JPH11299879A - Artificial biocompatible structure, functional parts, their manufacture and apparatus - Google Patents

Artificial biocompatible structure, functional parts, their manufacture and apparatus

Info

Publication number
JPH11299879A
JPH11299879A JP10105087A JP10508798A JPH11299879A JP H11299879 A JPH11299879 A JP H11299879A JP 10105087 A JP10105087 A JP 10105087A JP 10508798 A JP10508798 A JP 10508798A JP H11299879 A JPH11299879 A JP H11299879A
Authority
JP
Japan
Prior art keywords
artificial
substrate
fine particles
alumina
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10105087A
Other languages
Japanese (ja)
Inventor
Chikara Hayashi
主税 林
Yasuo Mihara
康雄 美原
Seiichiro Kashu
誠一郎 賀集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP10105087A priority Critical patent/JPH11299879A/en
Publication of JPH11299879A publication Critical patent/JPH11299879A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

PROBLEM TO BE SOLVED: To improve biocompatibility and to shorten a sintering time by coating the surface of a base material formed by selecting material which is satisfactory in terms of biocompatibility with a coating layer material. by a gas dispersion method. SOLUTION: A subcaptial part and a stem are, for example precisely cast by a titanium alloy and the alumina surface layer of a surface roughness of about 2 μm is formed on the outer peripheral surface of the subcapital part by an aerosol type gas deposition apparatus. Namely, the subcapital part/stem 11 made of the titanium alloy are set at a base material mounting moving system 13 in a film forming chamber 12. An aerosol container 14 housing aluminum particles 15 of about 0.1 μm in average grain size is connected to via a flow rate regulating valve 19 to a gaseous Ar cylinder 20. The air in the film forming chamber 12 is evacuated by a vacuum pump 24 and the alumina particulates 15 are introduced into the film forming chamber 12 by the gaseous Ar. Simultaneously the subcapital part/stem 11 are heated by a halogen lamp 27 while the both are moved in X-Y-Z directions by a mounting and moving system 13. The sintering time may thus be shortened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工生体適合構造
・機能部品、その作製方法及び装置に関し、特に医療の
分野で人体の一部の代替えとして、その構造と機能を保
持するように、人工部品の表面を、ガスデポジション法
により生体適合材料のバイオセラミックスの微粒子でコ
ーティングして得られる代替えの生体適合構造・機能部
品、その作製方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial biocompatible structural / functional component, a method and an apparatus for producing the same, and more particularly, to an artificial human body in the medical field as a substitute for a part of the human body so as to maintain its structure and function. The present invention relates to an alternative biocompatible structural / functional component obtained by coating the surface of a component with bioceramic fine particles of a biocompatible material by a gas deposition method, and a method and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】近年の医療技術の進歩にともない、人体
の骨、関節、及び歯科の部品である歯根などで生体の一
部として機能しなくなった人体部品の代替えとして、人
工の代替え部品が利用されている。しかしその場合、そ
の代替え部品が従来の生体の一部と同様の働きをはたす
ためには、同レベルもしくはそれ以上の構造と機能とを
保持すると共に、さらに生体と適合するために、物理化
学的、生化学的、生物学的な生体の特性をすべて網羅し
ていなければ、生体適合材料としての人工生体適合構造
・機能部品として利用できない。
2. Description of the Related Art With the progress of medical technology in recent years, artificial replacement parts have been used as replacements for human body parts that have stopped functioning as a part of the living body due to bones, joints, and dental roots, which are dental parts. Have been. However, in that case, in order for the replacement part to perform the same function as that of a part of the conventional living body, it must have the same or higher level of structure and function, and in addition, must be physically and chemically If it does not cover all biochemical and biological characteristics of living organisms, it cannot be used as an artificial biocompatible structure or functional component as a biocompatible material.

【0003】そのため、生体適合材料として、最近、バ
イオセラミックスを用いる研究がすすめられ、一部実用
化されている。例えば、キャスタブル・セラミックスの
ような生体適合性の良好なセラミックスの粉体を用い
て、造形・焼結により一体化をはかり形状などの解決を
図っている。キャスタブル・セラミックスは従来金属粉
末の分野で行われていたスリップ・キャスティングの手
法で用いられるものである。バイオセラミックス粉末に
耐火性骨材のアルミナセメントあるいはリン酸塩化合物
を配合し、さらに水を加えて混練し、所定の型に流し込
み、水分が型に吸水されて手で取り扱える程度に硬化し
た時点で型から取りだし、乾燥及び高温焼成して所定の
代替え部品を作製するものであり、一部の代替え部品に
は使用されている。
For this reason, research using bioceramics as a biocompatible material has recently been promoted, and some of them have been put to practical use. For example, using a ceramic powder having good biocompatibility such as castable ceramics, molding and sintering are performed to solve the problem such as shape. Castable ceramics are used in the slip casting method conventionally used in the field of metal powders. Alumina cement or phosphate compound as a refractory aggregate is blended with the bioceramic powder, water is added and kneaded, poured into a predetermined mold, and when the water is absorbed by the mold and hardened to the extent that it can be handled by hand. It is removed from a mold, dried and fired at a high temperature to produce a predetermined replacement part, and is used for some replacement parts.

【0004】また、チタンやチタン合金で代表される精
密鋳造の分野では、最近、鋳造時の遠心鋳造や鋳型内の
吸引、加圧を併用して行う歯科用チタン鋳造機を使用し
てチタン鋳物部品が製作されており、この鋳造部品は構
造・強度や形状の面では満足できるものである。
In the field of precision casting typified by titanium and titanium alloy, recently, a titanium casting machine has been used by using a dental titanium casting machine which performs centrifugal casting during casting and suction and pressurization in a mold in combination. Parts have been manufactured and the cast parts are satisfactory in terms of structure, strength and shape.

【0005】人工骨頭部及びそのためのソケットからな
る人工股関節と骨盤との概略配置を示す図1によれば、
人工股関節は、内面半球状のソケット(又はカップ)1
の内面(凹面)と大腿骨側2の外面半球状の骨頭部3の
外周面(凸面)とが嵌合し、互いに摺動する構造になっ
ている。ソケット1はその外周面が骨セメント4で覆わ
れて骨盤5内に埋設されており、骨頭部3は直径が28
mm前後の大きさで、大腿骨側のステム6に結合され、
このステムの周辺は骨セメント4で覆われている。通
常、ステムはステンレス又はチタン合金等で作製され、
また、ソケットと骨頭部は焼結アルミナ等で作製されて
いる。ソケットの骨盤への結合、また、骨頭部のステム
への結合に用いられる骨セメントとしては通常アルミナ
セメントが使用されている。アルミナ粉末の焼結温度
は、アルミナ粉末が大きい(通常、数μm)ため、ホッ
トプレスで焼結助剤を用いたとしても1,100℃以上
必要であり、さらにその焼結をするために通常1hr以
上の保持時間が必要である。
FIG. 1 shows a schematic arrangement of a pelvis and an artificial hip joint including an artificial bone head and a socket therefor.
The hip prosthesis has an inner hemispheric socket (or cup) 1
The inner surface (concave surface) and the outer peripheral surface (convex surface) of the hemispherical bone head 3 on the outer surface of the femur 2 are fitted and slide with each other. The socket 1 has its outer peripheral surface covered with bone cement 4 and is buried in the pelvis 5.
mm, and is connected to the stem 6 on the femur side,
The periphery of this stem is covered with bone cement 4. Usually, the stem is made of stainless steel or titanium alloy, etc.
The socket and the bone head are made of sintered alumina or the like. Alumina cement is usually used as the bone cement used for connecting the socket to the pelvis and the bone head to the stem. Since the sintering temperature of the alumina powder is large (usually several μm), even if a sintering aid is used by hot pressing, the sintering temperature is required to be 1,100 ° C. or more. A holding time of 1 hr or more is required.

【0006】[0006]

【発明が解決しようとする課題】生体適合材料としては
生体適合性と共に複雑な形状と高度な特性が要求される
ので、バイオセラミックスを使用する場合、たとえある
種のバイオセラミックスが生体適合性に優れていても、
その材料のみで必要とする形状や特性の成形体を作製す
るには、現在、なお多くの問題点を解決することが必要
である。そのため、前記したように、キャスタブル・セ
ラミックスのような生体適合性の良好なセラミックスの
粉体を用いているが、これらは構造や強度などの特性を
満足していない。このように、人体の構造・機能部品の
代替え部品として用いるには、バイオセラミックスとい
えども形状や構造・機能と生体適合との両面で問題が多
いのが現状である。また、チタンやチタン合金で代表さ
れる精密鋳造により得られる鋳造物は、生体適合面では
生体内での環境になじみ易いとしても、生体適合材料と
してはいまだ完全に満足できるものではない。
Since biocompatible materials are required to have biocompatibility and complicated shapes and advanced properties, when bioceramics are used, even if certain types of bioceramics are excellent in biocompatibility. Even if
In order to produce a molded body having the required shape and characteristics using only the material, it is necessary to solve many problems at present. For this reason, as described above, ceramic powders having good biocompatibility such as castable ceramics are used, but they do not satisfy properties such as structure and strength. As described above, there are many problems in terms of both the shape, structure and function, and biocompatibility of bioceramics in order to use it as a substitute for structural and functional parts of the human body. Further, a cast obtained by precision casting represented by titanium or a titanium alloy is not completely satisfactory as a biocompatible material even though it is easily adapted to an in vivo environment in terms of biocompatibility.

【0007】キャスタブル・セラミックスを用いてスリ
ップ・キャスティングにより所望の部品を得るために、
バイオセラミックスを素材として前記したような組成物
を用いて成型品を得て、これを一部の代替え部品として
使用しているが、複雑な、特に薄肉の形状や強度面の信
頼性などの問題、また製作時間の長いこと等の難点があ
る。また、上記したような歯科用チタン鋳造機を使用し
てチタン鋳物部品を製作する場合、チタンは融点が高く
(1,700±25℃)、かつ高温で酸化されやすいな
どの特有の性質を有するため、良質のチタン鋳物部品の
製作には高度の技術を必要とする。チタン鋳物部品はチ
タンの耐摩耗性が低いため、人工関節として使用する場
合、その摺動部で磨耗しやすいという問題が生じ、生体
反応の点からも使用を制限される場合がある。
[0007] In order to obtain a desired part by slip casting using castable ceramics,
A molded product is obtained using the above-described composition using bioceramics as a raw material, and this is used as a part of a replacement part. And the production time is long. In the case of manufacturing a titanium casting part using the dental titanium casting machine as described above, titanium has a high melting point (1,700 ± 25 ° C.) and specific properties such as being easily oxidized at high temperatures. Therefore, the production of high quality titanium casting parts requires advanced technology. Since titanium casting parts have low wear resistance of titanium, when used as an artificial joint, there arises a problem that the sliding parts are liable to wear, and the use may be restricted in terms of biological reactions.

【0008】生体代替え構造・機能部品としては、基材
としての人工部品が構造、形状、強度などの必要条件を
満たすと共に、体内での各種環境下でその人工部品が生
体と接触することから、その部品表面の生体との適合が
要求されるが、これらの点を解決したものはいまだにな
く、その開発が望まれている。
As a living body substitute structure / functional part, an artificial part as a base material satisfies necessary conditions such as structure, shape and strength, and the artificial part comes into contact with a living body in various environments in the body. It is required that the surface of the part be compatible with the living body, but none of these points has been solved yet, and its development is desired.

【0009】前記従来の人工股関節の場合、ソケット及
び骨頭部を構成する焼結アルミナは、擦れ合っても摩耗
が少なく、摩耗片や金属イオンの溶出もないので、材質
としては好ましいが、焼結アルミナ自体の脆性や強度不
足の問題がある。また、アルミナセメントによる結合部
は長期間の経過で劣化が生じるという欠点がある。さら
に、アルミナ粉末の焼結温度が高く、かつ、焼結時間が
長いという問題もある。
In the case of the above-mentioned conventional artificial hip joint, the sintered alumina constituting the socket and the bone head is preferably used as a material because it has little wear even when rubbed and there is no elution of wear pieces and metal ions. There are problems of brittleness of alumina itself and insufficient strength. In addition, there is a disadvantage that the joint made of alumina cement is deteriorated over a long period of time. Further, there is a problem that the sintering temperature of the alumina powder is high and the sintering time is long.

【0010】従って、本発明の目的は、上記従来技術の
問題点を解消し、生体の一部を構成する構造・機能部品
の代替えとなる有用な人工生体適合構造・機能部品、そ
れを作製する方法及びそのための装置を提供することに
ある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a useful artificial biocompatible structure / functional part which can be used as a substitute for a structure / functional part constituting a part of a living body, and to produce the same. It is to provide a method and an apparatus therefor.

【0011】[0011]

【課題を解決するための手段】本発明者等は、代替え人
工生体適合構造・機能部品を別の材料からなる基材とし
ての人工部品とその表面を被覆する被覆層とから構成せ
しめることにより、すなわち、形状、構造・機能、強度
の面や、生体適合の面で満足できる材料をそれぞれ選択
して、その基材表面に被覆層材料をガスデポジション法
によってコーティングすることにより、上記目的を達成
しうることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have proposed that an alternative artificial biocompatible structure / functional part is constituted by an artificial part as a base material made of another material and a coating layer covering the surface thereof. That is, the above object is achieved by selecting a material that is satisfactory in terms of shape, structure / function, strength, and biocompatibility, and coating the substrate surface with a coating layer material by a gas deposition method. The inventors have found that the present invention can be performed, and have completed the present invention.

【0012】本発明の代替えの人工生体適合構造・機能
部品の作製方法は、生体の一部を構成する構造・機能部
品としての骨、関節又は歯根の代替えとなる人工部品の
表面に、ガスデポジション法により生体適合材料の微粒
子を堆積・焼結して表面コーティングすることからな
る。前記人工部品がチタン、チタン合金、ステンレス
鋼、Co−Cr合金又はセラミックスから得られるもの
であり、前記生体適合材料がアルミナ、アパタイト又は
リン酸カルシウムであり、前記人工部品が人工骨頭部及
びその骨頭部のソケットからなる人工関節であることが
望ましい。
[0012] The method for producing an artificial biocompatible structure / functional part according to the present invention is a method for producing a gas / gas component on a surface of an artificial part as a substitute for a bone, joint or tooth root as a structural / functional part constituting a part of a living body. It consists of depositing and sintering biocompatible fine particles by the position method and coating the surface. The artificial component is obtained from titanium, titanium alloy, stainless steel, Co-Cr alloy or ceramics, the biocompatible material is alumina, apatite or calcium phosphate, and the artificial component is an artificial bone head and a bone head thereof. An artificial joint consisting of a socket is desirable.

【0013】チタン合金は、機械強度特性として比強度
が大きく、人体の骨等により近い弾性係数を有する材料
であると共に、生体との適合性では生体内の環境になじ
み易く、各種の腐食に対して耐食性がある。しかし、一
方では種々の加工、特に鋳造加工が難しいことから、所
望とする形状によってはステンレス鋼やCo−Cr合金
材を代替え品として用いることもある。このCo−Cr
合金は医用金属材料として一般に使用されており、ステ
ンレス鋼は医用部品の基材として、その表面に溶射アル
ミナコーティングを設けて使用され得る。
Titanium alloy is a material having a high specific strength as a mechanical strength property and having an elastic coefficient closer to bones of a human body, etc., and is compatible with the environment in a living body in compatibility with a living body, and is resistant to various kinds of corrosion. And corrosion resistant. However, on the other hand, stainless steel or a Co—Cr alloy material may be used as a substitute depending on the desired shape because various processes, particularly casting processes, are difficult. This Co-Cr
Alloys are commonly used as medical metal materials, and stainless steel can be used as a base material for medical parts with a sprayed alumina coating on the surface.

【0014】本発明の人工生体適合構造・機能部品は、
前記人工部品とその表面に被覆された前記生体適合材料
被覆層とからなる。
The artificial biocompatible structure / functional part of the present invention
It comprises the artificial component and the biocompatible material coating layer coated on the surface thereof.

【0015】本発明の人工生体適合構造・機能部品の作
製装置は、キャリヤガスと生体適合材料の微粒子とから
構成されるエアロゾルの供給部、被覆層形成室内に、被
覆される基材に対して該エアロゾルを噴射するノズル
と、該基材に近接して設けられた該基材の表面を加熱す
るための加熱装置と、該微粒子が堆積される基材表面の
温度を測定するためのセンサーを備えた温度測定器と、
該基材を取付けかつ移動するための手段を有する基材取
付け移動系とを気密に備えた被覆層形成部、該基材取付
け移動系に連結され、該ノズルの先端と該微粒子が堆積
される基材表面との間隔を一定に保持しながら該微粒子
がその堆積面に対してほぼ直角にノズルから噴射される
ように、該基材のX−Y−Z方向への移動を制御する移
動系コントローラー、該基材自体を加熱するための加熱
手段、該被覆層形成室を排気するための真空排気系、及
び該エアロゾル供給部と該被覆層形成部とを連結する搬
送管からなっている。該加熱装置は、セラミックス微粒
子を基材上に堆積する際に、基材表面を加熱して基材と
微粒子の接合を強固にすると共に、基材表面に堆積する
微粒子同士の接合をも助ける役目があり、基材表面の加
熱が主で、基材全体の加熱は補助的である。
The apparatus for producing an artificial biocompatible structure / functional part according to the present invention comprises an aerosol supply unit composed of a carrier gas and fine particles of a biocompatible material; A nozzle for injecting the aerosol, a heating device provided in close proximity to the substrate for heating the surface of the substrate, and a sensor for measuring the temperature of the substrate surface on which the fine particles are deposited. Equipped temperature measuring device,
A coating layer forming unit airtightly provided with a substrate mounting and moving system having means for mounting and moving the substrate, connected to the substrate mounting and moving system, and the tip of the nozzle and the fine particles are deposited; A moving system for controlling the movement of the substrate in the XYZ directions so that the fine particles are ejected from the nozzle at a substantially right angle to the deposition surface while maintaining a constant distance from the surface of the substrate. It comprises a controller, a heating means for heating the substrate itself, a vacuum exhaust system for exhausting the coating layer forming chamber, and a transport pipe for connecting the aerosol supply section and the coating layer forming section. The heating device heats the surface of the base material when depositing the ceramic fine particles on the base material to strengthen the bonding between the base material and the fine particles, and also serves to assist the bonding between the fine particles deposited on the base material surface. Heating of the surface of the substrate is mainly performed, and heating of the entire substrate is auxiliary.

【0016】また、該基材取付け移動系が、取り付けら
れた基材を回転するための手段をさらに備えていてもよ
い。
[0016] The substrate mounting and moving system may further include means for rotating the mounted substrate.

【0017】[0017]

【発明の実施の形態】本発明の人工生体適合構造・機能
部品の作製方法によれば、現在すでに医用金属材料とし
て用いられているステンレス鋼やCo−Cr合金を素材
としたものも含めて、チタン、チタン合金又はセラミッ
クスを素材として予め所望の形状に加工された代替え人
工部品を基材として用意し、その人工部品の表面に、バ
イオセラミックス、例えばアルミナ、アパタイト(例え
ば、水酸アパタイト)、又はリン酸カルシウムなどの、
使用される生体内の環境に適したバイオセラミックスの
微粒子をガスデポジション法により数10〜約200μ
mの厚さでコーティングすることが望ましい。その際、
人工部品の表面ないしは堆積する微粒子を所定の温度に
加熱しておけば、堆積と同時に焼結も起こり、望ましい
被覆層が短い作製時間で容易に得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the method for producing an artificial biocompatible structure / functional part of the present invention, stainless steel and Co-Cr alloy, which are currently used as medical metal materials, are used. Titanium, a titanium alloy or a ceramic material is used as a base material to prepare an alternative artificial part previously processed into a desired shape as a base material, and on the surface of the artificial part, a bioceramic such as alumina, apatite (eg, hydroxyapatite), or Such as calcium phosphate,
Fine particles of bioceramics suitable for the in vivo environment to be used are tens to about 200 μm by a gas deposition method.
It is desirable to coat with a thickness of m. that time,
If the surface of the artificial part or the particles to be deposited are heated to a predetermined temperature, sintering occurs simultaneously with the deposition, and a desired coating layer can be easily obtained in a short production time.

【0018】本発明の場合、人工生体適合構造・機能部
品に対する形状、構造、強度等の要求に対しては基材の
金属などの材料が分担し、生体との適合(なじみ)につ
いては表面被覆層のバイオセラミックスが機能する。
In the case of the present invention, a material such as a base material is responsible for the shape, structure, strength, etc. of the artificial biocompatible structure / functional part, and the surface coating is applied for compatibility (adaptation) with the living body. The layer of bioceramics works.

【0019】前記したような被覆された人工部品では、
基材とその表面の被覆層との間には十分な付着強度が必
要であり、さらに被覆層はピンホールが皆無で、十分な
膜強度が要求されるが、本発明によれば、微細なバイオ
セラミックス粒子(その粒径は<1μm)を使用してガ
スデポジション法で特定のバイオセラミックス堆積膜を
作成しているので、バイオセラミックス堆積膜は基材と
の付着強度が十分高く、また、バイオセラミックス粒子
同士の結合も強いので、ピンホールもなく、膜強度も十
分高い。
In a coated artificial part as described above,
Sufficient adhesion strength is required between the base material and the coating layer on the surface, and further, the coating layer has no pinholes and requires sufficient film strength. Since a specific bioceramic deposition film is prepared by a gas deposition method using bioceramic particles (the particle size is <1 μm), the bioceramic deposition film has a sufficiently high adhesion strength to a base material. Since the bonding between the bioceramic particles is strong, there is no pinhole and the film strength is sufficiently high.

【0020】また、本発明によれば、エアロゾル式ガス
デポジション法によるセラミックス微粒子の堆積の際
に、基材自体はヒータ等の加熱手段により好ましくは約
400〜500℃に加熱されており、また基材表面及び
堆積する微粒子自体は加熱装置により一般に350〜6
50℃、好ましくは約550〜650℃に加熱されるの
で、堆積と同時に焼結も進行し、従来法の成形→焼結→
接合工程の場合よりも工程を簡略化できる。堆積するセ
ラミックス微粒子の焼結温度は従来法の場合(アルミナ
の場合は1,100℃以上、アパタイトの場合は1,0
00℃以上)のほぼ1/2程度の低い温度で十分であ
る。また、堆積時の温度が従来法の焼結工程での処理温
度よりも格段に低いので、基材と堆積膜との接合の界面
に異常な介在物が生成することがない。例えば、チタン
合金(例えば、Ti−6Al−4V)上にアルミナを積
層する場合、数μmの粒径のアルミナ粒子を焼結する
と、アルミナ中の酸素原子がチタン合金表面から侵入し
て拡散し、そのためチタン合金表層に脆化層が生成し、
アルミナ堆積膜との付着強度が低下するが、本発明によ
ればそのようなこともなく、基材とアルミナ堆積膜との
間の付着強度は満足しうる範囲にある。
According to the present invention, when depositing the ceramic fine particles by the aerosol gas deposition method, the substrate itself is preferably heated to about 400 to 500 ° C. by a heating means such as a heater. The substrate surface and the deposited fine particles themselves are generally 350 to 6 particles by a heating device.
Since it is heated to 50 ° C., preferably about 550 to 650 ° C., sintering proceeds at the same time as deposition, and molding → sintering →
The process can be simplified as compared with the case of the joining process. The sintering temperature of the deposited ceramic fine particles is the same as that of the conventional method (1,100 ° C. or more for alumina, 1,0 ° C. for apatite).
A temperature as low as about 1/2 of (00 ° C. or more) is sufficient. In addition, since the temperature at the time of deposition is much lower than the processing temperature in the conventional sintering step, no abnormal inclusions are generated at the interface between the base material and the deposited film. For example, when laminating alumina on a titanium alloy (for example, Ti-6Al-4V), when alumina particles having a particle diameter of several μm are sintered, oxygen atoms in the alumina penetrate from the titanium alloy surface and diffuse, Therefore, an embrittlement layer is formed on the surface of the titanium alloy,
According to the present invention, the adhesion strength between the substrate and the alumina deposition film is in a satisfactory range, although the adhesion strength between the substrate and the alumina deposition film is reduced.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施例1)本実施例では、本発明を人工
股関節に適用した場合について説明する。
(Embodiment 1) In this embodiment, a case where the present invention is applied to an artificial hip joint will be described.

【0023】図1に示した骨頭部3とステム6とをチタ
ン合金(Ti−6Al−4V)である金属材料で精密鋳
造し、骨頭部3の外周面にアルミナ層を形成した。骨頭
部は直径28mm前後の半球状で、表面は±2μmの表
面粗度に仕上げた。骨頭部3の外周面にアルミナ層を形
成するためのエアロゾル式ガスデポジション装置を図2
に示す。
The bone head 3 and the stem 6 shown in FIG. 1 were precision-cast with a metal material which is a titanium alloy (Ti-6Al-4V), and an alumina layer was formed on the outer peripheral surface of the bone head 3. The bone head was hemispherical with a diameter of about 28 mm, and the surface was finished to a surface roughness of ± 2 μm. FIG. 2 shows an aerosol-type gas deposition apparatus for forming an alumina layer on the outer peripheral surface of a bone head 3.
Shown in

【0024】図2に示すように、被覆すべき骨頭部を有
するチタン合金製骨頭部/ステム11(以下、基材とも
いう)は膜形成室12内の基材取付け移動系13にセッ
トされ、エアロゾル容器14内には堆積せしめるアルミ
ナ微粒子(平均粒径0.1μm)15がチャージされる
ようになっている。膜形成室12とエアロゾル容器14
とは内径2.4mmのステンレス製の搬送管16で気密
に接続され、膜形成室内の搬送管16の先端部にはノズ
ル17が取り付けられている。そのノズルの形状は内径
1.5mm、長さ25mmである。エアロゾル容器14
には内径2mmのステンレス製のガス導入パイプ18が
組み込まれ、その先端はアルミナ微粒子の底近くに突っ
込まれている。このガス導入パイプ18は流量調整バル
ブ19を介してArガスボンベ20に配管接続されてい
る。膜形成室12及びエアロゾル容器14にはそれぞれ
圧力計21及び22が設けられ、また、膜形成室12は
真空バルブ23を介して真空ポンプ24に接続してい
る。
As shown in FIG. 2, a titanium alloy bone head / stem 11 having a bone head to be coated (hereinafter also referred to as a substrate) is set in a substrate mounting and moving system 13 in a film forming chamber 12. Alumina fine particles (average particle size: 0.1 μm) 15 to be deposited are charged in the aerosol container 14. Film forming chamber 12 and aerosol container 14
Is hermetically connected by a transfer tube 16 made of stainless steel having an inner diameter of 2.4 mm, and a nozzle 17 is attached to a tip of the transfer tube 16 in the film forming chamber. The nozzle has an inner diameter of 1.5 mm and a length of 25 mm. Aerosol container 14
A gas introduction pipe 18 made of stainless steel and having an inner diameter of 2 mm is incorporated therein, and the tip thereof protrudes near the bottom of the alumina fine particles. The gas introduction pipe 18 is connected to an Ar gas cylinder 20 via a flow control valve 19. Pressure gauges 21 and 22 are provided in the film forming chamber 12 and the aerosol container 14, respectively. The film forming chamber 12 is connected to a vacuum pump 24 via a vacuum valve 23.

【0025】基材取付け移動系13は、ノズル17の先
端とアルミナ微粒子が堆積される骨頭部外表面との間隔
を一定(通常、約2mmの間隔)に保ちながら、アルミ
ナ微粒子が堆積面に対してほぼ直角にノズル17から噴
射されるように、X−Y−Z方向に3次元の移動が出来
るようになっている。この移動系13は基材を加熱する
ためのヒーターを内蔵し、このヒーターは加熱電源25
に接続されている。この基材の移動は移動系コントロー
ラー26によりプログラム制御できるようになってい
る。
The substrate mounting and moving system 13 keeps the distance between the tip of the nozzle 17 and the outer surface of the bone head on which the alumina fine particles are deposited constant (typically about 2 mm) while keeping the alumina fines on the deposition surface. The nozzle 17 can be moved three-dimensionally in the XYZ directions so as to be ejected from the nozzle 17 at substantially right angles. The moving system 13 has a built-in heater for heating the base material.
It is connected to the. The movement of the substrate can be program-controlled by the movement controller 26.

【0026】アルミナ堆積部(骨頭部外周面)の加熱は
ハロゲンランプ27を光源とした赤外線加熱で行うが、
その赤外線は、膜形成室12内に気密に挿入されている
直径20mm、長さ250mmの石英ロッド28内を通
過し、堆積面(骨頭部外周面)上に直径10mmのスポ
ットで集束される。温度測定はスポット赤熱部からの赤
外線の放射をセンサー29で検出して温度表示器30で
表示する。
Heating of the alumina deposition portion (outer surface of the bone head) is performed by infrared heating using a halogen lamp 27 as a light source.
The infrared rays pass through a quartz rod 28 having a diameter of 20 mm and a length of 250 mm which is hermetically inserted into the film forming chamber 12 and is focused on a deposition surface (outer peripheral surface of a bone head) as a spot having a diameter of 10 mm. In the temperature measurement, infrared radiation from the spot glowing part is detected by the sensor 29 and displayed on the temperature display 30.

【0027】次に、半球状の骨頭部表面にアルミナ微粒
子を堆積する方法を説明する。
Next, a method for depositing alumina fine particles on the surface of a hemispherical bone head will be described.

【0028】先ず、基材としてのチタン合金製骨頭部/
ステム11を膜形成室12内の基材取付け移動系13に
セットし、エアロゾル容器14内に平均粒径20nmの
アルミナ微粒子15を20gチャージした。基材の取り
付けられた該移動系13に接続された移動系コントロー
ラー26には骨頭部外周面へのノズル17からのアルミ
ナ微粒子噴射時の作業プログラムが組み込まれている。
骨頭部/ステム11の骨頭部の被覆面を赤外線加熱で6
50℃に加熱し、該移動系13に内蔵されているヒータ
ーにより、基材自体を、アルミナ微粒子の場合通常50
0℃に加熱し、ノズル17をその先端の位置が骨頭部の
堆積スタートの位置にくるように設定した。
First, a titanium alloy bone head as a base material /
The stem 11 was set in the substrate mounting moving system 13 in the film forming chamber 12, and 20 g of alumina fine particles 15 having an average particle diameter of 20 nm were charged in the aerosol container 14. A moving system controller 26 connected to the moving system 13 to which the base material is attached incorporates a work program for spraying alumina fine particles from the nozzle 17 onto the outer peripheral surface of the bone head.
The surface of the bone head / stem 11 covering the head of the bone is infrared-heated to 6
The substrate is heated to 50 ° C., and the substrate itself is heated to 50 ° C. in the case of alumina fine particles by a heater built in the moving system 13.
The nozzle 17 was heated to 0 ° C., and the tip of the nozzle 17 was set so as to be at the position where the deposition of the bone head started.

【0029】次いで、真空ポンプ24で膜形成室12内
を0.3Paまで排気した後、ガス導入バルブを開け
て、Arガスボンベ20からArガスを流量5L/mi
nでエアロゾル容器14に導入した。Arガスはエアロ
ゾル容器19の底部でアルミナ微粒子を吹き上げてエア
ロゾル状態とする。このAr/アルミナ微粒子の混合エ
アロゾルを圧力差で搬送管19を通して膜形成室12に
搬送し、骨頭部外周面と約2mmの間隔を保ったノズル
17の先端から平均流速約50m/sの高速で噴射して
骨頭部外周面に衝突せしめた。この場合、骨頭部が停止
しているとアルミナ微粒子は骨頭部の堆積面上で円錐状
に約10μm/sの速度で積み上がるが、骨頭部は移動
系コントローラー26に組み込まれている作業プログラ
ムに従って任意にX−Y−Z方向に連続して移動するよ
うになっているので、骨頭部の外周面上に連続した焼結
堆積膜が形成された。このときのエアロゾル容器14の
圧力は85kPa、また、膜形成室12の圧力は64P
aであった。エアロゾルの噴出速度が低下すると堆積さ
れた膜内での粒子密度が低下し、また基材との付着強度
が低下した。
Next, after the inside of the film forming chamber 12 is evacuated to 0.3 Pa by the vacuum pump 24, the gas introduction valve is opened and Ar gas is supplied from the Ar gas cylinder 20 at a flow rate of 5 L / mi.
n and introduced into the aerosol container 14. The Ar gas blows up alumina fine particles at the bottom of the aerosol container 19 to be in an aerosol state. The mixed aerosol of the Ar / alumina fine particles is transported to the film forming chamber 12 through the transport pipe 19 with a pressure difference, and at a high speed of about 50 m / s at an average flow velocity of about 50 m / s from the tip of the nozzle 17 which keeps an interval of about 2 mm from the outer peripheral surface of the bone head. It was injected and collided with the outer peripheral surface of the bone head. In this case, when the bone head is stopped, the alumina fine particles are piled up conically at a speed of about 10 μm / s on the deposition surface of the bone head. Since it continuously moves in the XYZ directions arbitrarily, a continuous sintered deposited film was formed on the outer peripheral surface of the bone head. At this time, the pressure of the aerosol container 14 is 85 kPa, and the pressure of the film forming chamber 12 is 64 PPa.
a. When the jetting speed of the aerosol was reduced, the particle density in the deposited film was reduced, and the bonding strength with the substrate was reduced.

【0030】骨頭部外周面に堆積するアルミナ微粒子の
膜厚は骨頭部の移動速度で決まり、アルミナ微粒子の噴
出量が一定の場合、骨頭部の移動速度に反比例する。
0.15mm/sの速度で移動すると約100μm厚さ
の堆積膜が形成される。上記方法によれば、連続した約
50minの堆積操作で半球状の骨頭部外周面に厚さ1
00μmのアルミナ微粒子堆積膜が形成された。骨頭部
内表面と堆積膜との接合の界面に異常な介在物としての
脆化層が生成せず、骨頭部外周面とアルミナ微粒子堆積
膜との付着強度も満足するものであった。
The thickness of the alumina fine particles deposited on the outer peripheral surface of the bone head is determined by the moving speed of the bone head, and is inversely proportional to the moving speed of the bone head when the ejection amount of the alumina fine particles is constant.
When moving at a speed of 0.15 mm / s, a deposited film having a thickness of about 100 μm is formed. According to the above method, the thickness of the hemispherical bone head is reduced to 1 by a continuous deposition operation for about 50 min.
A 00 μm alumina fine particle deposited film was formed. No embrittlement layer as an abnormal inclusion was formed at the interface between the inner surface of the bone head and the deposited film, and the adhesion strength between the outer peripheral surface of the bone head and the deposited alumina fine particle film was satisfactory.

【0031】また、上記と同じ方法で半球状のソケット
内面(凹面)にも厚さ100μmのアルミナ微粒子堆積
膜を形成した。ソケット内面と堆積膜との接合の界面に
異常な介在物としての脆化層が生成せず、ソケット内面
とアルミナ微粒子堆積膜との付着強度も満足するもので
あった。
A 100 μm-thick alumina fine particle deposited film was formed on the inner surface (concave surface) of the hemispherical socket in the same manner as described above. An embrittlement layer as an abnormal inclusion was not formed at the interface between the socket inner surface and the deposited film, and the adhesion strength between the socket inner surface and the alumina fine particle deposited film was satisfactory.

【0032】その後、アルミナ微粒子膜の堆積された骨
頭部外周面(凸面)及び半球状のソケット内面(凹面)
にアルコール中に懸濁したアルミナ微粒子を極めて薄く
(数μm程度)塗布し、この凹凸面をかみ合わせて機械
的に摺動を約1時間行い、その後両面をアルコールで洗
浄することにより、形成された両アルミナ微粒子堆積膜
を表面仕上げし、一対の人工股関節とした。
Thereafter, an outer peripheral surface (convex surface) of the bone head on which the alumina fine particle film is deposited and an inner surface (concave surface) of the hemispherical socket.
Is formed by applying very thin (about several μm) alumina fine particles suspended in alcohol, mechanically sliding about 1 hour by engaging the uneven surface, and then washing both surfaces with alcohol. Both alumina fine particle deposited films were surface-finished to form a pair of artificial hip joints.

【0033】得られた人工股関節は、生体の股関節の代
替えとなる人工股関節として、形状、構造・機能、強度
の面や、生体適合の面で満足できるものであった。
The obtained artificial hip joint was satisfactory as an artificial hip joint as a substitute for a living body hip joint in terms of shape, structure and function, strength, and biocompatibility.

【0034】(実施例2)本実施例では、本発明を人工
歯根に適用した場合について説明する。
Embodiment 2 In this embodiment, a case where the present invention is applied to an artificial tooth root will be described.

【0035】図3に示すようなスクリュー型人工歯根4
1を、チタン合金(Ti−6Al−4V)から精密鋳造
で作製し、この人工歯根41の歯内骨内への埋め込み部
(ねじ部)42に所望の厚さの水酸アパタイト微粒子の
堆積膜を形成する。図中、43は義歯冠合部を示す。
A screw-type artificial tooth root 4 as shown in FIG.
1 is manufactured by precision casting from a titanium alloy (Ti-6Al-4V), and a deposited film of hydroxyapatite microparticles having a desired thickness is embedded in an embedded portion (screw portion) 42 of the artificial tooth root 41 in the endodontic bone. To form In the drawing, reference numeral 43 denotes a denture crown joint.

【0036】水酸アパタイト微粒子堆積膜の形成は、図
2に示す装置に図4に示す要素を付加したものを用いて
行った。すなわち、図2の基材取付け移動系13上に図
4に示すような真空モーター51に直結してチャック5
2を結合し、基材としてのチタン合金製人工歯根53を
挟み込み、この人工歯根を一定速度で回転すると共にX
方向への移動を与えるようにして堆積膜の形成を行う構
造になっている。
The formation of the hydroxyapatite fine particle deposited film was performed by using the apparatus shown in FIG. 2 with the elements shown in FIG. 4 added. That is, the chuck 5 is directly connected to the vacuum motor 51 as shown in FIG.
, The artificial tooth root 53 made of a titanium alloy as a base material is sandwiched, and the artificial tooth is rotated at a constant speed and X
The structure is such that the deposited film is formed so as to move in the direction.

【0037】先ず、水酸アパタイト微粒子(平均粒径:
0.2μm)をエアロゾル容器内に約20gチャージし
た。その後の微粒子のエアロゾル化→搬送→ノズルから
の噴射→基材(人工歯根)表面の加熱→基材表面への堆
積の工程は、実施例1と同じ方法で行った。基材表面は
550℃に加熱し、基材自体は400℃に加熱して行っ
た。この場合、人工歯根の埋め込み部42であるねじ部
表面へアパタイト粒子を堆積するに際し、ねじの山と谷
との深さの上下移動(通常1〜2mm程度)をねじのピ
ッチに合わせて行って均一な膜が堆積されるようにし
た。得られた堆積膜の厚さは約100μmであり、該ね
じ部へのアパタイト堆積膜の付着強度は15MPaであ
った。アパタイト微粒子の場合、基材表面の加熱温度は
550℃で十分な堆積膜の強度が得られ、基材の歯内骨
内埋め込み部42の表面と堆積膜との接合の界面に異常
な介在物としての脆化層が生成せず、該埋め込み部42
の表面とアパタイト微粒子堆積膜との付着強度も満足す
るものであった。かかるアパタイト微粒子堆積膜の形成
により、口腔内での組織親和性が向上した。
First, hydroxyapatite fine particles (average particle size:
0.2 μm) was charged into an aerosol container about 20 g. The subsequent steps of aerosolization of fine particles → transportation → injection from a nozzle → heating of the substrate (artificial root) surface → deposition on the substrate surface were performed in the same manner as in Example 1. The substrate surface was heated to 550 ° C, and the substrate itself was heated to 400 ° C. In this case, when depositing the apatite particles on the surface of the thread portion, which is the embedding portion 42 of the artificial tooth root, the depth of the crest and valley of the screw is moved up and down (usually about 1 to 2 mm) in accordance with the pitch of the screw. A uniform film was deposited. The thickness of the obtained deposited film was about 100 μm, and the adhesion strength of the deposited apatite film to the screw portion was 15 MPa. In the case of apatite fine particles, the heating temperature of the substrate surface is 550 ° C., and sufficient strength of the deposited film is obtained, and an abnormal inclusion is present at the interface between the surface of the endodontic implant 42 of the substrate and the deposited film. No embrittlement layer is generated as the
The adhesion strength between the surface of the sample and the deposited film of apatite fine particles was also satisfactory. The formation of the apatite fine particle deposited film improved the tissue affinity in the oral cavity.

【0038】また、上記工程において、人工歯根表面の
温度を350℃とした場合、人工歯根表面に堆積したア
パタイト堆積膜の付着強度は6MPaであり、満足する
ものであった。
In the above step, when the temperature of the artificial tooth root surface was set at 350 ° C., the adhesion strength of the apatite deposited film deposited on the artificial tooth root surface was 6 MPa, which was satisfactory.

【0039】人工歯根の場合の膜厚は厳密な制御は不要
であり、目標値100μmに対して±15%程度は実用
上許容され得る。
Strict control of the film thickness in the case of an artificial tooth root is unnecessary, and about ± 15% of a target value of 100 μm can be practically allowed.

【0040】(実施例3)実施例2で用いた水酸アパタ
イトの代わりにリン酸カルシウム(平均粒径0.2μ
m)を用いて実施例2の手順を繰り返したところ、得ら
れたリン酸カルシウム堆積膜は実施例2の場合と同程度
の特性を有していた。
Example 3 In place of the hydroxyapatite used in Example 2, calcium phosphate (average particle size 0.2 μm) was used.
m), the procedure of Example 2 was repeated. As a result, the obtained calcium phosphate deposited film had properties similar to those of Example 2.

【0041】[0041]

【発明の効果】本発明の人工生体適合構造・機能部品の
作製方法及び作製装置によれば、ガスデポジション法で
人工部品の表面に生体適合材料の微粒子を堆積・焼結し
て表面コーティングするので、必要な形状、構造・機
能、強度を備えると共に生体への適合性でも満足でき
る、生体部品の代替えとなる有用な人工生体適合構造・
機能部品が簡単かつ容易に提供できる。
According to the method and apparatus for producing an artificial biocompatible structure / functional component of the present invention, fine particles of a biocompatible material are deposited and sintered on the surface of the artificial component by a gas deposition method to perform surface coating. Therefore, it has a required shape, structure / function, strength, and can satisfy the compatibility with the living body.
Functional parts can be provided simply and easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】人工股関節について説明するための概略線図。FIG. 1 is a schematic diagram illustrating an artificial hip joint.

【図2】本発明の装置の一実施例を説明するための概略
線図。
FIG. 2 is a schematic diagram for explaining an embodiment of the apparatus of the present invention.

【図3】本発明により得られる被覆人工歯根について説
明するための模式的側面図。
FIG. 3 is a schematic side view for explaining a coated artificial tooth root obtained by the present invention.

【図4】本発明による人工歯根の作製装置の歯根取付部
の一部を示す模式的側面図。
FIG. 4 is a schematic side view showing a part of a tooth root attachment portion of the artificial tooth root manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 ソケット 2 大腿骨側 3 骨頭部 4 骨セメント 5 骨盤 6 ステム 11 骨頭部/ステム(基材) 12 膜形成室 13 基材取り付け移動系 14 エアロゾ
ル容器 15 アルミナ微粒子 16 搬送管 17 ノズル 18 ガス導入
パイプ 19 流量調整バルブ 20 ガスボン
ベ 21、22 圧力計 23 真空バル
ブ 24 真空ポンプ 25 加熱電源 26 移動系コントローラー 27 ハロゲン
ランプ 28 石英ロッド 29 センサー 30 温度表示器 41 人工歯根 42 埋め込み部 43 義歯冠合
部 51 真空モーター 52 チャック 53 人工歯根
DESCRIPTION OF SYMBOLS 1 Socket 2 Femur side 3 Bone head 4 Bone cement 5 Pelvis 6 Stem 11 Bone head / stem (base material) 12 Membrane formation room 13 Substrate mounting moving system 14 Aerosol container 15 Alumina fine particles 16 Transport pipe 17 Nozzle 18 Gas introduction pipe DESCRIPTION OF SYMBOLS 19 Flow control valve 20 Gas cylinder 21, 22 Pressure gauge 23 Vacuum valve 24 Vacuum pump 25 Heating power 26 Moving system controller 27 Halogen lamp 28 Quartz rod 29 Sensor 30 Temperature display 41 Artificial root 42 Embedding part 43 Denture crown part 51 Vacuum motor 52 Chuck 53 Artificial root

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 生体の一部を構成する構造・機能部品と
しての骨、関節又は歯根の代替えとなる人工部品の表面
に、ガスデポジション法により生体適合材料の微粒子を
堆積・焼結して表面コーティングし、代替えの人工生体
適合構造・機能部品を作製することを特徴とする人工生
体適合構造・機能部品の作製方法。
1. A method of depositing and sintering fine particles of a biocompatible material on a surface of an artificial part as a substitute for a bone, a joint or a tooth root as a structural or functional part constituting a part of a living body by a gas deposition method. A method for producing an artificial biocompatible structure / functional part, which comprises coating a surface and producing an alternative artificial biocompatible structure / functional part.
【請求項2】 前記人工部品がチタン、チタン合金、ス
テンレス鋼、Co−Cr合金又はセラミックスから得ら
れるものであり、前記生体適合材料がアルミナ、アパタ
イト又はリン酸カルシウムである請求項1記載の作製方
法。
2. The method according to claim 1, wherein the artificial component is obtained from titanium, a titanium alloy, stainless steel, a Co—Cr alloy, or ceramics, and the biocompatible material is alumina, apatite, or calcium phosphate.
【請求項3】 前記人工部品が人工骨頭部及びその骨頭
部のためのソケットからなる人工関節である請求項1又
は2記載の作製方法。
3. The method according to claim 1, wherein the artificial component is an artificial joint comprising an artificial bone head and a socket for the artificial bone head.
【請求項4】 生体の一部を構成する構造・機能部品と
しての骨、関節又は歯根の代替えとなる、チタン、チタ
ン合金、ステンレス鋼、Co−Cr合金又はセラミック
スから得られた人工部品と、その表面に被覆されたアル
ミナ、アパタイト又はリン酸カルシウムの生体適合材料
被覆層とからなることを特徴とする人工生体適合構造・
機能部品。
4. An artificial part obtained from titanium, a titanium alloy, stainless steel, a Co—Cr alloy or ceramics, which is a substitute for a bone, joint or root as a structural / functional part constituting a part of a living body, An artificial biocompatible structure characterized by comprising a biocompatible material coating layer of alumina, apatite or calcium phosphate coated on its surface.
functional parts.
【請求項5】 キャリヤガスと生体適合材料の微粒子と
から構成されるエアロゾルの供給部、被覆層形成室内
に、被覆される基材に対して該エアロゾルを噴射するノ
ズルと、該基材に近接して設けられた該基材の表面を加
熱するための加熱装置と、該微粒子が堆積される基材表
面の温度を測定するためのセンサーを備えた温度測定器
と、該基材を取付けかつ移動するための手段を有する基
材取付け移動系とを気密に備えた被覆層形成部、該基材
取付け移動系に連結され、該ノズルの先端と該微粒子が
堆積される基材表面との間隔を一定に保持しながら該微
粒子がその堆積面に対してほぼ直角にノズルから噴射さ
れるように、該基材のX−Y−Z方向への移動を制御す
る移動系コントローラー、該基材自体を加熱するための
加熱手段、該被覆層形成室を排気するための真空排気
系、及び該エアロゾル供給部と該被覆層形成部とを連結
する搬送管からなることを特徴とする人工生体適合構造
・機能部品の作製装置。
5. A supply unit for an aerosol comprising a carrier gas and fine particles of a biocompatible material, a nozzle for injecting the aerosol onto a substrate to be coated in a coating layer forming chamber, and a vicinity of the substrate. A heating device for heating the surface of the substrate provided as a, a temperature measuring device equipped with a sensor for measuring the temperature of the substrate surface on which the fine particles are deposited, and attaching the substrate and A coating layer forming section airtightly provided with a substrate mounting moving system having means for moving, a gap between the tip of the nozzle and the substrate surface on which the fine particles are deposited, which is connected to the substrate mounting moving system; A moving system controller for controlling the movement of the substrate in the XYZ directions so that the fine particles are ejected from the nozzle at substantially right angles to the deposition surface while maintaining the substrate constant, the substrate itself Heating means for heating the coating layer type An apparatus for manufacturing an artificial biocompatible structure / functional part, comprising: a vacuum evacuation system for evacuating a forming chamber; and a transport pipe connecting the aerosol supply unit and the coating layer formation unit.
【請求項6】 前記基材取付け移動系が、取り付けられ
る基材を回転するための手段をさらに備えている請求項
5記載の装置。
6. The apparatus of claim 5, wherein said substrate mounting and moving system further comprises means for rotating the substrate to be mounted.
JP10105087A 1998-04-15 1998-04-15 Artificial biocompatible structure, functional parts, their manufacture and apparatus Pending JPH11299879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10105087A JPH11299879A (en) 1998-04-15 1998-04-15 Artificial biocompatible structure, functional parts, their manufacture and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10105087A JPH11299879A (en) 1998-04-15 1998-04-15 Artificial biocompatible structure, functional parts, their manufacture and apparatus

Publications (1)

Publication Number Publication Date
JPH11299879A true JPH11299879A (en) 1999-11-02

Family

ID=14398148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10105087A Pending JPH11299879A (en) 1998-04-15 1998-04-15 Artificial biocompatible structure, functional parts, their manufacture and apparatus

Country Status (1)

Country Link
JP (1) JPH11299879A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131399A (en) * 2003-10-27 2005-05-26 Straumann Holding Ag Implant with ceramic coating, and method for ceramic coating of implant
JP2006150431A (en) * 2004-12-01 2006-06-15 National Institute Of Advanced Industrial & Technology Composite material of titanium and ceramics, and producing method therefor
JP2007159935A (en) * 2005-12-15 2007-06-28 National Institute For Materials Science Compound consisting of calcium phosphate and apatite/collagen complex
JP2008099739A (en) * 2006-10-17 2008-05-01 Depuy Products Inc Implant to which coating is applied with aluminum oxide and constituent
WO2009136553A1 (en) * 2008-05-07 2009-11-12 Hoya株式会社 Artificial bone coated with apatite/collagen composite, and method for producing the same
JP2013517024A (en) * 2010-02-12 2013-05-16 ストラウマン ホールディング アーゲー Method for preparing a bone-integrating surface on a ceramic body
EP3449953A4 (en) * 2016-04-25 2019-12-25 Medical Foundation Natural Smile Dental prosthesis and component thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131399A (en) * 2003-10-27 2005-05-26 Straumann Holding Ag Implant with ceramic coating, and method for ceramic coating of implant
JP2006150431A (en) * 2004-12-01 2006-06-15 National Institute Of Advanced Industrial & Technology Composite material of titanium and ceramics, and producing method therefor
JP4524381B2 (en) * 2004-12-01 2010-08-18 独立行政法人産業技術総合研究所 Composite material of titanium and ceramics and method for producing the same
JP2007159935A (en) * 2005-12-15 2007-06-28 National Institute For Materials Science Compound consisting of calcium phosphate and apatite/collagen complex
JP2008099739A (en) * 2006-10-17 2008-05-01 Depuy Products Inc Implant to which coating is applied with aluminum oxide and constituent
WO2009136553A1 (en) * 2008-05-07 2009-11-12 Hoya株式会社 Artificial bone coated with apatite/collagen composite, and method for producing the same
JP2009268685A (en) * 2008-05-07 2009-11-19 Hoya Corp Artificial bone formed by covering it with apatite/collagen complex and its production method
JP2013517024A (en) * 2010-02-12 2013-05-16 ストラウマン ホールディング アーゲー Method for preparing a bone-integrating surface on a ceramic body
US9421301B2 (en) 2010-02-12 2016-08-23 Straumann Holding Ag Process for preparing an osteointegrative surface on a ceramic body
EP3449953A4 (en) * 2016-04-25 2019-12-25 Medical Foundation Natural Smile Dental prosthesis and component thereof

Similar Documents

Publication Publication Date Title
EP0405556B1 (en) Living hard tissue replacement, its preparation, and preparation of integral body
US5123844A (en) Living hard tissue replacement prepared by superplastic forming of a calcium phosphate base
US6739959B2 (en) Assembly for the manufacture of medical, dental-medical, dental-technical and technical parts from ceramics
US4612160A (en) Porous metal coating process and mold therefor
US6193761B1 (en) Implantable prosthesis with metallic porous bead preforms applied during casting
EP0853938B1 (en) Prosthetic restoration and manufacturing method thereof
US20060100716A1 (en) Open-pored metal coating for joint replacement implants and method for production thereof
EP0868890B1 (en) Abutment tooth model and method of manufacturing a prosthetic restoration to be formed thereon
JPS5936531B2 (en) Layer-coated artificial adjuster and method for covering the artificial adjuster
US20100310786A1 (en) Three-dimensional fabrication
US7722735B2 (en) Microstructure applique and method for making same
KR100746738B1 (en) Implant having good biocompatibility and esthetics, and manufacturing method therof
CN105256160B (en) A kind of 3D printing method of ceramic base nickel alloy composite
JPH11299879A (en) Artificial biocompatible structure, functional parts, their manufacture and apparatus
Myszka et al. Comparison of dental prostheses cast and sintered by SLM from Co-Cr-Mo-W alloy
Yun et al. Wollastonite coating on zirconia substrate by room temperature spray processing
JP3401552B2 (en) Plastic ceramics and method for producing the same
Safi et al. Testing and characterization of sintered β-tricalcium phosphate coat upon zirconia dental implant using Nd: YAG laser
EP0401793A1 (en) Use of ceramic materials for living hard tissue replacements
WO2009004069A1 (en) Porous dental implant
JPH0557013A (en) Compound implant of titanium or titanium alloy and manufacture thereof
Hadipour et al. Preparation and characterization of plasma-sprayed nanostructured-merwinite coating on Ti-6Al-4V
JPH06197947A (en) Composite organic implant and manufacture thereof
Gupta Zirconia for Dental Implants
JPH0449972A (en) Preparation of substitute and composite molded body of hard tissue of human body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527