JPH11300455A - Detection of liquid level in casting mold in continuous casting and apparatus therefor - Google Patents

Detection of liquid level in casting mold in continuous casting and apparatus therefor

Info

Publication number
JPH11300455A
JPH11300455A JP11042798A JP11042798A JPH11300455A JP H11300455 A JPH11300455 A JP H11300455A JP 11042798 A JP11042798 A JP 11042798A JP 11042798 A JP11042798 A JP 11042798A JP H11300455 A JPH11300455 A JP H11300455A
Authority
JP
Japan
Prior art keywords
mold
liquid level
heat flux
temperature
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042798A
Other languages
Japanese (ja)
Inventor
Satoshi Ito
智 伊藤
Masahiro Toki
正弘 土岐
Kazuyoshi Machida
和喜 町田
Yoshitoshi Nakajima
美敏 中島
Shigeru Kondo
茂 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11042798A priority Critical patent/JPH11300455A/en
Publication of JPH11300455A publication Critical patent/JPH11300455A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method for detecting the liquid level in a casting mold at a high response speed with an abrupt fluctuation of the liquid level without the occurrence of a drift at a low running cost by detecting the liquid level in accordance with the measured value of the heat flow flux in the casting mold. SOLUTION: Two thermocouples varying in piercing depth are pierced into insertion holes 19 to the same height in the vertical direction in the casting mold and copper- constantan thermocouples are composed respectively therein. The heat flow flux is measured by calculating the difference between the measured temps. of both. The thermal conductivity used at the time of calculating the heat flow flux is the thermal conductivity of copper. The insertion holes 19 of the thermocouples minimize the influence to be exerted on a heat flow flux distribution and, therefore, the result is better as the diameter of the insertion holes 19 of the thermocouples is smaller. For example, the insertion holes of 5 to 10 mm diam. are pierced and the constantan wires 7 of 2 to 5 mm in diameter are inserted therein. Voltage is impressed between the copper plate of the casting mold 1 and the constantan wires 7 to electrically heat the contacts of both, by which the contacts of the thermocouples are joined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼等の溶融金属の
連続鋳造において、鋳型内の溶融金属の液面レベルを検
出するための鋳型内液面レベル検出方法及び装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a liquid level in a mold for detecting a liquid level of the molten metal in a mold in continuous casting of molten metal such as steel.

【0002】[0002]

【従来の技術】鋼等の溶融金属の連続鋳造においては、
タンディッシュ等の溶融金属容器から鋳型内に溶融金属
を供給し、鋳型の下方に凝固途上の鋳片を引抜くことに
よって連続的に溶融金属の鋳造を行う。上方から供給す
る溶融金属の供給速度と下方に引抜く鋳片の引抜き速度
をバランスさせることにより、鋳型内の溶融金属の液面
を一定に保つ。鋳型内の液面を一定に保つためには、鋳
型内の液面レベルを常に監視し、液面レベルに変動が生
じた場合にタンディッシュ内のストッパー等の溶融金属
の供給量調整装置で溶融金属の供給速度を調整したり、
あるいは鋳片の引抜き速度を調整することによって需給
バランスを調整する。最近は、鋳型内の液面レベルの監
視を自動的に行うための液面レベル検出方法及び装置が
種々実用化されている。
2. Description of the Related Art In continuous casting of molten metal such as steel,
The molten metal is supplied into the mold from a molten metal container such as a tundish, and the molten metal is continuously cast by drawing a solidified slab under the mold. The liquid level of the molten metal in the mold is kept constant by balancing the supply speed of the molten metal supplied from above and the drawing speed of the cast piece drawn downward. In order to keep the liquid level in the mold constant, always monitor the liquid level in the mold, and if the liquid level fluctuates, melt it with a molten metal supply adjustment device such as a stopper in the tundish. Adjust the metal feed rate,
Alternatively, the supply and demand balance is adjusted by adjusting the speed of drawing the slab. Recently, various liquid level detection methods and apparatuses for automatically monitoring the liquid level in a mold have been put to practical use.

【0003】複数の温度検出器、具体的には熱電対を鋳
型内の異なる高さの位置に埋め込んで配置し、この複数
の温度検出器が検出した鋳型内温度の相対的な関係から
液面レベルを検出する方法が知られている。以下、この
方法による検出方法を温度検出方式とよぶ。検出した温
度実績からは演算によって液面レベルを算出する。演算
方法としては、例えば側定点間の温度差及び側定点間距
離から算出される温度勾配の最大となる区間を温度分布
から検出して液面レベルを演算する方法(特公昭48−
13810号公報)(以下最大温度勾配法という)、任
意周期毎に各温度側定点における温度の時間変化率を演
算し、該時間変化率の最大値を示す素子を検出しそれを
もとに液面レベルを算出する方法(特開昭53−262
30号公報)、及び温度の時間変化からその液面の上
昇、下降、停止といった液面の状態を検出し、それぞれ
の液面の状態に応じて温度を使って液面を演算する方法
(特開昭53−81431号公報)が知られている。
[0003] A plurality of temperature detectors, specifically, thermocouples are buried at different heights in a mold and arranged, and the liquid level is determined based on the relative relationship between the temperatures in the mold detected by the plurality of temperature detectors. Methods for detecting levels are known. Hereinafter, a detection method using this method is referred to as a temperature detection method. The liquid level is calculated from the detected actual temperature. As the calculation method, for example, a section in which the temperature gradient calculated from the temperature difference between the side fixed points and the distance between the side fixed points is maximum is detected from the temperature distribution and the liquid level is calculated (Japanese Patent Publication No. 48-48).
No. 13810) (hereinafter referred to as a maximum temperature gradient method), a time rate of change of temperature at each temperature side fixed point is calculated at an arbitrary cycle, an element showing the maximum value of the time rate is detected, and a liquid is calculated based on the element. Method for calculating surface level (Japanese Patent Laid-Open No. 53-262)
No. 30) and a method of detecting a liquid surface state such as rising, falling, and stopping of the liquid surface from a time change of the temperature, and calculating the liquid surface using the temperature according to each liquid surface state (particularly, JP-A-53-81431) is known.

【0004】温度検出方式は、液面レベルの絶対値を精
度良く、かつ安価に測定できる特徴がある。温度検出方
法においては、鋳型及び温度検出端を溶融金属から保護
するため、鋳型が溶融金属と接触している表面からある
程度の深さの位置に温度検出端を設置することとなる。
そのため、液面レベルの変動によって鋳型表面温度が急
激に変動しても、温度検出端の位置の温度が上昇して定
常状態に到達するまでには時間を要し、その結果、検出
される温度の変動は時間的に遅れて発生するため、急激
な液面レベル変動に対する反応が遅いという問題を有す
る。
[0004] The temperature detection method has a feature that the absolute value of the liquid level can be measured accurately and at low cost. In the temperature detection method, in order to protect the mold and the temperature detection end from the molten metal, the temperature detection end is provided at a position at a certain depth from the surface where the mold is in contact with the molten metal.
Therefore, even if the mold surface temperature fluctuates sharply due to fluctuations in the liquid level, it takes time for the temperature at the position of the temperature detection end to rise and reach a steady state. Since the fluctuation of the liquid level occurs with a delay in time, there is a problem that the response to the rapid fluctuation of the liquid level is slow.

【0005】上記温度検出方式において、液面レベル変
動があった場合、温度検出端の温度が定常状態に到達す
るのには時間を要するが、該温度検出端の温度が時間変
化を開始したことを察知して液面レベルの演算に反映す
る方法が、特公平7−41390号公報で提案されてい
る。この方法は、熱電対を単体で用いているため、熱電
対の応答速度が遅い影響を受けて、急激な液面変動に対
してはレベル検知が遅れる可能性がある。また、変位量
を少なく見積もる可能性もある。
In the above-mentioned temperature detection method, when the liquid level level fluctuates, it takes time for the temperature of the temperature detection end to reach a steady state, but the temperature of the temperature detection end starts to change with time. Is proposed in Japanese Patent Publication No. 7-41390. In this method, since the thermocouple is used alone, the response speed of the thermocouple may be slow, and level detection may be delayed with respect to a rapid liquid level fluctuation. In addition, there is a possibility that the amount of displacement is underestimated.

【0006】鋳型の一方の側にγ線発生源、他方の側に
γ線検出器を配置し、鋳型内の溶融金属がγ線を遮った
ことによるγ線の透過度の変化から液面レベルを検出す
る方法が知られている。以下、この方法をγ線方式とよ
ぶ。鋳型内液面の急激な変動に対しても、比較的よく応
答して検出することができ、ランニングコストも低い。
一方、初期投資が大きく取り扱いに注意を要するという
問題を有する。また、鋳型内にγ線を遮る溶融金属の飛
沫やパウダーベア等が付着すると、これら付着物の影響
でγ線検出値が変動し、実際の溶融金属の液面とは異な
る液面レベル値を出力する、いわゆるドリフト現象を起
こすという問題を有する。
A gamma ray source is arranged on one side of the mold, and a gamma ray detector is arranged on the other side. The liquid level is determined by the change in the transmittance of the gamma rays caused by the molten metal in the mold blocking the gamma rays. There is a known method for detecting the Hereinafter, this method is called a γ-ray method. The detection can be performed relatively well in response to a sudden change in the liquid level in the mold, and the running cost is low.
On the other hand, there is a problem that the initial investment is large and requires careful handling. Also, if molten metal splashes or powder bears that block γ-rays adhere to the mold, the γ-ray detection value fluctuates due to the influence of these adhered substances, and a liquid level value different from the actual liquid level of the molten metal may be obtained. This causes a problem of causing a so-called drift phenomenon.

【0007】鋳型内液面の上方に交流信号の発信コイル
と受信コイルを設置し、該コイルと液面との距離が近い
と溶融金属内に渦流が発生して受信コイルの検出値が変
動するという現象を利用して液面レベルを検出する方法
が知られている。以下、この方法を渦流方式とよぶ。液
面の急激な変動にも対応でき、取り扱いも容易であるた
め、大断面のスラブ連続鋳造装置やブルーム連続鋳造装
置において最も一般的に用いられている。一方、溶融金
属のごく近傍にコイルを設置しなければならないため、
トラブルにより溶融金属液面が急速に上昇するとその熱
でコイルが損傷する事故が発生しやすく、ランニングコ
ストが安くないという問題を有する。また、小断面のビ
レット連続鋳造装置では、渦流センサーが鋳型の壁の近
くにしか設置することができず、センサーが鋳型の壁に
近いとその影響を受け、検出感度が低下するという問題
を有する。
A transmitting coil and a receiving coil for an AC signal are installed above the liquid level in the mold. If the distance between the coil and the liquid level is short, a vortex is generated in the molten metal and the detection value of the receiving coil fluctuates. A method of detecting the liquid level using the phenomenon described above is known. Hereinafter, this method is called a vortex method. Since it can cope with sudden fluctuations in the liquid level and is easy to handle, it is most commonly used in continuous slab casting machines and bloom continuous casting machines with large cross sections. On the other hand, because the coil must be installed very close to the molten metal,
When the liquid level of the molten metal rises rapidly due to a trouble, an accident that the coil is damaged by the heat easily occurs, and there is a problem that the running cost is not low. In addition, in the billet continuous casting apparatus having a small cross section, the eddy current sensor can be installed only near the wall of the mold, and if the sensor is close to the wall of the mold, there is a problem that the detection sensitivity is reduced and the sensor is affected. .

【0008】鋳型内の液面を工業用テレビカメラ(IT
V)で観察し、観察結果を画像処理して液面レベルを検
出する方法が知られている。以下、この方法をITV方
式という。また、鋳型内の液面にレーザー光を照射し、
その反射光を検出して液面レベルを検出する方法が知ら
れている。以下、この方法をレーザー方式という。IT
V方式、レーザー方式とも、液面レベル変動に対する反
応速度は非常に速いが、パウダー鋳造で鋳型内の液面が
パウダーで覆われている場合は検出する面はあくまでパ
ウダー上面位置なので、パウダー厚みが不明の場合、液
面レベルの絶対値を検出することができないという問題
を有する。
[0008] The liquid level in the mold is measured with an industrial television camera (IT
A method is known in which the observation is performed in step V) and the observation result is image-processed to detect the liquid level. Hereinafter, this method is called an ITV method. In addition, laser light is irradiated on the liquid surface in the mold,
There is known a method of detecting the liquid level by detecting the reflected light. Hereinafter, this method is referred to as a laser method. IT
Both the V method and the laser method have a very fast response speed to liquid level fluctuations.However, if the liquid surface in the mold is covered with powder by powder casting, the surface to be detected is just the upper surface of the powder. If unknown, there is a problem that the absolute value of the liquid level cannot be detected.

【0009】[0009]

【発明が解決しようとする課題】以上のように、従来知
られている鋳型内液面レベルの検出方法は、いずれも長
所と短所とを有しており、すべての点において短所を有
しない検出方法は存在していない。本発明は、液面レベ
ルの急激な変動に対する応答速度が速く、ドリフト現象
が発生しない鋳型内液面レベルの検出方法を、低いラン
ニングコストで実現することを目的とする。
As described above, each of the conventionally known methods for detecting the liquid level in a mold has advantages and disadvantages, and a detection method having no disadvantages in all respects. There is no way. An object of the present invention is to realize a method for detecting a liquid level in a mold that has a high response speed to a rapid change in the liquid level and does not cause a drift phenomenon at a low running cost.

【0010】特に、小断面ビレット連続鋳造装置のよう
に、鋳型内の溶融金属表面が狭いために渦流方式を用い
る方法が採用できない場合であっても、液面レベルの急
激な変動に対する応答速度が速く、ドリフト現象が発生
しない鋳型内液面レベルの検出方法を実現することを目
的とする。
In particular, even when the method using the vortex flow method cannot be adopted due to the narrow surface of the molten metal in the mold as in a small-section billet continuous casting apparatus, the response speed to the rapid fluctuation of the liquid level is low. An object of the present invention is to realize a method for detecting a liquid level in a mold that is fast and does not cause a drift phenomenon.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決することを目的になされたものであり、その要旨とす
るところは以下の通りである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows.

【0012】その第1は、連続鋳造における鋳型内液面
レベルの検出方法において、鋳型内部の熱流束測定値に
基づいて液面レベルを検出することを特徴とする鋳型内
液面レベルの検出方法である。液面レベルは、鋳型内の
上下方向の複数の位置の熱流束測定値に基づいて演算を
行って検出することができる。鋳型内部の熱流束の測定
は、鋳型内の表面からの深さが異なった2点の温度の差
の測定結果に基づいて行うことができる。鋳型内の表面
からの深さが異なった2点の温度の差の測定は、1対の
熱電対の温接点と冷接点を前記2点の温度測定位置に配
置することによって行うことができる。
First, in the method of detecting the liquid level in the mold in continuous casting, the liquid level is detected based on the measured value of the heat flux inside the mold. It is. The liquid level can be detected by performing an operation based on the measured values of the heat flux at a plurality of vertical positions in the mold. The measurement of the heat flux inside the mold can be performed based on the measurement result of the temperature difference between two points at different depths from the surface inside the mold. The measurement of the temperature difference between two points having different depths from the surface in the mold can be performed by disposing the hot junction and the cold junction of a pair of thermocouples at the two temperature measurement positions.

【0013】その第2は、連続鋳造における鋳型内液面
レベルの検出装置において、鋳型内の上下方向の複数の
位置の熱流束測定手段と、該熱流束測定手段による熱流
速測定結果に基づいて液面レベルを演算する演算手段と
を有し、前記熱流速測定手段は、鋳型内の表面からの深
さが異なった2点の温度の差の測定結果に基づいて熱流
束を測定することを特徴とする鋳型内液面レベルの検出
装置である。
Second, in a device for detecting a liquid level in a mold in continuous casting, based on heat flux measuring means at a plurality of positions in a vertical direction in the mold and heat flow rate measurement results by the heat flux measuring means. Computing means for computing the liquid level, wherein the heat flow rate measuring means measures the heat flux based on the measurement result of the temperature difference between two points having different depths from the surface in the mold. It is a characteristic device for detecting the liquid level in the mold.

【0014】鋳型内での急激な液面レベル上昇により、
それまで液面より上方であった鋳型における特定位置の
表面に溶融金属が到達した場合、鋳型表面の温度は急速
に上昇する。温度検出方式における温度検出端は、鋳型
表面から距離をおいた位置に存在するため、温度検出端
の温度の上昇は、鋳型表面の温度上昇に対して時間遅れ
を有する。一方、温度検出端の温度が上昇するために
は、それに先立って鋳型表面から熱が供給され、熱流束
が発生していることが必要である。即ち、温度検出端の
温度上昇に先立って当該位置の熱流束の増大が見られる
ので、この熱流束の変化を検出することによって、急激
な液面レベルの変動に際し、温度検出方式よりも応答速
度が優れた液面レベルの検出が可能となるのである。図
4に熱流束と鋳型温度の時間変化の挙動を示す。図4に
おいて、(a)は液面レベル上昇前の鋳型の断面を示す
図、(b)は液面レベル上昇後の鋳型の断面を示す図、
(c)は鋳型内の特定深さに配置した温度検出端におけ
る熱流束と鋳型温度の時間変化を示す図である。鋳型温
度の時間変化に比較して、熱流束の時間変化は液面レベ
ルの変動に対して急速に応答していることが明らかであ
る。
Due to the rapid rise in the liquid level in the mold,
If the molten metal reaches the surface at a specific position in the mold, which was above the liquid level, the temperature of the mold surface rises rapidly. Since the temperature detecting end in the temperature detecting method is located at a position away from the mold surface, the rise in temperature at the temperature detecting end has a time delay with respect to the temperature rise on the mold surface. On the other hand, in order for the temperature at the temperature detection end to rise, it is necessary that heat is supplied from the mold surface and a heat flux is generated prior to the rise. That is, since the heat flux at the position is increased before the temperature at the temperature detecting end is increased, the change in the heat flux is detected. This makes it possible to detect an excellent liquid level. FIG. 4 shows the behavior of the time variation of the heat flux and the mold temperature. 4, (a) is a diagram showing a cross section of the mold before the liquid level rises, (b) is a diagram showing a cross section of the mold after the liquid level rises,
(C) is a diagram showing a time change of a heat flux and a mold temperature at a temperature detecting end arranged at a specific depth in the mold. It is evident that the time variation of the heat flux responds more rapidly to changes in the liquid level compared to the time variation of the mold temperature.

【0015】[0015]

【発明の実施の形態】鋳型内の特定位置の熱流束の測定
は、最も一般的には鋳型表面からの深さの異なる2点の
温度実測値の差を求めることによって行う。2点間の温
度差を2点間の鋳型表面からの距離の差で割り、これに
熱流束測定位置における構成材料の熱伝導度をかけるこ
とによって熱流束が算出できる。該2点は鋳型表面から
の同一垂線上に位置に存することが好ましいが、液面レ
ベルは鋳型内で常に水平であるので、該2点は鋳型内の
上下方向の高さが同一であれば、左右方向には異なった
位置に存在してもかまわない。熱流束の測定は、特開平
6−74837号公報にあるように、薄い金属をはさむ
構造として温接点を直列に設けて熱流速を測定するセン
サーによって行うこともできる。
DETAILED DESCRIPTION OF THE INVENTION The measurement of the heat flux at a particular location in a mold is most commonly performed by determining the difference between the measured temperature at two points at different depths from the mold surface. The heat flux can be calculated by dividing the temperature difference between the two points by the difference in distance from the mold surface between the two points and multiplying the result by the thermal conductivity of the constituent material at the heat flux measurement position. Preferably, the two points are located on the same perpendicular line from the mold surface, but since the liquid level is always horizontal in the mold, the two points are equal if the height in the vertical direction in the mold is the same. However, they may exist at different positions in the left-right direction. As described in JP-A-6-74837, the measurement of the heat flux can also be performed by a sensor that measures the heat flow rate by providing a hot junction in series as a structure sandwiching a thin metal.

【0016】液面レベルの急激な変動が発生した直後
は、鋳型内において非定常な熱伝達が発生しているの
で、鋳型内の上下方向同一位置でも深さ方向で熱流束の
大きさは異なる。溶融金属と接する鋳型表面に近いほ
ど、液面レベル変動に伴う急速な熱流束の供給があり、
応答性の良い測定結果が得られるので、熱流束の測定位
置は鋳型表面に近いほど良好な応答性を確保することが
できる。ただし、熱流束測定端を設置するためには鋳型
の裏面から鋳型に測定端を埋設する埋設口を穿孔する必
要があるので、溶融金属から鋳型への均一な抜熱の確
保、鋳型寿命の確保のためには、鋳型表面から熱流束検
出端までの距離をある程度以上に保つ必要がある。
Immediately after the rapid change in the liquid level, unsteady heat transfer occurs in the mold, so that the magnitude of the heat flux differs in the depth direction even at the same vertical position in the mold. . Closer to the mold surface in contact with the molten metal, there is a rapid supply of heat flux due to liquid level fluctuations,
Since a measurement result with good responsiveness is obtained, better responsiveness can be secured as the measurement position of the heat flux is closer to the mold surface. However, in order to install the heat flux measurement end, it is necessary to pierce the burial hole for embedding the measurement end in the mold from the back of the mold, so ensure uniform heat removal from the molten metal to the mold and ensure the life of the mold For this purpose, it is necessary to keep the distance from the mold surface to the heat flux detecting end at least to some extent.

【0017】小断面ビレット連続鋳造装置においては、
銅製の鋳型は表面・裏面ともにフラットな筒状をなし、
裏面がジャケット方式で水冷されている。鋳型銅板の厚
みは一般的に5mm〜15mmである。表面からの深さ
の異なる2点の温度差に基づいて熱流束を測定する場
合、表面に近い温度測定端は表面から3mm〜10mm
の位置に設置可能である。表面からの距離が3mmより
も小さくなると、測定点とそれ以外の点での抜熱挙動お
よび銅板変形挙動が異なるため、ブレークアウト等の鋳
片欠陥の原因となる可能性が生ずるという問題が発生す
る。また、10mmよりも大きいと、急激な液面レベル
の変動に対する熱流束変動の応答が遅くなり、応答性の
良い液面レベル測定ができなくなる。
In the small section billet continuous casting apparatus,
The copper mold has a flat cylindrical shape on both sides,
The back side is water-cooled in a jacket system. The thickness of the mold copper plate is generally 5 mm to 15 mm. When measuring the heat flux based on the temperature difference between two points having different depths from the surface, the temperature measuring end near the surface is 3 mm to 10 mm from the surface.
It can be installed at the position. When the distance from the surface is smaller than 3 mm, the heat removal behavior and the copper plate deformation behavior at the measurement point and at other points are different, and there is a problem that it may cause slab defects such as breakout. I do. On the other hand, if it is larger than 10 mm, the response of the heat flux fluctuation to the rapid fluctuation of the liquid level becomes slow, and the liquid level measurement with good responsiveness cannot be performed.

【0018】大断面のスラブ連続鋳造装置においては、
鋳型を構成する4面はそれぞれ別個の銅板で構成され、
銅板の裏面には一定間隔でスリットが形成され、そのス
リット内に冷却水を流すことによって鋳型の冷却が行わ
れる。このような鋳型においては、一定幅、一定間隔で
複数個の熱電対が埋め込まれ、熱電対設置位置とスリッ
トの位置はずらして設置する。漏水の発生を防止するた
めである。
In a large section slab continuous casting apparatus,
The four sides of the mold are each made of a separate copper plate,
Slits are formed at regular intervals on the back surface of the copper plate, and the mold is cooled by flowing cooling water into the slits. In such a mold, a plurality of thermocouples are embedded at a constant width and a constant interval, and the thermocouple installation position and the slit position are shifted from each other. This is to prevent the occurrence of water leakage.

【0019】温度を測定する2点の鋳型表面からの距離
の関係については、距離の差が大きいほど測定する温度
差も大きくなり、熱流束を安定してとらえることができ
る。一方、急激な温度変動が起きている場合は、鋳型内
において同一部位であっても表面からの距離が異なると
熱流束は同一ではないので、鋳型内の特定の部位の熱流
束を正確に把握するためには、距離の差は少ない方が良
好である。具体的には、2点が鋳型表面からの同一垂線
上に位置する場合は、部位が異なることによる測定誤差
がないので距離の差を小さくすることができ、1mm〜
5mmが適当である。2点が鋳型内の異なった部位にあ
る場合は、部位が異なることによる測定誤差の影響を回
避するため、距離の差を若干大きくすることが好まし
い。
Regarding the relationship between the two points at which the temperature is measured from the mold surface, the greater the difference between the distances, the greater the measured temperature difference, and the more stable the heat flux. On the other hand, when the temperature fluctuates rapidly, the heat flux is not the same if the distance from the surface is different even at the same part in the mold, so the heat flux at a specific part in the mold can be accurately grasped. In order to achieve this, it is better that the difference between the distances is small. Specifically, when the two points are located on the same perpendicular line from the mold surface, there is no measurement error due to the different parts, so that the difference in distance can be reduced, and 1 mm to
5 mm is appropriate. When the two points are located at different portions in the mold, it is preferable to slightly increase the difference in distance in order to avoid the influence of measurement errors due to the different portions.

【0020】鋳型内の温度の測定は、銅製の鋳型裏面3
から所定の深さの熱電対挿入孔19を穿孔し、この熱電
対挿入孔19にコンスタンタン線7を挿入して挿入孔の
先端6で鋳型銅板と接合し、銅−コンスタンタン熱電対
を構成することによって行うことができる。銅とコンス
タンタンの接合点が温度測定点6となる。
The temperature inside the mold is measured by using a copper mold back surface 3.
A constant-temperature wire 7 is inserted into the thermocouple insertion hole 19, and a constantan wire 7 is inserted into the thermocouple insertion hole 19 and joined to a mold copper plate at the tip 6 of the insertion hole to form a copper-constantan thermocouple. Can be done by The junction between copper and constantan is temperature measurement point 6.

【0021】図1(a)に示すように、鋳型内上下方向
が同一の高さに穿孔深さの異なる2つの熱電対挿入孔1
9を穿孔し、それぞれに上記銅−コンスタンタン熱電対
を構成して両者の測定温度の差を算出することにより、
熱流束を測定することができる。熱流束の算出に際して
用いる熱伝導度は、銅の熱伝導度である。熱電対挿入孔
19が熱流束分布に与える影響を最小限にするため、熱
電対挿入孔19の直径は小さいほどよい。φ5mm〜φ
10mmの挿入孔を穿孔し、これに2mm〜5mmの直
径のコンスタンタン線7を挿入する。鋳型1の銅板とコ
ンスタンタン線7との間に電圧を印加して両者の接点を
通電加熱し、熱電対の接点を接合する方法が採用でき
る。
As shown in FIG. 1 (a), two thermocouple insertion holes 1 having different drilling depths at the same height in the vertical direction in the mold.
By piercing 9 and configuring the copper-constantan thermocouples respectively to calculate the difference between the measured temperatures of both,
Heat flux can be measured. The thermal conductivity used in calculating the heat flux is the thermal conductivity of copper. In order to minimize the influence of the thermocouple insertion hole 19 on the heat flux distribution, the smaller the diameter of the thermocouple insertion hole 19, the better. φ5mm ~ φ
A 10 mm insertion hole is pierced, and a constantan wire 7 having a diameter of 2 mm to 5 mm is inserted into the hole. A method can be adopted in which a voltage is applied between the copper plate of the mold 1 and the constantan wire 7 to energize and heat the contacts of the two and join the contacts of the thermocouple.

【0022】図1(b)に示すように、温度を測定する
2点(6a、6b)が鋳型表面2からの同一垂線上に配
置できれば熱流束の測定精度を向上することができる。
上記のコンスタンタン細線を挿入する挿入孔に比較する
と直径の大きな挿入孔19を穿孔し、この孔の先端に厚
みの薄いコンスタンタン片10を挿入し、更に挿入孔の
側壁に接しないように銅製の棒11を挿入する。鋳型銅
板とコンスタンタン片10との接点が熱電対の温接点と
なり、コンスタンタン片10と銅製の棒11との接点が
熱電対の冷接点となって、鋳型銅板と銅製の棒との間の
熱起電力を測定することにより、2点間の温度差が測定
でき、熱流束が算出される。この場合、2点間に存する
材料はコンスタンタンなので、熱流束算出に際してはコ
ンスタンタンの熱伝導度を用いる。上記熱流束測定手段
を挿入することによる熱流束の乱れを最小限とするた
め、コンスタンタン片10の厚みは最小限とするととも
に、挿入する銅製の棒11は挿入孔19の側壁に接しな
い範囲で極力挿入孔の直径に近い直径を有することが好
ましい。また、コンスタンタン片10の先に銅片を配置
し、銅片、コンスタンタン片、銅製の棒を事前に接合し
てユニット化しておけば、熱流束測定手段を鋳型に組み
込む作業が容易になる。
As shown in FIG. 1B, if the two points (6a, 6b) for measuring the temperature can be arranged on the same perpendicular line from the mold surface 2, the measurement accuracy of the heat flux can be improved.
An insertion hole 19 having a diameter larger than that of the above-described insertion hole for inserting a constantan fine wire is drilled, a thin constantan piece 10 is inserted into the tip of the hole, and a copper rod is inserted so as not to contact the side wall of the insertion hole. 11 is inserted. The contact point between the mold copper plate and the constantan piece 10 serves as a hot junction of the thermocouple, and the contact point between the constantan piece 10 and the copper rod 11 serves as a cold contact of the thermocouple. By measuring the power, the temperature difference between the two points can be measured, and the heat flux is calculated. In this case, since the material existing between the two points is constantan, the heat conductivity of constantan is used in calculating the heat flux. In order to minimize the disturbance of the heat flux due to the insertion of the heat flux measuring means, the thickness of the constantan piece 10 is minimized, and the copper rod 11 to be inserted is in a range not in contact with the side wall of the insertion hole 19. It is preferable to have a diameter as close as possible to the diameter of the insertion hole. If a copper piece is arranged in front of the constantan piece 10 and the copper piece, the constantan piece, and the copper rod are joined in advance to form a unit, the work of incorporating the heat flux measuring means into the mold becomes easy.

【0023】鋳型内の溶融金属の液面が熱流束測定位置
よりも上にあれば鋳型表面が熱せられて熱流束が高い値
となり、液面が熱流束測定位置よりも下にあれば鋳型表
面が冷却されるので熱流束が低い値となる。この現象に
より、最低限鋳型内の1箇所において熱流束を測定すれ
ば、液面がその測定点よりも上にあるか下にあるかとい
う観点で液面レベルを検出することができる。
When the liquid level of the molten metal in the mold is above the heat flux measurement position, the mold surface is heated and the heat flux becomes a high value. When the liquid level is below the heat flux measurement position, the mold surface is heated. Is cooled, so that the heat flux becomes a low value. By this phenomenon, if the heat flux is measured at least at one point in the mold, the liquid level can be detected from the viewpoint of whether the liquid level is above or below the measurement point.

【0024】更に、図2に示すように、鋳型内の上下方
向の複数の位置で熱流束を測定し、その熱流束測定結果
に基づいて演算を行うことにより、より定量的に液面レ
ベルを検出することができる。鋳型内上下方向の熱流束
の分布は、図3に示すように、液面直下に熱流束が最大
のφ1 となるポイントが有り、それより下方は鋳片凝固
シェル16の凝固厚みが増大することと凝固シェル16
と鋳型1との間に空隙18が生じることにより熱流束は
減少する。また、液面よりも上方は鋳型表面が空間にさ
らされるので、当然のことながら熱流束は大きく減少す
る。液面を基準とした鋳型内上下方向の熱流束のプロフ
ィルを把握した上で、鋳型内の上下方向の複数の位置で
熱流束を測定し、把握した熱流束プロフィルに基づいて
演算を行うことにより、液面レベルを算出することがで
きる。
Further, as shown in FIG. 2, the heat flux is measured at a plurality of positions in the vertical direction in the mold, and an arithmetic operation is performed based on the heat flux measurement result, so that the liquid level can be more quantitatively measured. Can be detected. As shown in FIG. 3, the distribution of the heat flux in the vertical direction in the mold has a point where the heat flux has a maximum φ 1 immediately below the liquid level, and below that point, the solidified thickness of the slab solidified shell 16 increases. Thing and solidification shell 16
The heat flux is reduced by the formation of the gap 18 between the mold 1 and the mold 1. In addition, since the surface of the mold is exposed to the space above the liquid level, the heat flux is naturally greatly reduced. By grasping the profile of the heat flux in the vertical direction in the mold with reference to the liquid level, measuring the heat flux at multiple positions in the vertical direction in the mold, and calculating based on the grasped heat flux profile , The liquid level can be calculated.

【0025】鋳型内の上下方向に配置した複数の熱流束
測定点の相互間の間隔は短いほど液面レベル測定精度は
向上するが、あまり短くすると必要な測定領域に配置す
べき熱流束測定点の数が増大するので好ましくない。上
下方向の間隔は10mmあれば十分な液面レベル測定精
度を得ることができ、それより短くしても測定精度は飽
和して向上しろはわずかである。また、30mmよりも
大きいと実用的な液面レベル測定精度を得ることができ
なくなる。
The shorter the distance between a plurality of heat flux measurement points arranged in the vertical direction in the mold, the higher the liquid level measurement accuracy is. However, if the distance is too short, the heat flux measurement points to be arranged in the required measurement area are reduced. Is undesirably increased. Sufficient liquid level measurement accuracy can be obtained if the vertical interval is 10 mm, and even if it is shorter, the measurement accuracy is saturated and the margin for improvement is slight. On the other hand, if it is larger than 30 mm, practical liquid level measurement accuracy cannot be obtained.

【0026】熱流束の測定結果に基づく液面レベルの演
算については、鋳型内の温度測定結果に基づく液面レベ
ルの演算に関する公知の技術を用いることができる。こ
れら公知の技術において、温度を熱流速に変更すること
によって液面レベルが算出できる。
For the calculation of the liquid level based on the measurement result of the heat flux, a known technique relating to the calculation of the liquid level based on the measurement result of the temperature in the mold can be used. In these known techniques, the liquid level can be calculated by changing the temperature to the heat flow rate.

【0027】好適な演算方法として以下の方法が有用で
ある。鋳型内上下方向を縦軸とし、熱流束の測定値を横
軸としたグラフにおいて、鋳型内上下方向に配置した熱
流束測定点の測定結果を折れ線で結ぶ。液面レベルは最
も熱流束が大きい値を示した測定点の上方に有り、液面
レベルの熱流束は熱流束最大点の熱流束の0.7倍であ
ることが判明している。図3において、φ2 /φ1 の値
は概略0.7である。そこで、熱流束の値が最大の点よ
り上方側の上記折れ線上において、熱流束が熱流束最大
値の0.7倍となる点を算定し、この点を液面レベルと
する演算を行うことができる(以下、最大熱流束按分法
という)。この演算方法は、比較的単純であるが精度良
く液面レベルを算出できる演算手法として有用である。
The following method is useful as a suitable calculation method. In a graph in which the vertical direction in the mold is the vertical axis and the measured value of the heat flux is the horizontal axis, the measurement results of the heat flux measurement points arranged in the vertical direction in the mold are connected by broken lines. The liquid level is above the measurement point where the heat flux showed the largest value, and it has been found that the heat flux at the liquid level is 0.7 times the heat flux at the maximum heat flux point. In FIG. 3, the value of φ 2 / φ 1 is approximately 0.7. Therefore, on the polygonal line above the point where the value of the heat flux is above the maximum point, calculate the point where the heat flux is 0.7 times the maximum value of the heat flux and calculate this point as the liquid level. (Hereinafter referred to as the maximum heat flux apportionment method). This calculation method is relatively simple, but is useful as a calculation method capable of calculating the liquid level accurately.

【0028】本発明の鋳型内液面レベルの検出装置にお
いては、液面レベルを演算する演算手段を有する。最も
好ましい実施の形態として、コンピュータを用いて演算
を行わせる演算手段を採用することができる。演算方式
としては、上記に示した最大熱流束按分法をはじめとす
る方式を採用することができる。鋳型内の上下方向の複
数の位置の熱流束を熱流束測定手段で測定し、熱流束測
定結果を前記演算手段に入力し、演算手段において液面
レベルを演算して出力するものである。
The apparatus for detecting a liquid level in a mold according to the present invention has a calculating means for calculating the liquid level. As a most preferred embodiment, an operation means for performing an operation using a computer can be employed. As the calculation method, a method such as the above-described maximum heat flux apportionment method can be adopted. The heat flux at a plurality of vertical positions in the mold is measured by the heat flux measuring means, the heat flux measurement result is input to the calculating means, and the calculating means calculates and outputs the liquid level.

【0029】[0029]

【実施例】鋼の小断面ビレット連続鋳造において本発明
を適用した。本発明例の熱流束検出は、図1(b)に示
す形式を採用した。比較例として、熱電対を用いた温度
検出方式(比較例1)、γ線方式(比較例2)を用い
た。また、液面レベル変動に対する反応速度が最も速い
方法として渦流方式を採用し、この渦流方式による液面
レベル変動の検出に対して本発明例、各比較例がどれだ
け液面レベル変動の検出に遅延が生じたかを評価するこ
とで、各方法の検出反応速度を評価した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention was applied to continuous casting of a small-section billet of steel. In the heat flux detection of the present invention, the format shown in FIG. As comparative examples, a temperature detection method using a thermocouple (Comparative Example 1) and a γ-ray method (Comparative Example 2) were used. In addition, the vortex method is adopted as the method having the fastest reaction speed to the liquid level fluctuation, and the present invention example and the comparative examples are used to detect the liquid level fluctuation by detecting the liquid level fluctuation by the vortex method. The detection reaction rate of each method was evaluated by evaluating whether a delay occurred.

【0030】鋳型の銅板厚みは8mm、熱流束計の溶鋼
に近い側の温度検出点6aは鋳型表面から4mmの位置
に配置し、温度検出点6aと6bの間の距離は1mmと
した。比較例1の温度検出点と鋳型表面との距離も4m
mとした。本発明例、および比較例1においては、熱流
束計および温度検出端をそれぞれ鋳型の長手方向に20
mm間隔で7点配置した。本発明例の液面レベル演算手
法として、上記最大熱流束按分法を用いた。また、比較
例1においては、前記最大温度勾配法を用いた。
The thickness of the copper plate of the mold was 8 mm, the temperature detection point 6a on the side near the molten steel of the heat flux meter was located at a position of 4 mm from the mold surface, and the distance between the temperature detection points 6a and 6b was 1 mm. The distance between the temperature detection point of Comparative Example 1 and the mold surface was also 4 m.
m. In the example of the present invention and the comparative example 1, the heat flux meter and the temperature detecting end were respectively set to 20 mm in the longitudinal direction of the mold.
Seven points were arranged at mm intervals. The maximum heat flux apportioning method was used as the liquid level calculation method of the present invention. In Comparative Example 1, the maximum temperature gradient method was used.

【0031】図5に各方法による液面レベルの検出結果
を示す。液面レベルが急激に変動した場合において、渦
流方式に対する遅れを評価した結果、本発明例は遅れが
1秒、比較例1(温度検出方式)は2.3秒、比較例2
(γ線方式)は1秒という結果が得られた。本発明例の
熱流束方式は、温度検出方式に比較すると液面レベルの
変動に対する応答速度が速くなり、γ線方式と同等の応
答速度になるという結果を得ることができた。
FIG. 5 shows the results of detection of the liquid level by each method. As a result of evaluating the delay with respect to the eddy current method when the liquid level suddenly fluctuated, the delay of the example of the present invention was 1 second, that of Comparative Example 1 (temperature detection method) was 2.3 seconds, and that of Comparative Example 2 was
(Γ-ray method) gave a result of 1 second. In the heat flux method of the present invention, the response speed to the fluctuation of the liquid surface level was faster than that of the temperature detection method, and the result was that the response speed was equivalent to that of the γ-ray method.

【0032】[0032]

【発明の効果】連続鋳造における鋳型内液面レベルの検
出方法において、鋳型内部の熱流束測定値に基づいて液
面レベルを検出することにより、鋳型内部の温度測定値
に基づく液面レベル測定方法に比較して急激な液面レベ
ル変動時の測定応答速度が改善された。本発明法にはγ
線式液面レベル検出方法が有するドリフトの問題もな
く、また渦流式液面レベル検出方法と異なり小断面ビレ
ット連続鋳造装置にも適用が可能であり、ITV方式や
レーザー方式のように鋳型内溶融金属表面のパウダーに
妨害されることなく液面を測定することが可能である。
According to the method for detecting the liquid level in a mold in continuous casting, the liquid level is detected based on the measured value of the heat flux inside the mold, and the liquid level is measured based on the measured value of the temperature inside the mold. The measurement response speed at the time of abrupt liquid level fluctuation was improved as compared with. In the method of the present invention, γ
There is no drift problem of the linear liquid level detection method, and unlike the eddy current liquid level detection method, it can be applied to small-section continuous billet continuous casting equipment. The liquid level can be measured without being disturbed by the powder on the metal surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱流束測定手段を示す図であり、
(a)は2点の温度測定点を異なった位置に配置した場
合の水平方向断面図、(b)は2点の温度測定点を鋳型
表面からの同一の垂線上に配置した場合の断面図であ
る。
FIG. 1 is a view showing a heat flux measuring means of the present invention;
(A) is a horizontal sectional view when two temperature measuring points are arranged at different positions, and (b) is a cross-sectional view when two temperature measuring points are arranged on the same perpendicular line from the mold surface. It is.

【図2】本発明の熱流束測定手段を鋳型上下方向に複数
配置した状況を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where a plurality of heat flux measuring means of the present invention are arranged in a vertical direction of a mold.

【図3】鋳型内上下方向の熱流束の分布を示す図であ
る。
FIG. 3 is a diagram showing a distribution of a heat flux in a vertical direction in a mold.

【図4】液面レベルが急激に上昇したときの鋳型内の熱
流束と鋳型温度の時間変化を表した図であり、(a)は
液面レベル上昇前の鋳型の断面を示す図、(b)は液面
レベル上昇後の鋳型の断面を示す図、(c)は鋳型内の
熱流束と鋳型温度の時間変化を示す図である。
FIGS. 4A and 4B are diagrams showing a heat flux in a mold and a temporal change of a mold temperature when the liquid level rises rapidly, and FIG. 4A is a diagram showing a cross section of the mold before the liquid level rises; (b) is a diagram showing a cross section of the mold after the liquid level rises, and (c) is a diagram showing a time change of a heat flux in the mold and a mold temperature.

【図5】本発明及び比較例の液面レベルの検出結果を示
す図である。
FIG. 5 is a diagram showing detection results of a liquid level of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋳型表面 3 鋳型裏面 4 冷却水流路 5 冷却水チャンバー 6 温度測定点 7 コンスタンタン線 8 温度検出器 9 熱流束検出器 10 コンスタンタン片 11 銅製の棒 12 銅線 13 熱流束測定手段 14 液面レベル演算手段 15 液面レベル 16 凝固シェル 17 溶融金属 18 空隙 19 挿入孔 20 鋳片 DESCRIPTION OF SYMBOLS 1 Mold 2 Mold surface 3 Mold back surface 4 Cooling water channel 5 Cooling water chamber 6 Temperature measurement point 7 Constantan wire 8 Temperature detector 9 Heat flux detector 10 Constantan piece 11 Copper rod 12 Copper wire 13 Heat flux measuring means 14 Liquid level Level calculation means 15 Liquid level 16 Solidified shell 17 Molten metal 18 Void 19 Insertion hole 20 Cast slab

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 美敏 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 近藤 茂 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshitoshi Nakajima 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Shigeru Kondo 1 Kimitsu, Kimitsu City Nippon Steel Corporation Tsu Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造における鋳型内液面レベルの検
出方法において、鋳型内部の熱流束測定値に基づいて液
面レベルを検出することを特徴とする鋳型内液面レベル
の検出方法。
1. A method for detecting a liquid level in a mold in continuous casting, wherein the liquid level is detected based on a measured value of a heat flux in the mold.
【請求項2】 鋳型内の上下方向の複数の位置の熱流束
測定値に基づいて演算を行い、液面レベルを検出するこ
とを特徴とする請求項1に記載の鋳型内液面レベルの検
出方法。
2. The liquid level detection in the mold according to claim 1, wherein the liquid level is detected by performing an operation based on heat flux measurement values at a plurality of vertical positions in the mold. Method.
【請求項3】 鋳型内部の熱流束の測定は、鋳型内の表
面からの深さが異なった2点の温度の差の測定結果に基
づいて行うことを特徴とする請求項1又は2に記載の鋳
型内液面レベルの検出方法。
3. The method according to claim 1, wherein the measurement of the heat flux inside the mold is performed based on a measurement result of a temperature difference between two points having different depths from the surface in the mold. For detecting the liquid level in the mold.
【請求項4】 鋳型内の表面からの深さが異なった2点
の温度の差の測定は、1対の熱電対の温接点と冷接点を
前記2点の温度測定位置に配置することによって行うこ
とを特徴とする請求項3に記載の鋳型内液面レベルの検
出方法。
4. A method of measuring a temperature difference between two points having different depths from a surface in a mold by arranging a hot junction and a cold junction of a pair of thermocouples at the two temperature measurement positions. 4. The method for detecting a liquid level in a mold according to claim 3, wherein the method is performed.
【請求項5】 連続鋳造における鋳型内液面レベルの検
出装置において、鋳型内の上下方向の複数の位置の熱流
束測定手段と、該熱流束測定手段による熱流速測定結果
に基づいて液面レベルを演算する演算手段とを有し、前
記熱流速測定手段は、鋳型内の表面からの深さが異なっ
た2点の温度の差の測定結果に基づいて熱流束を測定す
ることを特徴とする鋳型内液面レベルの検出装置。
5. An apparatus for detecting a liquid level in a mold in continuous casting, comprising: means for measuring heat flux at a plurality of positions in the mold in a vertical direction; And a heat flow rate measuring means for measuring a heat flux based on a measurement result of a temperature difference between two points having different depths from the surface in the mold. Detector for liquid level in mold.
JP11042798A 1998-04-21 1998-04-21 Detection of liquid level in casting mold in continuous casting and apparatus therefor Pending JPH11300455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042798A JPH11300455A (en) 1998-04-21 1998-04-21 Detection of liquid level in casting mold in continuous casting and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042798A JPH11300455A (en) 1998-04-21 1998-04-21 Detection of liquid level in casting mold in continuous casting and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH11300455A true JPH11300455A (en) 1999-11-02

Family

ID=14535485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042798A Pending JPH11300455A (en) 1998-04-21 1998-04-21 Detection of liquid level in casting mold in continuous casting and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH11300455A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206958A (en) * 2001-01-10 2002-07-26 Nippon Steel Corp Apparatus and method for detecting level of hot water and computer readable storage medium
JP2004025202A (en) * 2002-06-21 2004-01-29 Nippon Steel Corp Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
EP1769864A1 (en) * 2005-09-29 2007-04-04 Concast Ag Process and device for determining the molten metal level in a continuous casting mould
JP2011017669A (en) * 2009-07-10 2011-01-27 Japan Atomic Energy Agency Temperature/heat flux measuring device, method of measuring temperature, and method of measuring heat flux
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
JP2016175114A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten metal surface profile measuring method, device and program in continuous casting mold, and control method of continuous casting
JP2016175107A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten steel flow rate control method in continuous casting mold, device and program
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206958A (en) * 2001-01-10 2002-07-26 Nippon Steel Corp Apparatus and method for detecting level of hot water and computer readable storage medium
JP4681127B2 (en) * 2001-01-10 2011-05-11 新日本製鐵株式会社 Hot water surface height detection apparatus, method, and computer-readable storage medium
JP2004025202A (en) * 2002-06-21 2004-01-29 Nippon Steel Corp Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
EP1769864A1 (en) * 2005-09-29 2007-04-04 Concast Ag Process and device for determining the molten metal level in a continuous casting mould
JP2011017669A (en) * 2009-07-10 2011-01-27 Japan Atomic Energy Agency Temperature/heat flux measuring device, method of measuring temperature, and method of measuring heat flux
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
JP2016175114A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten metal surface profile measuring method, device and program in continuous casting mold, and control method of continuous casting
JP2016175107A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Molten steel flow rate control method in continuous casting mold, device and program
JP2016175106A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Drift current detection method and drift current control method, molten metal surface variation detection method and molten metal surface variation control method in continuous casting mold, device and program

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
KR960003717B1 (en) Process of and apparatus for continuous casting with detection of possibility of break-out
JPH02141620A (en) Flow rate control apparatus for liquid
KR900014058A (en) Break-out Detection in Continuous Casting
KR20140014459A (en) Apparatus for forecasting a slab quality and method of thereof
JPH11300455A (en) Detection of liquid level in casting mold in continuous casting and apparatus therefor
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JPS58148061A (en) Method for predicting breakout in continuous casting
Thomas et al. Monitoring of meniscus thermal phenomena with thermocouples in continuous casting of steel
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
JPH0360852A (en) Method for detecting surface defect on cast slab in on-line
KR20120098407A (en) Apparatus for detecting and displaying varying levels of a metal melt
JPH06304727A (en) Device for controlling casting velocity
KR100793936B1 (en) Apparatus method for measuring thickness of molten mold flux
JP4244675B2 (en) Detection method of width direction distribution of molten steel flow velocity in continuous casting mold
JPH06320245A (en) Heat extraction control device in mold
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
KR100383274B1 (en) Continuous velocity measuring apparatus on cooling water in a water jacket of billet mold
JPH0810923A (en) Instrument for measuring molten metal surface level
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JPH0242409B2 (en)
KR101755402B1 (en) Visualization apparatus surface level of molten steel
JPH02151356A (en) Detection of surface fault on cast slab on-line
KR101755401B1 (en) Visualization apparatus surface level of molten steel and visualization method for surface level of molten steel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A02