellent high-temperature properties (heat resistance) (hereinafter, aluminum is simply referred to as Al).

【0002】[0002]

【従来の技術】ロケットや航空機などの航空・宇宙機材
用、鉄道車両、自動車、船舶などの輸送機材用、エンジ
ン部品、コンプレッサーなどの機械部品用などに使用さ
れるAl合金で、特に200 ℃以上の高温の使用環境となる
Al合金には、高温特性に優れたAl合金が用いられる。そ
して、これらAl合金に求められる高温特性とは、基本的
に高温での耐クリープ特性および高温耐力である。
2. Description of the Related Art Al alloys used for aerospace equipment such as rockets and aircraft, for transportation equipment such as railway vehicles, automobiles and ships, and for mechanical parts such as engine parts and compressors. High temperature use environment
As the Al alloy, an Al alloy having excellent high-temperature characteristics is used. The high-temperature characteristics required for these Al alloys are basically creep resistance at high temperatures and high-temperature proof stress.

【0003】従来、この所謂耐熱性Al合金にはJIS 2000
系 Al 合金が用いられている。この内、特に、ロケット
などの宇宙機器のタンクや航空機などの機体外板および
タービン、ローター等の羽根などの耐熱Al合金には、Al
-Cu-Mn-Zr-V-Ti系のJIS 2219Al 合金およびAl-Cu-Mg-Fe
-Ni-Si-Ti系のJIS 2618 Al 合金が主に使用されてい
る。これらのJIS 2000系 Al 合金は溶接性にも優れてい
る。しかし、これらのJIS 2000系 Al 合金は、120 ℃を
越える高温では強度の低下が著しい。このため、特に航
空機などの構造材として用いる場合には、120 ℃以下の
使用条件でしか用いることができない。したがって、使
用条件が120 ℃を越える場合には、使用時間を短く制限
するか、冷却装置を付加して使用環境を低温に保持して
使用されているのが実情である。
Conventionally, this so-called heat-resistant Al alloy has been JIS 2000
Al alloys are used. Among them, in particular, heat-resistant Al alloys such as tanks for space equipment such as rockets, airframe outer plates such as aircraft, and blades such as turbines and rotors include Al.
-Cu-Mn-Zr-V-Ti JIS 2219Al alloy and Al-Cu-Mg-Fe
-Ni-Si-Ti JIS 2618 Al alloy is mainly used. These JIS 2000 series Al alloys are also excellent in weldability. However, the strength of these JIS 2000 series Al alloys decreases significantly at high temperatures exceeding 120 ° C. Therefore, especially when used as a structural material for an aircraft or the like, it can be used only under operating conditions of 120 ° C. or less. Therefore, when the use condition exceeds 120 ° C., it is a fact that the use time is restricted to a short time or the use environment is kept at a low temperature by adding a cooling device.

【0004】このため、120 ℃、特に150 ℃を越える高
温使用環境でのクリープ破断強度や高温耐力を改善する
ために、近年では、JIS 2219 Al 合金にMgを0.3mass%添
加したJIS 2519 Al 合金(Al-6.1Cu-0.3Mn-0.15Zr-0.1V)
が開発されている。また、このJIS 2519 Al 合金にAgを
添加した2519(Ag)Al合金も開発されている。
Therefore, in order to improve the creep rupture strength and high temperature proof stress in a high temperature use environment exceeding 120 ° C., especially 150 ° C., in recent years, JIS 2519 Al alloy obtained by adding 0.3 mass% of Mg to JIS 2219 Al alloy has been developed. (Al-6.1Cu-0.3Mn-0.15Zr-0.1V)
Is being developed. Also, a 2519 (Ag) Al alloy in which Ag is added to this JIS 2519 Al alloy has been developed.

【0005】これらJIS 2519 Al 合金および2519(Ag)Al
合金の高温特性が高いのは、「Metal Sience ,12(197
8),478頁,J.A.Tayler 他」或いは「Metall Trans ,19A
(1988),1027頁,J.Polmear他」に開示されている通り、J
IS 2519 Al 合金では(100) 面にθ' 相、2519(Ag)Al合
金では(111) 面に晶癖面をもつ六角形盤状の析出物であ
るΩ相が、各々析出するためである。
The JIS 2519 Al alloy and 2519 (Ag) Al
The high temperature properties of the alloy are described in Metal Sience, 12 (197
8), p. 478, JATayler et al. "Or" Metall Trans, 19A
(1988), p. 1027, J. Palmear et al., J.
This is because the Ω phase, which is a hexagonal disk-shaped precipitate with a crystal habit plane on the (111) plane in the 2519 (Ag) Al alloy, precipitates in the θ 25 phase on the (100) plane in the IS 2519 Al alloy. .

【0006】[0006]

【発明が解決しようとする課題】しかし、これらJIS 25
19 Al 合金および2519(Ag)Al合金材を製造する場合、前
記高い高温特性を有するAl合金を、必ずしも再現性良く
作れるわけではないという問題がある。即ち、これらJI
S 2519 Al 合金および2519(Ag)Al合金材を製造しても、
化学成分や製造工程のバラツキなどにより高温特性が劣
るAl合金材が生じるという問題がある。つまり、これら
Al合金材に、前記した通り高温特性改善のポイントとな
るθ' 相乃至Ω相が析出していたとしても、製造したこ
れらAl合金の全てが高い高温特性を有するわけではな
い。
[Problems to be solved by the invention] However, these JIS 25
When manufacturing a 19 Al alloy and a 2519 (Ag) Al alloy material, there is a problem that an Al alloy having the high high-temperature characteristics cannot always be produced with good reproducibility. That is, these JI
Even when manufacturing S 2519 Al alloy and 2519 (Ag) Al alloy material,
There is a problem that an Al alloy material having inferior high-temperature characteristics is generated due to variations in chemical components and manufacturing processes. In other words, these
Even if the θ ′ phase or the Ω phase, which is a point for improving the high-temperature characteristics, is precipitated on the Al alloy material, not all of the manufactured Al alloys have high high-temperature characteristics.

【0007】本発明はこの様な事情に着目してなされた
ものであって、その目的は、高い高温特性を再現性良く
保証することが可能なAl合金を提供しようとするもので
ある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an Al alloy that can guarantee high high-temperature characteristics with good reproducibility.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明の高温特性に優れたAl合金の要旨は、Cu:1.5
〜7.0%、Mg:0.01 〜2.0%を含み、θ' 相を有するアルミ
ニウム合金の場合に、θ' 相の平均サイズを120 nm以下
とするとともに、θ' 相の析出物間の平均間隔を100 nm
以下とする、およびCu:1.5〜7.0%、Mg:0.01 〜2.0%、A
g:0.05 〜0.7%を含み、Ω相を有するアルミニウム合金
の場合に、Ω相の平均サイズを100 nm以下であるととも
に、Ω相の析出物間の平均間隔を150 nm以下とすること
である。
In order to achieve this object, the gist of the Al alloy excellent in high-temperature characteristics of the present invention is Cu: 1.5
-7.0%, Mg: 0.01-2.0%, and in the case of an aluminum alloy having a θ ′ phase, the average size of the θ ′ phase is 120 nm or less, and the average interval between the precipitates of the θ ′ phase is 100. nm
And Cu: 1.5 to 7.0%, Mg: 0.01 to 2.0%, A
g: In the case of an aluminum alloy containing 0.05 to 0.7% and having an Ω phase, the average size of the Ω phase is 100 nm or less and the average interval between the precipitates of the Ω phase is 150 nm or less. .

【0009】本発明のような上記要旨とすることによ
り、Al合金の高温特性として、Al合金の1000hrクリープ
破断強度 (応力負荷方向:LT 方向、温度204 ℃) が150N
/mm2以上、高温耐力 (保持条件:204℃で1000hr、引張方
向:LT 方向、引張温度:204℃、引張歪速度:8×10-5S
-1) が200N/mm2以上となることを再現性良く保証する
ことができる。
According to the above aspect of the present invention, as the high-temperature characteristics of the Al alloy, the creep rupture strength of the Al alloy for 1000 hours (stress load direction: LT direction, temperature 204 ° C.) is 150N.
/ mm 2 or more, high temperature proof stress (holding condition: 1000 hours at 204 ° C, tensile direction: LT direction, tensile temperature: 204 ° C, tensile strain rate: 8 × 10 -5 S
-1 ) is 200 N / mm 2 or more with good reproducibility.

【0010】[0010]

【発明の実施の形態】(θ' 相とΩ相との各々の大きさ
と析出物間の平均間隔) 本発明者らは、Al合金の組織に
ついて検討を重ねた。前記した通り、これらJIS 2519 A
l 合金および2519(Ag)Al合金の高温特性が高いのは、確
かに、前記従来技術に開示されている通り、JIS 2519 A
l 合金では(100) 面に析出するθ' 相、2519(Ag)Al合金
では(111) 面に析出するΩ相が微細にかつ高密度に析出
するためである。特にΩ相はすべり面(111) と同一面に
析出するため、(100) 面に析出するθ' 相に比べ、転移
の運動には極めて大きな障害となるオロワン機構を発揮
し、高温耐力やクリープ破断強さが向上する。
BEST MODE FOR CARRYING OUT THE INVENTION (Each Size of θ ′ Phase and Ω Phase and Average Spacing Between Precipitates) The present inventors have repeatedly studied the structure of an Al alloy. As described above, these JIS 2519 A
l alloy and 2519 (Ag) Al alloy have high high-temperature properties, indeed, as disclosed in the prior art, JIS 2519 A
This is because the θ 'phase precipitated on the (100) plane in the l-alloy and the Ω phase precipitated on the (111) plane in the 2519 (Ag) Al alloy were deposited finely and at high density. In particular, since the Ω phase precipitates on the same plane as the slip plane (111), it exhibits the Orowan mechanism, which is an extremely large obstacle to the movement of the transition, as compared with the θ 'phase precipitated on the (100) plane, The breaking strength is improved.

【0011】しかし、本発明者らの知見によれば、θ'
相およびΩ相の分散状態、即ち、θ' 相とΩ相との各々
の大きさと析出物間の平均間隔が、JIS 2519乃至2519(A
g)Al合金の高温特性 (耐熱性) を支配している。そし
て、θ' 相とΩ相との各々の大きさと析出物間の平均間
隔が、大きすぎる場合には、これらJIS 2519 Al 合金お
よび2519(Ag)Al合金の高温特性が低下し、実際のAl合金
製造の際に、高い高温特性を有するAl合金を再現性良く
作れないことにつながる。
However, according to the findings of the present inventors, θ ′
Phase and the dispersed state of the Ω phase, that is, the size of each of the θ ′ phase and the Ω phase and the average distance between the precipitates are JIS 2519 to 2519 (A
g) Controls the high temperature properties (heat resistance) of Al alloys. If the size of each of the θ ′ phase and the Ω phase and the average spacing between the precipitates are too large, the high-temperature characteristics of these JIS 2519 Al alloy and 2519 (Ag) Al alloy deteriorate, and the actual Al During the production of the alloy, it is not possible to produce an Al alloy having high high-temperature characteristics with good reproducibility.

【0012】本発明のAl合金マトリックス中のθ' 相と
Ω相の平均サイズと析出物間の平均間隔の同定は、透過
型電子顕微鏡(TEM) により、アルミ合金マトリックスを
観察して行う。より具体的には、50000 倍のTEM による
目視観察乃至画像解析を行い、θ' 相とΩ相の平均サイ
ズと析出物間の平均間隔の同定を行う。
The identification of the average size of the θ ′ phase and the Ω phase in the Al alloy matrix of the present invention and the average interval between the precipitates are performed by observing the aluminum alloy matrix with a transmission electron microscope (TEM). More specifically, visual observation or image analysis using a 50,000 × TEM is performed to identify the average size of the θ ′ phase and the Ω phase and the average interval between precipitates.

【0013】今、Cu:1.5〜7.0%、Mg:0.01 〜2.0%を含む
JIS 2519系或いはJIS 2618系などのAl合金において、
θ' 相の平均サイズが120 nmを越え、またθ' 相の析出
物間の平均間隔が100 nmを越えた場合、また、Cu:1.5〜
7.0%、Mg:0.01 〜2.0%に加えて、更にAg:0.05 〜0.7%を
含むJIS 2519(Ag)系などのAl合金において、Ω相の平均
サイズが100 nmを越え、またΩ相の析出物間の平均間隔
が150 nmを越えた場合には、各々これらθ' 相およびΩ
相の高温特性向上効果 (転移に対する障害となるオロワ
ン機構の発揮など) が極端に低下し、結果として、Al合
金材の高温耐力やクリープ破断強さが低下し、優れた高
温特性を保証することができない。なお、JIS 2519系或
いはJIS 2618系などのΩ相を生じないAl合金では、θ'
相の前記規定が重要となるが、Ag:0.05 〜0.7%を含むJI
S 2519(Ag)系など、Ω相を生じるAl合金では、θ' 相を
含む場合にθ' 相が前記サイズや間隔の規定を外れてい
ても、Ω相さえ前記サイズや間隔の規定を満足していれ
ば、高温特性が向上する。
Now, Cu: 1.5-7.0%, Mg: 0.01-2.0%
For Al alloys such as JIS 2519 or JIS 2618,
When the average size of the θ 'phase exceeds 120 nm and the average spacing between the precipitates of the θ' phase exceeds 100 nm, Cu: 1.5 to
In Al alloys such as JIS 2519 (Ag) containing 7.0%, Mg: 0.01 to 2.0% and further Ag: 0.05 to 0.7%, the average size of the Ω phase exceeds 100 nm, and the precipitation of the Ω phase When the average distance between objects exceeds 150 nm, these θ 'phase and Ω
The effect of improving the high-temperature properties of the phase (exhibiting the Orowan mechanism, which is an obstacle to the transition) is extremely reduced, and as a result, the high-temperature proof stress and creep rupture strength of the Al alloy material are reduced, ensuring excellent high-temperature properties. Can not. In the case of JIS 2519-based or JIS 2618-based Al alloys that do not produce an Ω phase, θ ′
The above definition of phase is important, but JI containing Ag: 0.05-0.7%
In an Al alloy that generates an Ω phase, such as S 2519 (Ag) system, even if the θ ′ phase is out of the above-mentioned size and spacing when the θ ′ phase is included, even the Ω phase satisfies the size and spacing specifications. If so, the high temperature characteristics are improved.

【0014】次に、本発明Al合金における、化学成分組
成について説明する。本発明のAl合金の化学成分組成
は、基本的にJIS 2519 或いはJIS 2618などのAl合金お
よびJIS2519 にAgを加えたJIS 2519(Ag)系Al合金の成分
規格として良いが、より具体的な用途および要求特性に
応じて、以下に説明する成分組成範囲から適宜選択しう
る。
Next, the chemical composition of the Al alloy of the present invention will be described. The chemical composition of the Al alloy of the present invention is basically good as a component standard for JIS 2519 or JIS 2618 and other Al alloys and JIS 2519 (Ag) -based Al alloys obtained by adding Ag to JIS 2519. It can be appropriately selected from the component composition ranges described below according to the required characteristics.

【0015】(Cu:1.5 〜7.0%) Cuは本発明Al合金の基本
成分であり、主としてAl合金の常温および180 ℃以上の
クリープ破断強度および高温耐力を確保するために必須
である。即ち、本発明のAl合金材は、ロケットや航空機
などの航空・宇宙機材用、鉄道車両、自動車、船舶など
の輸送機材用、エンジン部品、コンプレッサーなどの機
械部品用などに使用されるAl合金で、しかも200 ℃以上
の高温の使用環境となるAl合金として、クリープ破断強
度が135N/mm2以上、高温耐力が280N/mm2以上を確保する
必要がある。この点、Cuは固溶強化及び析出強化の双方
の作用によりAl合金の強度を向上させる。後述するMgも
同様の作用を有するが、高温強度( 耐力)の向上に寄与
する割合はCuの方が大きい。この効果は1.5%、より好ま
しくは4.0%以上で発揮され、Cuの含有量が1.5%未満では
上述の効果が小さく、Al合金の常温および180 ℃以上で
の十分なクリープ破断強度および高温耐力が得られな
い。一方、Cuの含有量が7.0%を越えると、CuAl2 の組成
を有する晶出物が発生するため、常温強度が高くなりす
ぎ圧延性、押出性および鍛造性などの加工性が低下す
る。また、Al合金の融点が低下するため、強度も低下し
てしまう。したがって、Cuの含有量は1.5 〜7.0%の範
囲、より好ましくは4.0 〜7.0%の範囲とする。
(Cu: 1.5 to 7.0%) Cu is a basic component of the Al alloy of the present invention and is essential mainly for ensuring the creep rupture strength at room temperature and 180 ° C. or higher and high temperature proof stress of the Al alloy. That is, the Al alloy material of the present invention is an Al alloy used for aerospace equipment such as rockets and aircraft, for transport equipment such as railway vehicles, automobiles, ships, etc., and for mechanical parts such as engine parts and compressors. , yet the Al alloy to be 200 ° C. or higher high-temperature use environment, creep rupture strength 135N / mm 2 or more, high-temperature yield strength is required to ensure a 280N / mm 2 or more. In this regard, Cu improves the strength of the Al alloy by the actions of both solid solution strengthening and precipitation strengthening. Mg, which will be described later, has a similar effect, but Cu contributes more to improvement in high-temperature strength (proof stress) than Cu. This effect is exhibited at 1.5%, more preferably at 4.0% or more.When the Cu content is less than 1.5%, the above-mentioned effect is small, and the Al alloy has sufficient creep rupture strength at room temperature and 180 ° C or higher and high temperature proof stress. I can't get it. On the other hand, if the Cu content exceeds 7.0%, a crystal having a composition of CuAl 2 is generated, so that the room temperature strength becomes too high and the workability such as rollability, extrudability, and forgeability deteriorates. In addition, since the melting point of the Al alloy decreases, the strength also decreases. Therefore, the content of Cu should be in the range of 1.5 to 7.0%, more preferably in the range of 4.0 to 7.0%.

【0016】(Mg:0.01〜2.0%) MgはCuと同様に、固溶強
化及び析出強化の双方の作用により、主としてAl合金の
常温および180 ℃以上のクリープ破断強度および高温耐
力を確保するために必須である。この効果は0.01% 、よ
り好ましくは0.4%以上で発揮され、Mgの含有量が0.01%
未満では上述の効果が小さく、Al合金の常温および180
℃以上での十分なクリープ破断強度および高温耐力が得
られない。一方、Mgの含有量が2.0%、より厳密には1.0%
を越えると、MgAl2 の組成を有する晶出物が発生するた
め、常温強度が高くなりすぎ、圧延性、押出性および鍛
造性などの加工性が低下する可能性が高くなる。また、
Al合金の融点が低下するため、強度も低下してしまう。
したがって、Mgの含有量は0.01〜2.0%の範囲、より好ま
しくは0.4〜1.0%の範囲とする。
(Mg: 0.01 to 2.0%) Like Cu, Mg is mainly used to secure the creep rupture strength and the high temperature proof stress at room temperature and at 180 ° C. or more of an Al alloy by the actions of both solid solution strengthening and precipitation strengthening. Required for This effect is exhibited at 0.01%, more preferably at 0.4% or more, and the content of Mg is 0.01%
Below, the above-mentioned effect is small, and the room temperature of Al alloy and 180
Sufficient creep rupture strength and high temperature proof stress at ℃ or higher cannot be obtained. On the other hand, the content of Mg is 2.0%, more strictly 1.0%
If the ratio exceeds, a crystallized product having a composition of MgAl 2 is generated, so that the room temperature strength becomes too high, and there is a high possibility that workability such as rollability, extrudability and forgeability is reduced. Also,
Since the melting point of the Al alloy decreases, the strength also decreases.
Therefore, the content of Mg is in the range of 0.01 to 2.0%, more preferably in the range of 0.4 to 1.0%.

【0017】(Fe:1.5%以下、Ni:0.8〜2.4%、V:0.05〜0.
15% 、Mn:0.05 〜1.5%、Cr:0.15 〜0.30% 、Zr:0.05 〜
0.50% 、Sc:0.05 〜1.0%の一種または二種以上) Fe、N
i、V 、Mn、Cr、Zr、Scは、いずれもAl合金の組織を繊
維組織化して、常温強度および高温強度を向上させる同
効元素である。この内、FeはAl中には殆ど固溶せず、凝
固時にAlとの反応によってマトリックス中に硬い繊維状
の晶出物を形成して常温強度および高温強度を向上させ
る。特にNiと同時に含有するとAl9(Fe−Ni) を形成して
高温特性を著しく向上させる。しかし、Feを1.5%を越え
て含有すると、不溶性金属間化合物を生成しやすい。こ
のため、Feの含有量は1.5%以下とする。
(Fe: 1.5% or less, Ni: 0.8-2.4%, V: 0.05-0.
15%, Mn: 0.05-1.5%, Cr: 0.15-0.30%, Zr: 0.05-
0.50%, Sc: 0.05 to 1.0% of one or more) Fe, N
i, V, Mn, Cr, Zr, and Sc are the same elements that improve the room-temperature strength and the high-temperature strength by forming the structure of the Al alloy into a fiber structure. Of these, Fe hardly forms a solid solution in Al, but forms a hard fibrous crystal in the matrix by reaction with Al at the time of solidification, thereby improving ordinary temperature strength and high temperature strength. In particular, when it is contained at the same time as Ni, Al 9 (Fe-Ni) is formed and the high-temperature characteristics are remarkably improved. However, when the content of Fe exceeds 1.5%, an insoluble intermetallic compound is easily generated. Therefore, the content of Fe is set to 1.5% or less.

【0018】NiもAl中には殆ど固溶せず、凝固時にAlと
の反応によってマトリックス中に硬い繊維状の晶出物(N
i Al3)を形成して常温強度および高温強度を向上させ
る。特にFeと同時に含有するとAl9(Fe−Ni) を形成して
高温特性を著しく向上させる。しかし、Ni:0.8% 未満で
はこの効果が発揮されず、一方、Ni:2.4% を越えて含有
すると、粗大なNiAl3 を生成しやすく、成形性を阻害す
る。このため、Niの含有量は0.8 〜2.4%の範囲とする。
Ni hardly forms a solid solution in Al, and hard fibrous crystallized substances (N
i Al 3 ) to improve room-temperature strength and high-temperature strength. In particular, when it is contained at the same time as Fe, Al 9 (Fe-Ni) is formed and the high-temperature characteristics are remarkably improved. However, if the content of Ni is less than 0.8%, this effect is not exerted. On the other hand, if the content of Ni is more than 2.4%, coarse NiAl 3 is easily generated, which impairs the formability. Therefore, the content of Ni is set in the range of 0.8 to 2.4%.

【0019】V 、Mn、CrもAl合金の組織を繊維組織化し
て、常温強度および高温強度を向上させる。これらの元
素は、均質化加熱処理時にそれぞれアルミ合金マトリッ
クス中で熱的に安定な化合物であるAl20Cu2Mn3あるいは
Al12Mg2Cr2等の分散粒子を生成する。これら分散粒子は
再結晶後の粒界移動を妨げる作用があるため微細結晶粒
の作成には効果的である。V:0.05% 、Mn:0.05%、Cr:0.1
5%未満ではこれらの効果が得られず、一方、V:0.15% 、
Mn:1.5% 、Cr:0.30%を越えると、溶解鋳造時に粗大な不
溶性金属間化合物を生成しやすく成形不良の原因とな
る。したがって、V 、Mn、Crの含有量は、各々V:0.05〜
0.15% 、Mn:0.05 〜1.5%、Cr:0.15 〜0.30% の範囲とす
る。
V, Mn, and Cr also improve the room-temperature strength and high-temperature strength by forming the structure of the Al alloy into a fiber structure. Each of these elements is a compound that is thermally stable in the aluminum alloy matrix during the homogenization heat treatment, Al 20 Cu 2 Mn 3 or
Generates dispersed particles such as Al 12 Mg 2 Cr 2 . Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, they are effective for producing fine crystal grains. V: 0.05%, Mn: 0.05%, Cr: 0.1
Below 5%, these effects are not obtained, while V: 0.15%,
If the Mn content exceeds 1.5% and the Cr content exceeds 0.30%, a coarse insoluble intermetallic compound is likely to be formed during melting and casting, resulting in poor molding. Therefore, the contents of V, Mn, and Cr are each V: 0.05 to
0.15%, Mn: 0.05 to 1.5%, Cr: 0.15 to 0.30%.

【0020】ZrとScもAl合金の組織を繊維組織化して、
常温強度および高温強度を向上させる。これらの元素
は、アルミ合金マトリックス中で均質化加熱処理時にそ
れぞれアルミ合金マトリックス中で熱的に安定な化合物
であるAl3Sc あるいはAl3Zr 等の微細分散粒子を析出さ
せる。そして、これらの分散粒子は、高温変形時に抵抗
となり、高温特性を向上させる。また、これらの分散粒
子には再結晶後の粒界移動を妨げる作用があるため、ア
ルミ合金マトリックス微細結晶粒の作成にも効果的であ
る。ZrとScの含有量が各々Zr:0.05%未満、Sc:0.05 % 未
満ではこの効果がなく、また一方でZrとScの含有量が各
々Zr:0.50%、Sc:1.0% を越えると、溶解鋳造時に粗大な
不溶性金属間化合物を生成しやすく成形不良の原因とな
る。したがって、ZrとScを含有させる場合、これらの含
有量は、各々Zr:0.05 〜0.50% 、Sc:0.05 〜1.0%の範囲
とする。
Zr and Sc are also made into a fiber structure of the Al alloy structure.
Improves room temperature strength and high temperature strength. These elements precipitate finely dispersed particles of a thermally stable compound such as Al 3 Sc or Al 3 Zr in the aluminum alloy matrix during the homogenization heat treatment in the aluminum alloy matrix. And these dispersed particles become resistance at the time of high temperature deformation, and improve high temperature characteristics. In addition, since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, they are also effective in forming fine aluminum alloy matrix crystal grains. This effect is not obtained when the contents of Zr and Sc are each less than 0.05% Zr and less than 0.05% of Sc.On the other hand, when the contents of Zr and Sc respectively exceed 0.50% and Sc: 1.0%, respectively, the dissolution occurs. During casting, a coarse insoluble intermetallic compound is easily formed, which causes molding failure. Therefore, when Zr and Sc are contained, their contents are respectively in the range of 0.05 to 0.50% for Zr and 0.05 to 1.0% for Sc.

【0021】(Ag:0.05〜0.7%) AgはAl合金中において、
微細で均一なΩ相を形成するとともに、析出物相が存在
しない領域(PFZ;solute-depleted precipitate free zo
ne) の幅を極めて狭くすることによりAl合金の常温およ
び高温強度を向上させる。Agの含有量が0.05% 未満では
この効果がなく、また一方でAgの含有量が0.7%を越えて
含有しても効果は飽和する。したがって、Agの含有量は
0.05〜0.7%の範囲とする。
(Ag: 0.05-0.7%) In the Al alloy,
A region where a fine and uniform Ω phase is formed and no precipitate phase is present (PFZ: solute-depleted precipitate free zo
ne), the room temperature and high temperature strength of the Al alloy is improved by making the width extremely small. If the Ag content is less than 0.05%, this effect is not obtained. On the other hand, if the Ag content exceeds 0.7%, the effect is saturated. Therefore, the content of Ag is
The range is 0.05 to 0.7%.

【0022】その他の元素についても、本発明に係るAl
合金材の高温特性やその他の特性を阻害しない範囲での
含有は許容される。例えば、SiはMgと結合してアルミマ
トリックス中に晶出物としてMg2Si が形成され、溶体化
処理により大部分は固溶するが、過剰なMg2Si が形成さ
れると溶体化処理においても残存して破断の起点になる
ため、成形性が低下する。したがって、Siは0.3%以下と
する。この他、Ti、Bは、結晶粒を微細化するが、過剰
に添加すると粗大な金属間化合物を形成し、成形加工時
の破断の起点になるため、成形性が低下する。したがっ
て、Ti、B は、各々0.20% 以下、0.005%以下までの含有
は許容される。また、この他の不純物元素についてもJI
S 規格での上限値までは許容される。
As for other elements, the Al according to the present invention is also used.
It is permissible to include the alloy material within a range that does not impair the high-temperature characteristics and other characteristics. For example, Si bonds with Mg to form Mg 2 Si as a crystallized substance in the aluminum matrix, and most of the solid solution is formed by the solution treatment, but when excessive Mg 2 Si is formed, the solution is treated in the solution treatment. Remains and becomes the starting point of the fracture, so that the moldability decreases. Therefore, Si is set to 0.3% or less. In addition, Ti and B refine the crystal grains, but when added excessively, form coarse intermetallic compounds and serve as starting points of breakage during the forming process, so that the formability decreases. Therefore, the contents of Ti and B are allowed to be 0.20% or less and 0.005% or less, respectively. In addition, JI
Up to the upper limit in the S standard is allowed.

【0023】更に、本発明に係るAl合金材の製造方法に
ついて説明する。まず、本発明に係るAl合金材は常法に
より製造される。即ち、前記本発明の成分範囲内に溶解
調整されたAl合金溶湯を、例えば、連続鋳造圧延法、半
連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜
選択して鋳造する。次いで、このAl合金鋳塊に均質化熱
処理を施した後、熱間圧延および冷間圧延、または押
出、或いは鍛造などの加工方法により、板材、型材、線
棒など、所望Al合金材の形状に塑性加工される。
Further, a method for manufacturing an Al alloy material according to the present invention will be described. First, the Al alloy material according to the present invention is manufactured by an ordinary method. That is, the molten Al alloy melt-adjusted within the component range of the present invention is cast by appropriately selecting a normal melting casting method such as a continuous casting rolling method and a semi-continuous casting method (DC casting method). Then, after subjecting this Al alloy ingot to a homogenizing heat treatment, hot rolling and cold rolling, or extrusion, or a processing method such as forging, a sheet material, a mold material, a wire rod, etc., into a desired Al alloy material shape. It is plastically processed.

【0024】これら塑性加工後のAl合金材は、必要によ
り溶体化処理および焼入れなどの調質を行う。この熱処
理に用いる炉はバッチ炉、連続焼鈍炉、溶融塩浴炉など
が適宜使用可能であり、焼入れに際しての冷却手段も、
水浸漬、水噴射、空気噴射などの手段が適宜選択され
る。そして、この溶体化処理および焼入れは、可溶性金
属間化合物を再固溶し、かつ冷却中の再析出を十分に抑
制するため、JIS −W −1103、MIL −H −6088F に規定
された条件内にて行うことが好ましい。また、焼入れは
水中あるいは温湯中へ試料を投入しても良い。また焼入
れ後、焼入れ時の歪み強制および最終製品の耐力値を増
大させることを目的として、冷間圧延機、ストレッチャ
ーおよび冷間鍛造等を用いて、伸び換算値で最大10% ま
での冷間加工を行っても良い。更に、容体化処理および
焼入れ後、必要に応じて冷間加工を行った後人工時効処
理を行い、Ω相およびθ' 相を請求項に示す形態に析出
させても良い。前記した通り、人工時効処理条件は、JI
S −W −1103あるいはMIL −H −6088F に規定された条
件内にて行うことが好ましいが、要するに、請求項に示
す形態にΩ相およびθ' 相が得られるものであれば良
い。
The Al alloy material after the plastic working is subjected to a solution treatment, a quenching and the like as necessary. As a furnace used for this heat treatment, a batch furnace, a continuous annealing furnace, a molten salt bath furnace, or the like can be appropriately used, and a cooling means at the time of quenching is also used.
Means such as water immersion, water injection, and air injection are appropriately selected. The solution treatment and quenching are performed under the conditions specified in JIS-W-1103 and MIL-H-6088F in order to re-dissolve the soluble intermetallic compound and sufficiently suppress reprecipitation during cooling. It is preferred to carry out at. In the quenching, the sample may be put into water or hot water. In addition, after quenching, with the aim of forcing strain during quenching and increasing the proof stress of the final product, use a cold rolling mill, stretcher, cold forging, etc. to reduce the cold equivalent to a maximum of 10% in terms of elongation. Processing may be performed. Furthermore, after the soaking process and the quenching process, if necessary, after cold working, an artificial aging treatment may be performed to precipitate the Ω phase and the θ ′ phase in the form described in the claims. As mentioned above, the artificial aging conditions are JI
It is preferably performed under the conditions specified in S-W-1103 or MIL-H-6088F, but in short, it is sufficient if the Ω phase and the θ 'phase can be obtained in the form shown in the claims.

【0025】但し、この溶体化処理および焼入れ条件
が、析出するθ' 相の平均サイズを120 nm未満、θ' 相
の析出物間の平均間隔を100 nm以下とする乃至析出する
Ω相の平均サイズを100 nm未満とするとともに、Ω相の
析出物間の平均間隔を150 nm以下とすることに影響す
る。即ち、本発明Al合金におけるθ' 相およびΩ相の微
細分散析出のためには、冷却途中に粗大なθ' 相乃至Ω
相が析出することを防止するために、冷却速度は20℃/
分以上、好ましくは100 ℃/secとできるだけ速い方が望
ましい。また、昇温速度は、例えば10℃/hr 以上の速い
方が、溶体化処理温度までの昇温中に生じる結晶粒の粗
大化を防止し、破壊靱性および疲労特性に優れる微細結
晶を得るためにも好ましい。
However, the solution treatment and quenching conditions are such that the average size of the precipitated θ ′ phase is less than 120 nm, the average interval between the precipitates of the θ ′ phase is 100 nm or less, or the average of the Ω phase precipitated. This affects the size to less than 100 nm and the average spacing between the Ω phase precipitates to 150 nm or less. That is, in order to finely precipitate the θ ′ phase and the Ω phase in the Al alloy of the present invention, the coarse θ ′ phase to Ω
The cooling rate should be 20 ° C /
Minutes or more, preferably 100 ° C./sec. In addition, the rate of temperature rise, for example, 10 ° C./hr or more is preferable to prevent coarsening of crystal grains generated during the temperature rise to the solution treatment temperature and to obtain fine crystals having excellent fracture toughness and fatigue properties. Also preferred.

【0026】[0026]

【実施例】次に、本発明の実施例を説明する。表1 に示
す組成のAl合金鋳塊(300mm厚み)を溶製後、470 ℃×8
時間の範囲で均質化熱処理を施し、厚さ15mmの板まで熱
間圧延した。次に厚さ12mmの板まで冷間圧延し、硝石炉
を用いて530 ℃で30分の溶体化処理した後水焼入れし、
177 ℃×18時間の時効処理でT6材とし、Al合金板供試材
とした。
Next, embodiments of the present invention will be described. After smelting an Al alloy ingot (300 mm thick) having the composition shown in Table 1, 470 ° C × 8
Homogenization heat treatment was performed within a time range and hot-rolled to a 15 mm-thick plate. Next, cold-rolled to a thickness of 12 mm, and subjected to solution treatment at 530 ° C. for 30 minutes using a nitrite furnace, followed by water quenching.
T6 material was obtained by aging treatment at 177 ° C. for 18 hours, which was used as an Al alloy plate test material.

【0027】そして、前記供試材のミクロ組織につい
て、50000 倍の倍率の透過型電子顕微鏡(TEM) により、
(100) 入射、(111) 入射のTEM 画像解析を行い、供試材
の(100) 面上に析出するθ' 相および(111) 面上に析出
するΩ相の、各平均サイズ(nm)、各相の析出物間の平均
間隔(nm)を測定した。また、同様に供試材の平均結晶粒
径を求めたところ、平均結晶粒径dIは表2 の発明例1 は
約80μm 、その他の例はいずれも20μm と同じサイズで
あった。
Then, the microstructure of the test material was measured with a transmission electron microscope (TEM) at a magnification of 50000 times.
TEM image analysis of (100) incidence and (111) incidence was performed, and the average size (nm) of the θ 'phase precipitated on the (100) plane and the Ω phase precipitated on the (111) plane of the test material. The average interval (nm) between the precipitates of each phase was measured. When the average crystal grain size of the test material was determined in the same manner, the average crystal grain size dI was about 80 μm in Invention Example 1 in Table 2, and was 20 μm in all other examples.

【0028】また、前記供試材の高温特性として、特に
Al合金の1000hrクリープ破断強度 (応力負荷方向:LT 方
向、温度204 ℃) および高温耐力 (保持条件:204℃で10
00hr、引張方向:LT 方向、引張温度:204℃、引張歪速
度:8×10-5S -1) を測定した。これらの試験片の板厚は
2.5mm とした。これらの結果を常温での耐力とともに表
2 に示す。
In addition, the high-temperature properties of the test materials are, in particular,
1000hr creep rupture strength of Al alloy (stress load direction: LT direction, temperature 204 ° C) and high temperature strength (holding condition: 10
00 hr, tensile direction: LT direction, tensile temperature: 204 ° C., tensile strain rate: 8 × 10 −5 S −1 ). The thickness of these specimens is
2.5 mm. These results are shown together with the proof stress at room temperature.
See Figure 2.

【0029】表2 から明らかな通り、(100) 面上に析出
するθ' 相および(110) 面上に析出するΩ相の、各平均
サイズ(nm)と各相の析出物間の平均間隔(nm)が、各々規
定を満足する発明例No.1〜6 は、クリープ破断強度が15
0N/mm2以上、および高温耐力が200N/mm2以上と、高温特
性に著しく優れている。
As is clear from Table 2, the average size (nm) of the θ 'phase precipitated on the (100) plane and the Ω phase precipitated on the (110) plane and the average distance between the precipitates of each phase. (nm), Invention Examples Nos. 1 to 6 satisfying the respective requirements have a creep rupture strength of 15
0N / mm 2 or more, and a high temperature yield strength and 200 N / mm 2 or more, is considerably excellent high-temperature characteristics.

【0030】これに対し、発明例と同じ成分組成を有す
るAl合金であっても、(100) 面上に析出するθ' 相また
は(110) 面上に析出するΩ相の、各平均サイズ(nm)と各
相の析出物間の平均間隔(nm)が、各々規定を越える比較
例No.7〜9 は、クリープ破断強度が100N/mm2以下、およ
び高温耐力が190N/mm2以下と、高温特性が著しく劣って
いる。
On the other hand, even in the case of an Al alloy having the same component composition as in the invention, each average size (θ ′ phase precipitated on the (100) plane or Ω phase precipitated on the (110) plane ( nm) and the average distance between each phase precipitates (nm) is a comparative example each exceeds a specified No.7~9 is creep rupture strength 100 N / mm 2 or less, and high-temperature yield strength is 190 N / mm 2 or less and , High temperature properties are remarkably inferior.

【0031】したがって、JIS 2519 Al 合金および2519
(Ag)Al合金材を製造しても、高い高温特性を有するAl合
金を、必ずしも再現性良く作れるわけではないという問
題が立証されるとともに、本発明の(100) 面上に析出す
るθ' 相および(110) 面上に析出するΩ相の、各平均サ
イズ(nm)と各相の析出物間の平均間隔(nm)の規定の臨界
的な意義が裏付けられる。この結果、本発明によって得
られるAl合金材が、ロケットや航空機などの航空・宇宙
機材用、鉄道車両、自動車、船舶などの輸送機材用、エ
ンジン部品、コンプレッサーなどの機械部品用などに使
用されるAl合金で、特に200 ℃以上の高温の使用環境と
なるAl合金に、高温特性に優れたAl合金として好適に用
いれることが分かる。
Therefore, JIS 2519 Al alloy and 2519
(Ag) Even if an Al alloy material is manufactured, the problem that an Al alloy having high high-temperature properties cannot always be produced with good reproducibility is proved, and θ ′ that precipitates on the (100) plane of the present invention is The critical significance of the definition of the average size (nm) of the phase and the Ω phase precipitated on the (110) plane and the average spacing (nm) between precipitates of each phase is supported. As a result, the Al alloy material obtained by the present invention is used for aerospace equipment such as rockets and aircraft, railway vehicles, automobiles, transportation equipment such as ships, engine parts, mechanical parts such as compressors, and the like. It can be seen that the Al alloy is suitable for use as an Al alloy excellent in high-temperature characteristics, particularly for an Al alloy which is used at a high temperature of 200 ° C. or more.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明によれば、高い高温特性を再現性
良く保証することが可能なAl合金を提供することができ
る。したがって、これら高温特性に優れた耐熱Al合金材
の用途を拡大することができる点で、工業的な価値を有
するものである。
According to the present invention, it is possible to provide an Al alloy capable of guaranteeing high high-temperature characteristics with good reproducibility. Therefore, it has industrial value in that the applications of the heat-resistant Al alloy material having excellent high-temperature characteristics can be expanded.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cu:1.5〜7.0%、Mg:0.01 〜2.0%を含み、
θ' 相を有するアルミニウム合金であって、θ' 相の平
均サイズが120 nm以下であるとともに、θ'相の析出物
間の平均間隔が100 nm以下であることを特徴とする高温
特性に優れたアルミニウム合金。
(1) Cu: 1.5 to 7.0%, Mg: 0.01 to 2.0%,
An aluminum alloy having a θ ′ phase, wherein the average size of the θ ′ phase is 120 nm or less, and the average interval between the precipitates of the θ ′ phase is 100 nm or less, which is excellent in high-temperature characteristics. Aluminum alloy.
【請求項2】 Cu:1.5〜7.0%、Mg:0.01 〜2.0%、Ag:0.0
5 〜0.7%を含み、Ω相を有するアルミニウム合金であっ
て、Ω相の平均サイズが100 nm以下であるとともに、Ω
相の析出物間の平均間隔が150 nm以下であることを特徴
とする高温特性に優れたアルミ合金。
2.Cu:1.5-7.0%, Mg: 0.01-2.0%, Ag: 0.0
An aluminum alloy containing 5 to 0.7% and having an Ω phase, wherein the average size of the Ω phase is 100 nm or less and
An aluminum alloy having excellent high-temperature properties, characterized in that the average spacing between phase precipitates is 150 nm or less.
【請求項3】 前記アルミ合金が、更にFe:1.5% 以下、
Ni:0.8〜2.4%、V:0.05〜0.15% 、Mn:0.05 〜1.5%、Cr:
0.15 〜0.30% 、Zr:0.05 〜0.50% 、Sc:0.05〜1.0%の一
種または二種以上を含有する請求項1または2に記載の
高温特性に優れたアルミニウム合金。
3. The method according to claim 1, wherein the aluminum alloy further comprises Fe: 1.5% or less;
Ni: 0.8 to 2.4%, V: 0.05 to 0.15%, Mn: 0.05 to 1.5%, Cr:
3. The aluminum alloy excellent in high-temperature properties according to claim 1, which contains one or more of 0.15 to 0.30%, Zr: 0.05 to 0.50%, and Sc: 0.05 to 1.0%.
【請求項4】 前記アルミニウム合金の1000hrクリープ
破断強度 (応力負荷方向:LT 方向、温度204 ℃) が150N
/mm2以上である請求項1乃至3のいずれか1項に記載の
高温特性に優れたアルミニウム合金。
4. The aluminum alloy has a creep rupture strength for 1000 hours (stress load direction: LT direction, temperature 204 ° C.) of 150N.
The aluminum alloy excellent in high-temperature characteristics according to any one of claims 1 to 3, which is not less than / mm 2 .
【請求項5】 前記アルミニウム合金の高温耐力 (保持
条件:204℃で1000hr、引張方向:LT 方向、引張温度:204
℃、引張歪速度:8×10-5S -1) が200N/mm2以上である請
求項1乃至4のいずれか1項に記載の高温特性に優れた
アルミニウム合金。
5. High temperature proof stress of the aluminum alloy (holding conditions: at 204 ° C. for 1000 hours, tensile direction: LT direction, tensile temperature: 204
The aluminum alloy having excellent high-temperature characteristics according to any one of claims 1 to 4, wherein the aluminum alloy has a temperature (° C) and a tensile strain rate of 8 × 10 -5 S -1 ) of 200 N / mm 2 or more.
【請求項6】 前記アルミニウム合金が航空・宇宙機材
用である請求項1乃至5のいずれか1項に記載の高温特
性に優れたアルミニウム合金。
6. The aluminum alloy according to claim 1, wherein the aluminum alloy is for aerospace equipment.
JP10815398A 1998-04-17 1998-04-17 Aluminum alloy excellent in high temperature characteristic Pending JPH11302764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10815398A JPH11302764A (en) 1998-04-17 1998-04-17 Aluminum alloy excellent in high temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10815398A JPH11302764A (en) 1998-04-17 1998-04-17 Aluminum alloy excellent in high temperature characteristic

Publications (1)

Publication Number Publication Date
JPH11302764A true JPH11302764A (en) 1999-11-02

Family

ID=14477302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10815398A Pending JPH11302764A (en) 1998-04-17 1998-04-17 Aluminum alloy excellent in high temperature characteristic

Country Status (1)

Country Link
JP (1) JPH11302764A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522600A1 (en) * 2003-09-26 2005-04-13 Kabushiki Kaisha Kobe Seiko Sho Forged aluminium alloy material having excellent high temperature fatigue strength
WO2008110270A1 (en) * 2007-03-09 2008-09-18 Aleris Aluminum Koblenz Gmbh Aluminium alloy having high- strength at elevated temperature
WO2011114805A1 (en) * 2010-03-16 2011-09-22 株式会社村田製作所 Laminated ceramic electronic component
JP2013515169A (en) * 2009-12-22 2013-05-02 リオ ティント アルカン インターナショナル リミテッド Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
CN106893910A (en) * 2017-03-01 2017-06-27 辽宁忠大铝业有限公司 A kind of low rare earth high-strength aluminium alloy
DE102016200535A1 (en) * 2016-01-18 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Method for producing an aluminum casting alloy
CN109898000A (en) * 2019-03-29 2019-06-18 郑州轻研合金科技有限公司 A kind of super high strength heat resistant alloy and preparation method thereof
KR20220131403A (en) * 2021-03-18 2022-09-28 (주) 동양에이.케이코리아 High-strength aluminum rolled plate manufacturing method and high-strength aluminum rolled plate using the same
KR20220156367A (en) * 2021-05-18 2022-11-25 한국생산기술연구원 2xxx aluminum alloys, and methods for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522600A1 (en) * 2003-09-26 2005-04-13 Kabushiki Kaisha Kobe Seiko Sho Forged aluminium alloy material having excellent high temperature fatigue strength
WO2008110270A1 (en) * 2007-03-09 2008-09-18 Aleris Aluminum Koblenz Gmbh Aluminium alloy having high- strength at elevated temperature
JP2013515169A (en) * 2009-12-22 2013-05-02 リオ ティント アルカン インターナショナル リミテッド Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
WO2011114805A1 (en) * 2010-03-16 2011-09-22 株式会社村田製作所 Laminated ceramic electronic component
JP5527401B2 (en) * 2010-03-16 2014-06-18 株式会社村田製作所 Multilayer ceramic electronic components
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
DE102016200535A1 (en) * 2016-01-18 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Method for producing an aluminum casting alloy
CN106893910A (en) * 2017-03-01 2017-06-27 辽宁忠大铝业有限公司 A kind of low rare earth high-strength aluminium alloy
CN109898000A (en) * 2019-03-29 2019-06-18 郑州轻研合金科技有限公司 A kind of super high strength heat resistant alloy and preparation method thereof
KR20220131403A (en) * 2021-03-18 2022-09-28 (주) 동양에이.케이코리아 High-strength aluminum rolled plate manufacturing method and high-strength aluminum rolled plate using the same
KR20220156367A (en) * 2021-05-18 2022-11-25 한국생산기술연구원 2xxx aluminum alloys, and methods for producing the same

Similar Documents

Publication Publication Date Title
JP3997009B2 (en) Aluminum alloy forgings for high-speed moving parts
EP0981653B1 (en) Method of improving fracture toughness in aluminum-lithium alloys
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JPWO2008072776A1 (en) High strength aluminum alloy material and manufacturing method thereof
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
EP3833794A1 (en) 7xxx-series aluminium alloy product
CN111989415B (en) 6XXX aluminum alloys for extrusions having excellent impact properties and high yield strength, and methods of making the same
JP4541934B2 (en) Manufacturing method of forming aluminum alloy sheet
US10125410B2 (en) Heat resistant aluminum base alloy and wrought semifinsihed product fabrication method
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2006257522A (en) Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
JP2006206932A (en) Method for producing aluminum alloy sheet for forming
JPH0995750A (en) Aluminum alloy excellent in heat resistance
JP4955969B2 (en) Manufacturing method of forming aluminum alloy sheet
JP2009249647A (en) Magnesium alloy excellent in creep characteristics at high temperature, and manufacturing method therefor
JP5416795B2 (en) Aluminum alloy sheet for forming
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2008025006A (en) Aluminum alloy sheet having excellent stress corrosion cracking resistance
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP2008144209A (en) Aluminum alloy sheet and its manufacturing method
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Effective date: 20050617

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003