JPH11300880A - Building material - Google Patents

Building material

Info

Publication number
JPH11300880A
JPH11300880A JP13117898A JP13117898A JPH11300880A JP H11300880 A JPH11300880 A JP H11300880A JP 13117898 A JP13117898 A JP 13117898A JP 13117898 A JP13117898 A JP 13117898A JP H11300880 A JPH11300880 A JP H11300880A
Authority
JP
Japan
Prior art keywords
oxide
building material
photocatalytic function
less
photocatalyst film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13117898A
Other languages
Japanese (ja)
Inventor
Sadataka Mayumi
禎隆 真弓
Tomoaki Morikawa
智章 森川
Yoshiyuki Nakanishi
義行 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP13117898A priority Critical patent/JPH11300880A/en
Publication of JPH11300880A publication Critical patent/JPH11300880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an adhered contaminant according to a contact angle, surface roughness and a charge half-life and to simultaneously positively decompose the contaminant by forming a smooth photocatalyst film containing an oxide having a photocatalytic function on a surface of an inorganic binder. SOLUTION: A base material 1 is covered on its surface with a binder layer 2, and a photocatalyst film is formed in the shape of exposing an oxide 2 having a photocatalytic function on the surface. A smoothness, i.e., surface roughness Ra of the photocatalyst film is 100 nm or less, a charge half-life is 30 sec or less, and a contact angle of water is 30 degrees or less. An oxide having a photocatalytic function desirably contains at least one or more of a titanium oxide, zinc oxide and a tin oxide. As a binder of the photocatalyst film, for example, a polysiloxane resin or the like is used. A light stabilizer contained in the binder, a hindered amine light stabilizer, cerium oxide or the like is used as an organic series.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は住宅、非住宅の内外
装に使用する建材分野に係り、特に防汚性が必要とされ
る建材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of construction materials used for interior and exterior of houses and non-houses, and more particularly to construction materials requiring antifouling properties.

【0002】[0002]

【従来の技術】防汚性を確保するため、従来から建材の
表面に無機塗料を塗布して、経時変化による表面層の親
水化により雨どいや窓枠の隅から発生する黒ずんだ雨ダ
レ汚染跡を防止する技術が用いられてきた。しかし、建
材の表面に現われる水の接触角が35度から45度でと
どまってしまい、また従来塗膜における表面の電気抵抗
値は1012桁であるため帯電半減時間が150秒以上と
長いため汚染物が付着しやすく、また付着汚染物そのも
のを分解することがないため、軒下やベランダ下などの
雨によって洗い流されにくい部分の汚れの堆積物や、北
向きの壁や日当たりの悪い部分のカビやこけ等による汚
れは防ぎにくかった。
2. Description of the Related Art In order to ensure antifouling properties, an inorganic paint is conventionally applied to the surface of a building material, and the surface layer becomes hydrophilic due to aging. Techniques to prevent traces have been used. However, the contact angle of water that appears on the surface of building materials is limited to 35 to 45 degrees, and the electric resistance value of the surface of the conventional coating film is 1012 digits. Easily accumulates and does not decompose adhering contaminants, so it is difficult to wash away by rain, such as under eaves or under a veranda, and mold and moss on north-facing walls and poorly sunny areas It was difficult to prevent dirt from being caused.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたもので、無機バインダー表面
に、光触媒機能を有する酸化物を含有した平滑な光触媒
膜を形成することで、接触角、表面粗さ、帯電半減時間
によって付着汚染物を防ぐと同時に積極的に付着汚染物
を分解する、防汚建材を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended to form a smooth photocatalyst film containing an oxide having a photocatalytic function on the surface of an inorganic binder so that contact can be achieved. An object of the present invention is to provide an antifouling building material which prevents adhered contaminants by the corner, surface roughness, and charging half-life and simultaneously actively decomposes adhered contaminants.

【0004】[0004]

【課題を解決するための手段】防汚性を持たすために、
基材上のバインダー表面に光触媒機能を有する酸化物を
平滑になるよう形成させること、光触媒の水分吸着によ
って表面の帯電を防止することにより堆積物や汚染物が
付着しにくくし、さらに表面に付着する堆積物や汚染物
に対しては光触媒作用により、有機物質の分解機能と親
水性による自浄機能によって除去する。
[Means for Solving the Problems] In order to have antifouling properties,
Oxide having photocatalytic function is formed on the surface of the binder on the base material so as to be smooth, and the surface of the photocatalyst is prevented from being charged due to moisture adsorption, so that deposits and contaminants are hardly attached, and further attached to the surface. The deposited sediment and contaminants are removed by a photocatalytic action by a function of decomposing organic substances and a self-cleaning function by hydrophilicity.

【0005】さらに光触媒による膜の劣化を防止するた
めに、バインダーには光触媒反応により発生する電子と
正孔を中和し、また光触媒機能を有する酸化物で吸収し
きれなかった紫外線を吸収する光安定化剤及び紫外線吸
収剤を含有させて有機分の分解を防止する。
Further, in order to prevent the deterioration of the film due to the photocatalyst, the binder neutralizes the electrons and holes generated by the photocatalytic reaction, and absorbs the ultraviolet rays which cannot be absorbed by the oxide having the photocatalytic function. A stabilizer and an ultraviolet absorber are contained to prevent decomposition of organic components.

【0006】[0006]

【発明の実施の形態】次に本発明の実施の形態を図1に
基づき説明する。図1は本発明の実施形態に係る建材の
構成を示す断面図である。図1は、基材1表面を、バイ
ンダー層2が覆い、その表面に光触媒機能を有する酸化
物3が露出する形で光触媒膜が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a configuration of a building material according to an embodiment of the present invention. In FIG. 1, a photocatalytic film is formed in such a manner that a binder layer 2 covers the surface of a substrate 1 and an oxide 3 having a photocatalytic function is exposed on the surface.

【0007】光触媒膜の平滑性すなわち表面粗さRaは
好ましくは100nm以下、望ましくは40nm以下に
することにより、塗膜の凹凸の隙間に汚れが著しく堆積
することがなく、光触媒反応による分解、洗浄によって
除去することができる。尚、表面粗さRaはJIS B
0601に準拠して下記の測定条件で測定した。 TRACING SPEED 0.03mm/s CUT OFF 0.025mm LENGTH 1mm 光触媒膜は、照明・太陽光からの紫外線によって付着し
た有機汚染物を分解する。又光触媒による水分吸着によ
って表面のイオン伝導性が向上して電気抵抗値が下が
り、帯電半減時間が好ましくは30秒以下、望ましくは
10秒以下に短くなることにより、汚染物質を表面に付
着させにくくする。同時に水の接触角が好ましくは30
度以下、望ましくは15度以下になることにより汚染物
質が水によって流れ落ちて塗膜面が洗浄されると同時
に、水膜として薄く広がるため雨ダレ汚染跡ができにく
い面となる。また光触媒膜は紫外線を吸収してベースコ
ート層の劣化を防止する。
By setting the smoothness of the photocatalytic film, that is, the surface roughness Ra to preferably 100 nm or less, and desirably 40 nm or less, no dirt is remarkably deposited in unevenness of the coating film, and decomposition and washing by the photocatalytic reaction are performed. Can be removed by The surface roughness Ra is JIS B
Measurement was carried out under the following measurement conditions in accordance with No. 0601. TRACING SPEED 0.03 mm / s CUT OFF 0.025 mm LENGTH 1 mm The photocatalytic film decomposes organic contaminants attached by ultraviolet rays from illumination and sunlight. In addition, the ionic conductivity of the surface is improved by the adsorption of water by the photocatalyst, the electric resistance value is reduced, and the charging half-life is reduced to preferably 30 seconds or less, preferably 10 seconds or less, so that it is difficult for contaminants to adhere to the surface. I do. At the same time, the contact angle of water is preferably 30
When the temperature is less than 15 degrees, desirably 15 degrees or less, contaminants flow down with water to wash the coating film surface, and at the same time, the surface spreads thinly as a water film, so that it is difficult to form traces of rain dripping contamination. Further, the photocatalytic film absorbs ultraviolet rays to prevent deterioration of the base coat layer.

【0008】光触媒機能を有する酸化物は、酸化チタ
ン、酸化亜鉛、酸化錫の少なくとも一つ以上を含んでい
ることが望ましい。表面粗さを小さくするためにも、粒
径は好ましくは15nm以下、望ましくは10nm以下
のものが良い。光触媒膜のバインダーは、例えばポリシ
ロキサン樹脂、アクリルシリコン樹脂、シリカゾル、ア
ルカリシリケート等が挙げられる。
The oxide having a photocatalytic function preferably contains at least one of titanium oxide, zinc oxide and tin oxide. In order to reduce the surface roughness, the particle size is preferably 15 nm or less, more preferably 10 nm or less. Examples of the binder for the photocatalytic film include polysiloxane resin, acrylic silicon resin, silica sol, and alkali silicate.

【0009】バインダー中に含有する光安定化剤は、紫
外線および光触媒より発生する電子と正孔の中和を目的
とし、また紫外線吸収剤は表面の光触媒機能を有する酸
化物によって吸収し切れなかった紫外線の吸収を目的と
しており、例えば有機系としてヒンダードアミン系光安
定化剤、ベンゾトリアゾール誘導体、ベンゾフェノン誘
導体、サリチル酸誘導体、無機系として酸化セリウム、
酸化鉄、酸化コバルト等が挙げられる。
The light stabilizer contained in the binder is intended to neutralize electrons and holes generated by ultraviolet light and a photocatalyst, and the ultraviolet absorber could not be completely absorbed by the oxide having a photocatalytic function on the surface. It is intended to absorb ultraviolet rays, for example, hindered amine light stabilizers as organic, benzotriazole derivatives, benzophenone derivatives, salicylic acid derivatives, cerium oxide as inorganic,
Examples include iron oxide and cobalt oxide.

【0010】光触媒機能を有する酸化物に担持される金
属は、光触媒の活性を向上させるものであれば良い。例
えば、Cu,Ag,Zn,V,W,Pt,Nb,Sb,
Ta,As,Cr,Fe,Mn,Co,Ni等が挙げら
れる。
The metal carried on the oxide having a photocatalytic function may be any metal as long as it enhances the activity of the photocatalyst. For example, Cu, Ag, Zn, V, W, Pt, Nb, Sb,
Examples include Ta, As, Cr, Fe, Mn, Co, and Ni.

【0011】光触媒膜に添加される金属酸化物は、助触
媒として親水性を向上させるものであれば良い。例え
ば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム
等が挙げられる。光触媒をコーティングする金属酸化物
は、樹脂の酸化分解に関与する電子と正孔の減少を目的
として、酸化チタン、酸化亜鉛、酸化錫等の光触媒粒子
表面を緻密に被覆するもので、例えば酸化ケイ素、酸化
アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化アン
チモンなどが挙げられる。
The metal oxide added to the photocatalyst film may be any one which improves hydrophilicity as a co-catalyst. For example, silicon oxide, aluminum oxide, zirconium oxide, and the like can be given. The metal oxide that coats the photocatalyst is a material that densely covers the surface of photocatalyst particles such as titanium oxide, zinc oxide, and tin oxide for the purpose of reducing electrons and holes involved in the oxidative decomposition of the resin. , Aluminum oxide, zinc oxide, zirconium oxide, antimony oxide and the like.

【0012】光触媒膜に添加される導電性物質は表面の
電子伝導性を向上させて電気抵抗値を減少させ、堆積物
や汚染物の静電気による吸着を防止することを目的とし
ており、例えば酸化錫、酸化錫+酸化アンチモン、酸化
亜鉛等が挙げられる。
The conductive substance added to the photocatalyst film has the purpose of improving the electron conductivity of the surface, reducing the electric resistance value, and preventing adsorption of deposits and contaminants by static electricity. , Tin oxide + antimony oxide, zinc oxide and the like.

【0013】(実施例1)アクリルウレタン樹脂系塗膜
が形成された表面処理済みのフレキシブル板を基材とし
て用い、ヒンダードアミン系光安定化剤、ベンゾトリア
ゾール誘導体を含有する有機変性ポリシロキサン樹脂系
塗料を塗布し、乾燥機にて80℃で1分間乾燥を行っ
た。次に酸化チタン、酸化アルミニウムの混合ゾル溶液
を塗布し、乾燥機にて120℃で3分乾燥させた。硬化
後の塗膜の表面粗さRaは80nmであった。これに紫
外線光源(三共電気、ブラックライトブルー(BLB)
蛍光灯)にて0.3mW/cm2の紫外線を約24時間
照射した。これを接触角測定器(共和界面科学、CA−
X150)にて測定した水の接触角は22度であった。
なお、以下の実施例及び比較例は全てこの紫外線照射方
法及び接触角測定方法を用いている。
(Example 1) An organically modified polysiloxane resin-based paint containing a hindered amine light stabilizer and a benzotriazole derivative, using a surface-treated flexible plate on which an acrylic urethane resin-based coating film is formed as a base material And dried at 80 ° C. for 1 minute in a drier. Next, a mixed sol solution of titanium oxide and aluminum oxide was applied and dried at 120 ° C. for 3 minutes in a drier. The surface roughness Ra of the cured coating film was 80 nm. It has an ultraviolet light source (Sankyo Electric, Black Light Blue (BLB)
Irradiation with ultraviolet light of 0.3 mW / cm 2 for about 24 hours using a fluorescent lamp. This was measured using a contact angle measuring instrument (Kyowa Interface Science, CA-
X150), the contact angle of water was 22 degrees.
The following examples and comparative examples all use this ultraviolet irradiation method and contact angle measurement method.

【0014】(比較例1)実施例1において、ヒンダー
ドアミン系光安定化剤、ベンゾトリアゾール誘導体を除
いた有機変性ポリシロキサン樹脂系塗料を用い、その他
は同様の方法で比較試験を行った。硬化後の表面粗さR
aは50nm、水の接触角は20度であった。
Comparative Example 1 A comparative test was conducted in the same manner as in Example 1 except that a hindered amine-based light stabilizer and an organically modified polysiloxane resin-based paint except for a benzotriazole derivative were used. Surface roughness after curing R
a was 50 nm, and the contact angle of water was 20 degrees.

【0015】(比較例2)実施例1において、酸化チタ
ン、酸化アルミニウムの混合ゾル溶液の塗布を除いた以
外は同様の方法で比較試験を行った。硬化後の表面粗さ
Raは10nm、水の接触角は76度であった。
Comparative Example 2 A comparative test was conducted in the same manner as in Example 1, except that the application of the mixed sol solution of titanium oxide and aluminum oxide was omitted. The surface roughness Ra after curing was 10 nm, and the contact angle of water was 76 degrees.

【0016】(比較例3)実施例1において、ベンゾト
リアゾール誘導体を含有する有機変性ポリシロキサン樹
脂系塗料の塗布後の乾燥を80℃で5分間乾燥を行った
以外は同様の方法で行った。硬化後の表面粗さは120
nm、水の接触角は34度であった。
Comparative Example 3 The procedure of Example 1 was repeated, except that the organic modified polysiloxane resin-based paint containing a benzotriazole derivative was dried at 80 ° C. for 5 minutes. Surface roughness after curing is 120
nm, the contact angle of water was 34 degrees.

【0017】(実施例2)アクリルシリコン樹脂系塗膜
が形成された表面処理済みのサイディングを基材として
用い、ポリシロキサン樹脂とアクリルシリコン樹脂を含
む塗料を塗布し、乾燥機にて80℃で1分間乾燥を行っ
た。次に酸化セリウムを含有させた有機変性ポリシロキ
サン樹脂系塗料を塗布し、乾燥機にて80℃で1分間乾
燥を行った。この上に酸化チタン、酸化アルミニウム、
酸化ケイ素の混合ゾル溶液を塗布し、乾燥機にて150
℃で5分乾燥させた。硬化後の塗膜の表面粗さRaは8
0nmであった。水の接触角は15度であった。
(Example 2) A coating containing a polysiloxane resin and an acrylic silicone resin was applied using a surface-treated siding on which an acrylic silicone resin-based coating film was formed as a base material, and dried at 80 ° C in a dryer. Drying was performed for 1 minute. Next, an organically modified polysiloxane resin-based paint containing cerium oxide was applied and dried at 80 ° C. for 1 minute in a drier. Titanium oxide, aluminum oxide,
A mixed sol solution of silicon oxide is applied, and dried with a dryer.
Dry at 5 ° C. for 5 minutes. The surface roughness Ra of the cured coating film is 8
It was 0 nm. The contact angle of water was 15 degrees.

【0018】(比較例4)実施例2において、酸化セリ
ウムを含有させた有機変性ポリシロキサン樹脂系塗料の
塗布を除いた以外は同様の方法で比較試験を行った。硬
化後の表面粗さRaは70nmであった。水の接触角は
14度であった。
Comparative Example 4 A comparative test was conducted in the same manner as in Example 2 except that the application of the organically modified polysiloxane resin-based paint containing cerium oxide was omitted. The surface roughness Ra after curing was 70 nm. The contact angle of water was 14 degrees.

【0019】(比較例5)実施例2において、酸化チタ
ン、酸化アルミニウム、酸化ケイ素の混合ゾル溶液の塗
布を除いた以外は同様の方法で比較試験を行った。硬化
後の表面粗さRaは60nmであった。水の接触角は7
3度であった。
Comparative Example 5 A comparative test was performed in the same manner as in Example 2 except that the application of the mixed sol solution of titanium oxide, aluminum oxide and silicon oxide was omitted. The surface roughness Ra after curing was 60 nm. Water contact angle is 7
3 degrees.

【0020】(実施例3)ウレタン樹脂系塗膜が形成さ
れた表面処理済みのアルミニウム板を基材として用い、
有機変性ポリシロキサン樹脂系塗料を塗布し、乾燥機に
て80℃で1分間乾燥を行った。 次に酸化アルミニウ
ムで表面をコーティング処理した酸化チタンゾル溶液を
塗布し、乾燥機にて100℃で3分乾燥させた。硬化後
の塗膜の表面粗さRaは40nmであった。水の接触角
は24度であった。
Example 3 A surface-treated aluminum plate on which a urethane resin-based coating film was formed was used as a base material.
An organically modified polysiloxane resin-based coating was applied and dried at 80 ° C. for 1 minute in a drier. Next, a titanium oxide sol solution whose surface was coated with aluminum oxide was applied and dried at 100 ° C. for 3 minutes using a drier. The surface roughness Ra of the cured coating film was 40 nm. The water contact angle was 24 degrees.

【0021】(比較例6)実施例3において、酸化アル
ミニウムによる表面のコーティング処理を施していない
酸化チタンゾル溶液を用いて同様の比較試験を行った。
塗膜の表面粗さRaは40nmであった。水の接触角は
20度であった。
(Comparative Example 6) The same comparative test as in Example 3 was performed using a titanium oxide sol solution in which the surface was not coated with aluminum oxide.
The surface roughness Ra of the coating film was 40 nm. The contact angle of water was 20 degrees.

【0022】上記実施例1〜3、及び比較例1〜6の建
材について耐汚染性試験を行った。東京都心部における
各種白色塗装版の曝露結果(色差=ΔE)を図2に示
す。なお密着不良を起こした建材については、色差の測
定は行わなかった。
The building materials of Examples 1 to 3 and Comparative Examples 1 to 6 were subjected to a stain resistance test. FIG. 2 shows the exposure results (color difference = ΔE) of various white paint plates in central Tokyo. The color difference was not measured for the building material having the poor adhesion.

【0023】比較例1、4、6はいずれもバインダー層
に光安定化剤及び紫外線吸収剤が含有されていないため
紫外線及び光触媒反応による塗膜の劣化が生じ、剥離な
どの密着不良が生じた。比較例2及び5は光触媒機能を
有する酸化物が含有されていないため汚染物が付着して
図のように色差が上昇した。比較例3は光触媒機能を有
する酸化物が表面に出過ぎてしまい結果として光触媒膜
の表面が荒くなり、汚染物が膜の凹凸の隙間に汚れが著
しく堆積しまいΔEが上昇した。なお実施例はいずれも
ΔE<1以下の防汚性が確認された。
In Comparative Examples 1, 4 and 6, since the binder layer did not contain a light stabilizer and an ultraviolet absorber, the coating film deteriorated due to ultraviolet light and photocatalytic reaction, and poor adhesion such as peeling occurred. . In Comparative Examples 2 and 5, since no oxide having a photocatalytic function was contained, contaminants adhered and the color difference increased as shown in the figure. In Comparative Example 3, the oxide having the photocatalytic function was excessively exposed on the surface, and as a result, the surface of the photocatalytic film became rough, and contaminants were significantly deposited on the unevenness of the film, thereby increasing ΔE. In each of the examples, antifouling property of ΔE <1 or less was confirmed.

【0024】上記実施例1〜3、及び比較例1〜6の建
材について帯電半減時間T(秒)(シシド静電気(株)
製STATIC HONESTMETER)を測定した
結果を図3に示す。なお帯電半減時間測定の負荷電圧1
0kVである。
With respect to the building materials of Examples 1 to 3 and Comparative Examples 1 to 6, the charging half-life T (second) (Sisido Electrostatic Co., Ltd.)
FIG. 3 shows the results of measuring STATIC HONESTMETER (manufactured by STATIC HONESTMETER). In addition, load voltage 1 for charging half-life measurement
0 kV.

【0025】バインダー表面に光触媒機能を有する酸化
物を含有させることにより、光触媒による水分吸着によ
って表面のイオン伝導性が向上して電気抵抗値が下が
り、30秒以下の帯電半減時間が確認された。
By adding an oxide having a photocatalytic function to the surface of the binder, the ionic conductivity of the surface was improved due to the adsorption of water by the photocatalyst, the electric resistance was reduced, and a charging half-life of 30 seconds or less was confirmed.

【0026】[0026]

【発明の効果】本発明は上記効果により次の効果を発揮
する。光安定化剤と紫外線吸収剤を含有するバインダー
表面に、導電性物質を添加した光触媒機能を有する酸化
物を含有した平滑な塗膜を形成することにより、住宅、
非住宅の内外装建材において、表面粗さと帯電半減時間
と光触媒の分解機能・親水機能によって付着汚染物を防
止し、かつ紫外線及び光触媒反応による塗膜の劣化を防
止した建材を提供できるようになった。
According to the present invention, the following effects are exhibited by the above effects. By forming a smooth coating film containing an oxide having a photocatalytic function added with a conductive substance on the surface of a binder containing a light stabilizer and an ultraviolet absorber,
For interior and exterior building materials of non-residential buildings, it is possible to provide building materials that prevent adhesion contamination by surface roughness, charging half-life, photocatalytic decomposition function and hydrophilic function, and prevent deterioration of coating film due to ultraviolet rays and photocatalytic reactions. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の一実施形態に係る建材の構成を示す
断面図である。
FIG. 1 is a sectional view showing a configuration of a building material according to an embodiment of the present invention.

【図2】は本発明の一実施形態に係る建材の曝露結果
(色差=ΔE)
FIG. 2 is an exposure result (color difference = ΔE) of a building material according to an embodiment of the present invention.

【図3】は本発明の一実施形態に係る建材の帯電半減時
間(秒)
FIG. 3 is a diagram showing a charging half-life (seconds) of a building material according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基材 2…バインダー層 3…光触媒機能を有する酸化物 DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Binder layer 3 ... Oxide which has a photocatalytic function

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 帯電半減時間が30秒以下、表面粗さR
aが100nm以下、水の接触角が30度以下の光触媒
膜を基材の表面に持つことを特徴とした建材。
1. A charge halving time of 30 seconds or less and a surface roughness R
A building material having a photocatalyst film having a of 100 nm or less and a contact angle of water of 30 degrees or less on the surface of a substrate.
【請求項2】 前記光触媒膜は、下層であるバインダー
層と表面に露出している光触媒機能を有する酸化物から
成り立っていることを特徴とした請求項1に記載の建
材。
2. The building material according to claim 1, wherein the photocatalytic film is composed of a lower binder layer and an oxide having a photocatalytic function exposed on the surface.
【請求項3】 前記光触媒膜を形成するバインダーに、
光安定化剤と紫外線吸収剤が含有されていることを特徴
とした請求項1から請求項2のいずれかに記載の建材。
3. A binder for forming the photocatalyst film,
The building material according to claim 1, further comprising a light stabilizer and an ultraviolet absorber.
【請求項4】 前記光触媒機能を有する酸化物は、酸化
チタン、酸化亜鉛、酸化錫の中の少なくとも一つ以上か
らなる請求項1から請求項3のいずれかに記載の建材。
4. The building material according to claim 1, wherein the oxide having a photocatalytic function comprises at least one of titanium oxide, zinc oxide, and tin oxide.
【請求項5】 前記光触媒膜に、金属酸化物が添加され
ている請求項1から請求項4のいずれかに記載の建材。
5. The building material according to claim 1, wherein a metal oxide is added to the photocatalyst film.
【請求項6】 前記光触媒機能を有する酸化物の表面
に、金属酸化物がコーティング処理されている請求項1
から請求項5のいずれかに記載の建材。
6. The surface of the oxide having a photocatalytic function is coated with a metal oxide.
A building material according to any one of claims 1 to 5.
【請求項7】 前記光触媒機能を有する酸化物に、金属
が担持されている請求項1から請求項6のいずれかに記
載の建材。
7. The building material according to claim 1, wherein a metal is supported on the oxide having a photocatalytic function.
【請求項8】 前記光触媒膜に、導電性物質が添加され
ている請求項1から請求項7のいずれかに記載の建材。
8. The building material according to claim 1, wherein a conductive substance is added to the photocatalyst film.
JP13117898A 1998-04-24 1998-04-24 Building material Pending JPH11300880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13117898A JPH11300880A (en) 1998-04-24 1998-04-24 Building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13117898A JPH11300880A (en) 1998-04-24 1998-04-24 Building material

Publications (1)

Publication Number Publication Date
JPH11300880A true JPH11300880A (en) 1999-11-02

Family

ID=15051840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13117898A Pending JPH11300880A (en) 1998-04-24 1998-04-24 Building material

Country Status (1)

Country Link
JP (1) JPH11300880A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2008123504A1 (en) 2007-03-30 2008-10-16 Fujifilm Corporation Ultraviolet ray absorber composition
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
WO2009123142A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009123141A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009136624A1 (en) 2008-05-09 2009-11-12 富士フイルム株式会社 Ultraviolet absorbent composition
JP2018161813A (en) * 2017-03-27 2018-10-18 住友理工株式会社 Silicone member, and production method thereof
JP2018171660A (en) * 2017-03-31 2018-11-08 住友理工株式会社 Silicone member for fluid device and method for manufacturing the same
JP2019099736A (en) * 2017-12-06 2019-06-24 旭化成株式会社 Photocatalyst coating body and photocatalyst coating composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2008123504A1 (en) 2007-03-30 2008-10-16 Fujifilm Corporation Ultraviolet ray absorber composition
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
WO2009123142A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009123141A1 (en) 2008-03-31 2009-10-08 富士フイルム株式会社 Ultraviolet absorbent compositions
WO2009136624A1 (en) 2008-05-09 2009-11-12 富士フイルム株式会社 Ultraviolet absorbent composition
JP2018161813A (en) * 2017-03-27 2018-10-18 住友理工株式会社 Silicone member, and production method thereof
JP2018171660A (en) * 2017-03-31 2018-11-08 住友理工株式会社 Silicone member for fluid device and method for manufacturing the same
JP2019099736A (en) * 2017-12-06 2019-06-24 旭化成株式会社 Photocatalyst coating body and photocatalyst coating composition

Similar Documents

Publication Publication Date Title
JP3844182B2 (en) Hydrophilic film and method for producing and using the same
CN100408184C (en) Photocatalytic material
JPH1046759A (en) Roof material having ice-snow sticking preventive performance
JP3773087B2 (en) Photocatalytic functional member
CA2252614A1 (en) Multifunctional coating agent
JPH11300880A (en) Building material
JPH09295363A (en) Base material and method for keeping surface cleanliness of base material
JP3384945B2 (en) Painted metal sheet excellent in stain resistance and method for producing the same
JP3858176B2 (en) Membrane structure material
JP4501562B2 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR PRODUCING THE SAME
JP3972081B2 (en) Railway vehicle and painting method thereof
JP3129194B2 (en) Antifouling crystallized glass
JPH10180948A (en) Transfer sheet and method for transferring photocatalytic hydrophilic thin film
JP2007302527A (en) Glass workpiece with photocatalytic film and constructed structure using glass workpiece with photocatalytic film
JP2004085375A (en) Evaluation method and evaluation apparatus for photocatalyst activity and layer including photocatalyst
JP4002462B2 (en) Panel building material having a large number of irregular shapes and its manufacturing method
JP4332908B2 (en) Room temperature curing photocatalyst coating film forming agent, photocatalyst-containing coating film forming method using the same, and photocatalyst-containing coating film
JPH10100901A (en) Antifouling rolling stock
JPH10134660A (en) Insulator with antifouling property and waterdrop sticking preventing property
JP2003073618A (en) Undercoating composition for undercoat layer on surface before forming photocatalytic hydrophilic coating film
JPH10107303A (en) Solar cell provided with stainproofing cover
JP2003040952A (en) Functional hydrophilic member
JP2001219496A (en) Film for window glass
JPH11300216A (en) Photocatalytic hydrophilic member
JPH10216629A (en) Railroad car