JPH11296833A - Perpendicular magnetic recording medium and magnetic memory device - Google Patents

Perpendicular magnetic recording medium and magnetic memory device

Info

Publication number
JPH11296833A
JPH11296833A JP9333498A JP9333498A JPH11296833A JP H11296833 A JPH11296833 A JP H11296833A JP 9333498 A JP9333498 A JP 9333498A JP 9333498 A JP9333498 A JP 9333498A JP H11296833 A JPH11296833 A JP H11296833A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9333498A
Other languages
Japanese (ja)
Other versions
JP3011918B2 (en
Inventor
Masaaki Futamoto
正昭 二本
Yoshiyuki Hirayama
義幸 平山
Kiyonari Ito
研也 伊藤
Kazuyoshi Yoshida
和悦 吉田
Yukio Honda
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10093334A priority Critical patent/JP3011918B2/en
Priority to US09/285,751 priority patent/US6183893B1/en
Publication of JPH11296833A publication Critical patent/JPH11296833A/en
Application granted granted Critical
Publication of JP3011918B2 publication Critical patent/JP3011918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium improved to be suitable for a high-density magnetic recording. SOLUTION: A ground surface layer is formed of a two-layered structure composed of a first ground surface layer 12 consisting of a material having a hexagonal close- packed structure or amorphous structure and a second ground surface layer 13 consisting of material which has the hexagonal close-packed structure, has a preferential growth bearing at [0001] and can be matched and grown to the perpendicularly magnetized film to be formed thereon. The perpendicularly magnetized film consisting of a Co alloy polycrystalline film is formed of a two-layered structure consisting of the lower layer perpendicularly magnetized film 14 and the upper layer perpendicularly magnetized film 15. The upper layer perpendicularly magnetized film is made lower in the total addition element concn. of a nonmagnetic element than the lower layer perpendicularly magnetized film. In addition, the saturation magnetization (Ms) and magnetic anisotropy energy (Ku) are made larger. The total thickness of the perpendicularly magnetized films is made to be from 5 to 70 nm. The average grain size of the crystal grains measured on the surface side of the upper layer perpendicularly magnetized film is specified to be from 5 to 15 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
適する垂直磁化膜を有する垂直磁気記録媒体及びこれを
用いた磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium having a perpendicular magnetic film suitable for high-density magnetic recording and a magnetic storage device using the same.

【0002】[0002]

【従来の技術】現在実用化されている磁気ディスク装置
は、面内磁気記録方式を採用している。面内磁気記録方
式においては、ディスク基板面と平行な方向に磁化し易
い面内磁気記録媒体に基板と平行な面内磁区を高密度に
形成することが技術課題となっている。この面内磁気記
録媒体の記録密度を伸ばす方式として、面内方向に磁化
容易軸を持つ記録媒体表面に、極薄の軟磁性膜を形成し
たキーパードメディアを用いる方法が提案されている。
この技術は例えば、41st Annual Conference onMagneti
sm & Magnetic Materials (November 12-15, 1996)で発
行されたアブストラクト集の116ページ(論文番号D
Q−13)及び133ページ(論文番号EB−12)な
どに掲載されている。このような媒体構造を採用するこ
とにより、自己記録再生方式の薄膜ヘッドを用いて、磁
気記録の面記録密度を1Gb/in2以上に向上できる
ことが述べられているが、面内記録方式の場合は、この
ような技術を用いても本質的に互いに隣接する記録ビッ
トの磁化が互いに向き合っているため、境界に幅をもっ
た磁化遷移領域が形成され、10Gb/in2以上の面
記録密度を実現するためには技術的な困難が予想され
る。
2. Description of the Related Art Magnetic disk drives currently in practical use employ an in-plane magnetic recording system. In the longitudinal magnetic recording method, it is a technical problem to form in-plane magnetic domains parallel to the substrate at high density on a longitudinal magnetic recording medium which is easily magnetized in a direction parallel to the disk substrate surface. As a method of increasing the recording density of the in-plane magnetic recording medium, a method of using a keeper medium having an extremely thin soft magnetic film formed on the surface of the recording medium having an easy axis of magnetization in the in-plane direction has been proposed.
This technology is, for example, the 41st Annual Conference onMagneti
Page 116 of abstracts published in sm & Magnetic Materials (November 12-15, 1996) (Article number D
Q-13) and page 133 (article number EB-12). It is stated that the adoption of such a medium structure can improve the areal recording density of magnetic recording to 1 Gb / in 2 or more using a self-recording / reproducing thin film head. However, even when such a technique is used, the magnetizations of recording bits that are essentially adjacent to each other face each other, so that a magnetization transition region having a width is formed at the boundary, and the areal recording density of 10 Gb / in 2 or more is obtained. Technical difficulties are expected to be realized.

【0003】一方、垂直磁気記録方式は薄膜媒体の膜面
に垂直に磁化を形成する方式であり、記録原理や媒体ノ
イズの発現機構が従来の面内磁気記録媒体の場合とは異
なるが、隣接する磁化が互いに向き合わないため、本質
的に高密度磁気記録に適した方式として注目され、垂直
磁気記録に適した媒体の構造などが提案されている。C
o合金材料からなる垂直磁化膜の垂直配向性を改善する
ために、垂直磁化膜と基板との間に非磁性材料下地を設
ける方法が検討されている。例えば、特開昭58−77
025号公報、特開昭58−141435号公報にはC
o−Cr磁性膜の下地層としてTi膜を形成する方法
が、特開昭60−214417号公報には下地層として
Ge,Si材料を用いる方法が、特開昭60−0644
13号公報にはCoO,NiO等の酸化物下地層材料が
開示されている。また、単磁極型の記録ヘッドと組み合
わせて用いられる垂直磁気記録媒体として、基板と垂直
磁化膜の間にパーマロイなどの軟磁性膜層を設けた媒体
が検討されている。
[0003] On the other hand, the perpendicular magnetic recording system is a system in which magnetization is formed perpendicularly to the film surface of a thin film medium. Since the magnetizations do not face each other, attention has been paid to a method that is essentially suitable for high-density magnetic recording, and a medium structure suitable for perpendicular magnetic recording has been proposed. C
In order to improve the perpendicular orientation of a perpendicular magnetic film made of an o-alloy material, a method of providing a nonmagnetic material base between the perpendicular magnetic film and the substrate has been studied. For example, JP-A-58-77
No. 025 and JP-A-58-141435 disclose C
A method of forming a Ti film as an underlayer of an o-Cr magnetic film is disclosed in JP-A-60-214417, and a method of using a Ge or Si material as an underlayer is disclosed in JP-A-60-0644.
No. 13 discloses oxide underlayer materials such as CoO and NiO. As a perpendicular magnetic recording medium used in combination with a single-pole type recording head, a medium provided with a soft magnetic film layer such as permalloy between a substrate and a perpendicular magnetic film is being studied.

【0004】[0004]

【発明が解決しようとする課題】10Gb/in2以上
の高密度磁気記録が可能な垂直磁気記録媒体には、線記
録密度分解能が大きいことに加えて媒体ノイズが小さい
ことが必要とされる。今までの報告例によると、例えば
第5回垂直磁気記録シンポジウム会議資料集(1996
年10月23−25日)95〜100頁の「単層垂直磁
気ディスク媒体の高S/N化」と題する論文に記載され
ているように、垂直磁化膜の厚さを小さくする、垂直磁
化膜と基板の間に非磁性のCoCr下地を導入する、あ
るいはCo合金磁性膜の添加元素としてTa等の非磁性
元素を添加する、磁性結晶粒径を小さくすることが有効
であることが知られている。このような対策を施すこと
で媒体ノイズをかなりの程度低減できるが、更にノイズ
を低減できれば磁気記録装置の記録密度をより容易に伸
ばすことが可能となる。
A perpendicular magnetic recording medium capable of high-density magnetic recording of 10 Gb / in 2 or more needs to have high linear recording density resolution and low medium noise. According to the reports so far, for example, the 5th perpendicular magnetic recording symposium conference materials (1996)
As described in a paper entitled "Higher S / N ratio of a single-layer perpendicular magnetic disk medium" on pages 95 to 100, a perpendicular magnetization method in which the thickness of a perpendicular magnetization film is reduced. It is known that it is effective to introduce a non-magnetic CoCr underlayer between the film and the substrate, or to add a non-magnetic element such as Ta as an additive element of the Co alloy magnetic film, and to reduce the magnetic crystal grain size. ing. By taking such measures, the medium noise can be reduced to a considerable extent, but if the noise can be further reduced, the recording density of the magnetic recording device can be more easily increased.

【0005】本発明は、垂直磁気記録方式のこのような
現状に鑑みてなされたもので、10Gb/in2以上の
高記録密度を実現するための低ノイズ特性をもつ垂直磁
気記録媒体、及びその媒体を用いた高密度磁気記憶装置
を提供することを目的とする。
The present invention has been made in view of such a situation of the perpendicular magnetic recording system, and has an object to realize a perpendicular magnetic recording medium having low noise characteristics for realizing a high recording density of 10 Gb / in 2 or more. An object is to provide a high-density magnetic storage device using a medium.

【0006】[0006]

【課題を解決するための手段】垂直磁気記録媒体の記録
磁化状態を磁気力顕微鏡や走査型スピン電子検出型顕微
鏡によって調べた結果、大部分のノイズは媒体面に存在
する逆磁区や磁化のミクロ的な揺らぎが原因であること
が判明した。ミクロな磁化の揺らぎとは、媒体表面の磁
化の強さが0.2〜10μm程度のミクロンレベルの距
離で場所によって変動していることを指す。媒体ノイズ
を減らすためには、逆磁区を減らすとともに、媒体の表
面に存在するミクロな磁化の揺らぎを減らさなければな
らない。
As a result of examining the recording magnetization state of a perpendicular magnetic recording medium using a magnetic force microscope or a scanning spin electron detection microscope, most of the noise is detected in the reverse magnetic domain or the magnetization microstructure existing on the medium surface. Was found to be due to typical fluctuations. Micro-fluctuations in the magnetization indicate that the intensity of the magnetization on the medium surface fluctuates from place to place on a micron-level distance of about 0.2 to 10 μm. In order to reduce the medium noise, it is necessary to reduce the number of reverse magnetic domains and reduce the fluctuation of microscopic magnetization existing on the surface of the medium.

【0007】本発明者らの実験の結果、以下の方法によ
って前記目的を達成できることが明かになった。垂直磁
化膜を一方向に垂直磁化すると媒体表面には強い反磁界
が作用する。この反磁界の作用で、垂直磁化した方向と
は逆の向きを持つ、いわゆる逆磁区が形成される。この
逆磁区の形成を妨げるためには、磁気異方性エネルギー
の大きい垂直磁化膜を採用する必要がある。磁気異方性
エネルギーとして、2.5×106erg/cc以上あ
ることが望ましい。実用的な媒体として扱いやすいCo
合金材料を用いた垂直磁化膜の磁気異方性エネルギーの
最大値は、5×106erg/ccである。この値以上
の磁気異方性エネルギーを持つCo合金系規則格子材料
も存在するが、規則相を得るには500℃以上のプロセ
ス温度が必要となるため、基板材料の選択範囲が狭まっ
たり、あるいは磁性膜を構成する結晶粒が粗大化してノ
イズを低減するのが困難になる等の問題が生ずる。Co
合金以外のPt/Co,Pd/Coなどの多層膜からな
る垂直磁化膜、あるいはTbFeCoなどの希土類元素
を含む非晶質構造を持つ垂直磁化膜は、磁気異方性エネ
ルギーがいずれも2.5×106erg/cc以上であ
るため、本課題を達成する材料系としては望ましいが、
そのままでは面内方向の磁気的相互作用が大きく、媒体
ノイズが大きくなってしまうため媒体ノイズを減らす特
別な工夫が必要となる。
As a result of experiments by the present inventors, it has been found that the above-mentioned object can be achieved by the following method. When the perpendicular magnetization film is perpendicularly magnetized in one direction, a strong demagnetizing field acts on the medium surface. By the action of this demagnetizing field, a so-called reverse magnetic domain having a direction opposite to the direction of perpendicular magnetization is formed. In order to prevent the formation of the reverse magnetic domain, it is necessary to employ a perpendicular magnetization film having a large magnetic anisotropy energy. The magnetic anisotropy energy is desirably 2.5 × 10 6 erg / cc or more. Co that is easy to handle as a practical medium
The maximum value of the magnetic anisotropy energy of the perpendicular magnetization film using the alloy material is 5 × 10 6 erg / cc. There are Co alloy-based ordered lattice materials having a magnetic anisotropy energy greater than this value, but a process temperature of 500 ° C. or more is required to obtain an ordered phase, so that the selection range of the substrate material is narrowed, or The crystal grains constituting the magnetic film become coarse, and it becomes difficult to reduce noise. Co
A perpendicular magnetic film composed of a multilayer film of Pt / Co or Pd / Co other than an alloy or a perpendicular magnetic film having an amorphous structure containing a rare earth element such as TbFeCo has a magnetic anisotropy energy of 2.5 or less. Since it is × 10 6 erg / cc or more, it is desirable as a material system to achieve this object,
The magnetic interaction in the in-plane direction is large if it is as it is, and the medium noise becomes large. Therefore, a special device for reducing the medium noise is required.

【0008】磁気記録の面密度を10Gb/in2以上
とするためには、線記録密度として300kFCI以上
が必要となる。この線記録密度に対応するビット長は8
3nmである。記録を担う磁気記録媒体の厚さとして
は、リングヘッドの記録能力を考慮すると最短のビット
長より小さいことが望ましく、垂直磁化膜の膜厚を70
nm以下に設定する必要がある。膜厚が5nm以下にな
ると、熱揺らぎのために記録磁化が不安定になるため、
垂直磁化膜の適当な膜厚範囲は5nm以上70nm以下
である。
In order to increase the areal density of magnetic recording to 10 Gb / in 2 or more, a linear recording density of 300 kFCI or more is required. The bit length corresponding to this linear recording density is 8
3 nm. The thickness of the magnetic recording medium for recording is preferably smaller than the shortest bit length in consideration of the recording performance of the ring head.
It needs to be set to nm or less. When the film thickness is 5 nm or less, the recording magnetization becomes unstable due to thermal fluctuation.
An appropriate thickness range of the perpendicular magnetization film is 5 nm or more and 70 nm or less.

【0009】ノイズの原因となる逆磁区の大きさは、垂
直磁気記録媒体を構成する多結晶膜の粒径と結晶粒間の
磁気的相互作用の強さに依存する。逆磁区の大きさを3
00kFCIのビット長以下とするためには、結晶粒径
の平均を15nm以下とすることが必要であることが判
明した。しかし、結晶粒径が小さくなりすぎると記録媒
体の保磁力が減少して記録媒体として適さなくなるた
め、粒径は5nm以上であることが望まれる。なお、本
明細書で結晶粒径の平均とは、磁気記録媒体の表面で観
察した結晶粒が占有する面積と等しい円の直径の平均値
をいう。
The size of the reverse magnetic domain that causes noise depends on the grain size of the polycrystalline film constituting the perpendicular magnetic recording medium and the strength of the magnetic interaction between the crystal grains. The size of the reverse domain is 3
It has been found that the average crystal grain size needs to be 15 nm or less in order to make the bit length of 00 kFCI or less. However, if the crystal grain size is too small, the coercive force of the recording medium decreases and the recording medium becomes unsuitable as a recording medium. Therefore, the grain size is desired to be 5 nm or more. In this specification, the average of the crystal grain diameters refers to the average value of the diameter of a circle having the same area as the area occupied by the crystal grains observed on the surface of the magnetic recording medium.

【0010】磁気異方性エネルギーの高い垂直磁化膜を
用いることにより、逆磁区の発生を抑えることができる
ので、逆磁区に起因する媒体ノイズの発生を防ぐことが
できるが、媒体ノイズの他の原因として、媒体表面に存
在する磁化のミクロレベルでの揺らぎがある。この揺ら
ぎには、磁性膜の面内方向の磁気的相互作用が大きい場
合、長周期の磁化の揺らぎが生ずる。また、垂直磁化膜
表面に磁気的な不均質性が存在すると、短周期の磁化揺
らぎが生じ、いずれも媒体ノイズの原因となることが判
明した。このような長周期、短周期の磁化揺らぎを抑制
するためには、垂直磁化膜を2層構造とし、上層側に磁
気異方性エネルギー(Ku)の高い垂直磁化膜を下層側
に磁気異方性エネルギーが小さくてしかも結晶粒間の磁
気的分離が促進されている垂直磁化膜を採用すればよい
ことが分かった。上層側の垂直磁化膜は、2.5×10
6erg/cc<Ku<5×106erg/ccとし、下
層側の垂直磁化膜は、1×106erg/cc<Ku<
2.5×106erg/ccとするのが有効である。
The use of a perpendicular magnetic film having a high magnetic anisotropy energy can suppress the occurrence of reverse magnetic domains, thereby preventing the occurrence of medium noise caused by the reverse magnetic domains. As a cause, there is fluctuation at the micro level of the magnetization existing on the medium surface. When the magnetic interaction in the in-plane direction of the magnetic film is large, the fluctuation causes a long-period magnetization fluctuation. In addition, it has been found that when magnetic inhomogeneity exists on the surface of the perpendicular magnetization film, short-period magnetization fluctuation occurs, and all of them cause medium noise. In order to suppress such long-period and short-period magnetization fluctuations, the perpendicular magnetization film has a two-layer structure, and the perpendicular magnetization film having a high magnetic anisotropy energy (Ku) is provided on the upper layer side and the magnetic anisotropy is provided on the lower layer side. It has been found that a perpendicular magnetization film having a low kinetic energy and promoting magnetic separation between crystal grains may be used. 2.5 × 10
6 erg / cc <Ku <5 × 10 6 erg / cc, and the lower side perpendicular magnetization film is 1 × 10 6 erg / cc <Ku <
It is effective to set it to 2.5 × 10 6 erg / cc.

【0011】ここで、下層側の垂直磁化膜はミクロレベ
ルの磁化の揺らぎピッチを記録に用いるビット長よりも
微細化する役目を果たし、上層側の垂直磁化膜は前述の
ように逆磁区の形成を抑制する。両者の膜厚の比は下層
側が厚いほうが膜全体から発生するノイズを抑えるため
には望ましく、下層の厚さは上層の2倍以上とするのが
好ましい。下層の厚さを上層の厚さの2倍未満にする
と、ミクロレベルの磁化揺らぎのピッチを記録に用いる
ビット長以下にする役目を十分果たさなくなるのであま
り望ましくない。
The lower perpendicular magnetic film serves to make the fluctuation pitch of the magnetization on the micro level smaller than the bit length used for recording, and the upper perpendicular magnetic film forms the reverse magnetic domain as described above. Suppress. It is desirable that the ratio of the film thicknesses of both layers is thicker on the lower layer side in order to suppress noise generated from the entire film, and it is preferable that the thickness of the lower layer is twice or more the thickness of the upper layer. If the thickness of the lower layer is less than twice the thickness of the upper layer, the function of reducing the pitch of the magnetization fluctuation at the micro level to the bit length or less used for recording is not sufficiently performed, which is not desirable.

【0012】下層垂直磁化膜としては、結晶粒径の平均
が5nm以上15nm以下であること、結晶粒間の磁気
的結合を低減するために結晶粒界に25at%以上の非
磁性元素が析出するかもしくは空隙が形成されているこ
とが望ましい。Co合金に含まれる非磁性添加元素の総
量を25at%以上にすると、その材料の飽和磁化が極
端に低下し、添加元素の種類によっては非磁性化する。
このような弱磁性もしくは非磁性層が存在すると、磁性
結晶粒間の磁気的結合力を下げ、この結果、媒体ノイズ
が低下する望ましい効果が生ずる。また、磁気記録膜が
強い垂直磁気異方性を持つためには、上層と下層の垂直
磁化膜の結晶格子が連続であること、すなわち成長整合
性が保たれていることが必要である。
The lower perpendicular magnetization film has an average crystal grain size of 5 nm or more and 15 nm or less, and at least 25 at% of non-magnetic elements are precipitated at crystal grain boundaries to reduce magnetic coupling between crystal grains. Or it is desirable that a void is formed. If the total amount of the non-magnetic additive element contained in the Co alloy is 25 at% or more, the saturation magnetization of the material is extremely reduced, and the material becomes non-magnetic depending on the type of the additive element.
The presence of such a weakly magnetic or non-magnetic layer lowers the magnetic coupling force between the magnetic crystal grains, resulting in a desirable effect of reducing the medium noise. Further, in order for the magnetic recording film to have strong perpendicular magnetic anisotropy, it is necessary that the crystal lattices of the upper and lower perpendicular magnetic films are continuous, that is, that the growth consistency is maintained.

【0013】また、媒体ノイズを下げるためには磁性結
晶粒間の磁気的結合力を下げることに加えて、垂直磁化
膜の膜厚方向の結晶粒を磁気的に分離もしくは結合力を
下げることも有効である。このためには、上下2層の垂
直磁化膜の間に非磁性もしくは飽和磁化が50emu/
cc以下の弱磁性の中間層を導入することも有効であ
る。中間層の厚さは0.1nmから5nmの範囲が適当
である。中間層の厚さが0.1nm未満の場合、中間層
導入による十分な効果が得られず、逆に5nmを超える
と媒体全体の保磁力が低下したりするため望ましくな
い。中間層に用いる材料は、Pt,Pd,Ir,Re,
Ruなどの単体金属及びこれらの元素を主成分とする合
金、あるいはCoに25at%以上の前記元素あるいは
非磁性元素を添加した材料などが適当である。
In order to reduce the medium noise, in addition to reducing the magnetic coupling force between the magnetic crystal grains, it is also necessary to magnetically separate or reduce the crystal force in the thickness direction of the perpendicular magnetization film. It is valid. For this purpose, non-magnetic or saturated magnetization between the upper and lower two perpendicular magnetization films is 50 emu /
It is also effective to introduce a weak magnetic intermediate layer of cc or less. The thickness of the intermediate layer is suitably in the range of 0.1 nm to 5 nm. When the thickness of the intermediate layer is less than 0.1 nm, a sufficient effect due to the introduction of the intermediate layer cannot be obtained, and when it exceeds 5 nm, the coercive force of the entire medium is undesirably reduced. Materials used for the intermediate layer are Pt, Pd, Ir, Re,
A single metal such as Ru and an alloy containing these elements as a main component, or a material obtained by adding 25 at% or more of the above elements or nonmagnetic elements to Co are suitable.

【0014】また、垂直磁化膜の表面に形成される逆磁
区は、熱活性過程で時間の経過とともに反磁界の影響で
増大することがある。このような時間経過に伴って発生
する逆磁区の形成を抑えるためには、垂直磁化膜の表面
に厚さが0.1nmから5nm程度の薄い金属膜を形成
するのが有効であることが、本発明者らの実験の結果明
らかになった。金属膜としては、Pt,Pd,Ir,R
e,Ruもしくはこれらの元素を主成分とする合金、あ
るいはCoもしくはCo合金と前述の元素もしくはそれ
らの元素を主成分とする合金の積層膜、あるいは稀土類
元素を含む非晶質磁性材料膜、もしくはパーマロイ、F
e−Si,Fe−Si−Al,Co−Nb−Zrなどの
軟磁性膜、あるいはCo,Ni,Fe,Co−Ni,C
o−Ni−Crなどの面内磁化し易い磁性膜を用いるこ
とが可能である。垂直磁化膜表面にC,B,N,Pなど
の軽元素を拡散もしくは打ち込みすることにより、垂直
磁化膜をその膜厚方向に見て表面側の一部を軟磁性膜化
もしくは面内磁化膜化しても良い。
Further, the reverse magnetic domains formed on the surface of the perpendicular magnetization film may increase due to the influence of the demagnetizing field with the lapse of time in the thermal activation process. In order to suppress the formation of reverse magnetic domains that occur with the passage of time, it is effective to form a thin metal film having a thickness of about 0.1 nm to 5 nm on the surface of the perpendicular magnetization film. As a result of the experiment of the present inventors, it became clear. Pt, Pd, Ir, R
e, Ru or an alloy containing these elements as main components, or a laminated film of Co or a Co alloy and the above-mentioned elements or alloys containing these elements as main components, or an amorphous magnetic material film containing rare earth elements; Or Permalloy, F
Soft magnetic films such as e-Si, Fe-Si-Al, Co-Nb-Zr, or Co, Ni, Fe, Co-Ni, C
It is possible to use a magnetic film such as o-Ni-Cr which is easily magnetized in the plane. By diffusing or implanting a light element such as C, B, N, or P into the surface of the perpendicular magnetic film, the surface of the perpendicular magnetic film is formed into a soft magnetic film or an in-plane magnetic film when viewed in the film thickness direction. May be used.

【0015】以上をまとめると、本発明は次の通りであ
る。本発明は、非磁性基板上に下地層を介して形成した
垂直磁化膜を備える垂直磁気記録媒体において、下地層
は、六方稠密構造もしくは非晶質構造を持つ材料からな
り基板と接する第1下地層と、六方稠密構造を持ち優先
成長方位が[0001]であってその上に形成される垂
直磁化膜と整合成長し得る材料からなる第2下地層とか
らなり、垂直磁化膜は第2下地層に接する下層垂直磁化
膜と上層垂直磁化膜とを含み、下層及び上層の垂直磁化
膜はCo合金多結晶膜であって、上層垂直磁化膜は下層
垂直磁化膜より非磁性元素の総添加元素濃度が低く、か
つ飽和磁化(Ms)及び磁気異方性エネルギー(Ku)
が大きく、第2下地層から上層垂直磁化膜まで連続的に
整合成長が実現されており、垂直磁化膜の総厚が5nm
以上70nm以下であり、上層垂直磁化膜の表面側で測
定した結晶粒の平均粒径が5nm以上15nm以下であ
ることを特徴とする。
In summary, the present invention is as follows. The present invention relates to a perpendicular magnetic recording medium having a perpendicular magnetic film formed on a non-magnetic substrate via an underlayer, wherein the underlayer is made of a material having a hexagonal close-packed structure or an amorphous structure, And a second underlayer made of a material having a hexagonal close-packed structure, a preferential growth direction of [0001], and capable of matching and growing with a perpendicular magnetic film formed thereon. The lower and upper perpendicular magnetic films include a lower perpendicular magnetic film and an upper perpendicular magnetic film that are in contact with the formation layer, and the lower and upper perpendicular magnetic films are Co alloy polycrystalline films. Low concentration, saturation magnetization (Ms) and magnetic anisotropy energy (Ku)
And the continuous growth from the second underlayer to the upper perpendicular magnetization film is realized, and the total thickness of the perpendicular magnetization film is 5 nm.
70 nm or less, and the average grain size of crystal grains measured on the surface side of the upper perpendicular magnetization film is 5 nm or more and 15 nm or less.

【0016】下層垂直磁化膜と上層垂直磁化膜の間に六
方稠密構造を持つ非磁性もしくはMs<50emu/c
cの中間層を設け、第2下地層から上層垂直磁化膜まで
連続的に整合成長させてもよい。上層垂直磁化膜の上に
厚さ0.1nmから5nmの金属膜を形成してもよい。
この金属膜は、Pt,Pd,Ir,Re,Ruもしくは
これらの元素を主成分とする合金、あるいはCoもしく
はCo合金とPt,Pd,Ir,Re,Ruもしくはそ
れらの元素を主成分とする合金との積層膜、あるいは稀
土類元素を含む非晶質磁性材料膜とすることができる。
Nonmagnetic or Ms <50 emu / c having a hexagonal close-packed structure between the lower perpendicular magnetization film and the upper perpendicular magnetization film
An intermediate layer c may be provided, and a continuous matching growth may be performed from the second underlayer to the upper perpendicular magnetization film. A metal film having a thickness of 0.1 nm to 5 nm may be formed on the upper perpendicular magnetization film.
This metal film is made of Pt, Pd, Ir, Re, Ru or an alloy mainly containing these elements, or Co or a Co alloy and an alloy mainly containing Pt, Pd, Ir, Re, Ru or these elements. Or an amorphous magnetic material film containing a rare earth element.

【0017】下層垂直磁化膜は、その結晶粒界に25a
t%以上の非磁性元素の偏析層を持つ多結晶膜であるこ
とが好ましい。下層垂直磁化膜の磁気異方性エネルギー
Kuが1×106erg/cc以上、2.5×106er
g/cc以下、上層垂直磁化膜の磁気異方性エネルギー
が2.5×106erg/cc以上、5×106erg/
cc以下であることが好ましい。第2下地層と下層垂直
磁化膜の格子定数の差は5%以下であることが好まし
い。下層垂直磁化膜の厚さは上層垂直磁化膜の厚さの2
倍以上であることが好ましい。
The lower perpendicular magnetization film has a grain boundary of 25a.
It is preferably a polycrystalline film having a segregation layer of a nonmagnetic element of t% or more. The magnetic anisotropy energy Ku of the lower perpendicular magnetization film is 1 × 10 6 erg / cc or more and 2.5 × 10 6 er
g / cc or less, and the magnetic anisotropy energy of the upper perpendicular magnetization film is 2.5 × 10 6 erg / cc or more and 5 × 10 6 erg /
cc or less. The difference in lattice constant between the second underlayer and the lower perpendicular magnetization film is preferably 5% or less. The thickness of the lower perpendicular magnetization film is 2 times the thickness of the upper perpendicular magnetization film.
It is preferably at least two times.

【0018】また、本発明は、磁気記録媒体と、磁気記
録媒体を駆動する磁気記録媒体駆動手段と、記録部と再
生部とを備える磁気ヘッドと、磁気ヘッドを駆動する磁
気ヘッド駆動手段と、磁気ヘッドの記録再生信号処理手
段とを含む磁気記憶装置において、磁気記録媒体として
前記した本発明による垂直磁気記録媒体を用い、磁気ヘ
ッドの再生部として磁気抵抗効果素子もしくは巨大磁気
抵抗効果素子を用い、面記録密度10Gb/in2以上
で磁気記録再生を行なうことを特徴とする。
Further, the present invention provides a magnetic recording medium, a magnetic recording medium driving means for driving the magnetic recording medium, a magnetic head having a recording unit and a reproducing unit, a magnetic head driving means for driving the magnetic head, In a magnetic storage device including a magnetic head recording / reproducing signal processing means, the above-described perpendicular magnetic recording medium according to the present invention is used as a magnetic recording medium, and a magnetoresistive element or a giant magnetoresistive element is used as a reproducing section of the magnetic head. The magnetic recording and reproduction are performed at an areal recording density of 10 Gb / in 2 or more.

【0019】さらに、本発明は、磁気記録媒体と、磁気
記録媒体を駆動する磁気記録媒体駆動手段と、記録部と
再生部とを備える磁気ヘッドと、磁気ヘッドを駆動する
磁気ヘッド駆動手段と、磁気ヘッドの記録再生信号処理
手段とを含む磁気記憶装置において、磁気記録媒体とし
て前記した本発明による垂直磁気記録媒体を用い、磁気
ヘッドの再生部として磁気トンネル効果を用いた素子を
用い、面記録密度30Gb/in2以上で磁気記録再生
を行なうことを特徴とする。
Further, the present invention provides a magnetic recording medium, a magnetic recording medium driving means for driving the magnetic recording medium, a magnetic head having a recording section and a reproducing section, a magnetic head driving means for driving the magnetic head, In a magnetic storage device including a recording / reproduction signal processing means for a magnetic head, the perpendicular magnetic recording medium according to the present invention described above is used as a magnetic recording medium, and an element using a magnetic tunnel effect is used as a reproduction section of the magnetic head. The magnetic recording / reproducing is performed at a density of 30 Gb / in 2 or more.

【0020】[0020]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明による垂直磁気記
録媒体の第1の実施の形態を示す断面模式図である。こ
の垂直磁気記録媒体は、非磁性基板11上に磁性膜の垂
直配向性向上や結晶粒径制御を目的とした下地層12,
13を介して垂直磁化膜が形成される。基板側に形成さ
れる第1下地層12は、六方稠密構造をもつ第2下地層
13の成長方位が[0001]方位となるよう膜の核生
成過程を制御する役割を果たす。この目的に適当な材料
は、Ti,Ruあるいはこれらの元素を主成分としてC
r,V,Mo,Wなどの添加元素を含む六方稠密構造を
持つ材料、Si,Geあるいはこれらの元素を主成分と
する非晶質材料が適当である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a first embodiment of a perpendicular magnetic recording medium according to the present invention. This perpendicular magnetic recording medium includes an underlayer 12 on a nonmagnetic substrate 11 for the purpose of improving the perpendicular orientation of a magnetic film and controlling the crystal grain size.
A perpendicular magnetization film is formed through the intermediation of the perpendicular magnetization film 13. The first underlayer 12 formed on the substrate side has a role of controlling the nucleation process of the film such that the growth orientation of the second underlayer 13 having the hexagonal close-packed structure becomes the [0001] orientation. Materials suitable for this purpose are Ti, Ru or C
A material having a hexagonal close-packed structure containing additional elements such as r, V, Mo, and W, Si, Ge, or an amorphous material containing these elements as main components is suitable.

【0021】第2下地層13は、六方稠密構造を持つ非
磁性もしくは飽和磁化MsがMs<50emu/cc以
下の弱磁性の材料であり、例えばCoに25at%以上
のCr,V,Mo,W,Nb,Re,Ti,Y等の非磁
性元素を添加した材料が用いられる。この材料の磁化強
度が50emu/cc以上となると記録再生時の分解能
を下げたり、ノイズが上昇したりするため望ましくな
い。この第2下地層はその上に形成される垂直磁化膜1
4と成長整合することになり、良好な整合成長を実現す
るためには、両者の格子定数の差を5%以下とする必要
がある。格子定数の差が5%以上になると、ミスフィッ
ト転位が導入されたり、磁性膜に歪が入り、磁気異方性
を低下させることになり、望ましくない。
The second underlayer 13 is made of a nonmagnetic material having a hexagonal close-packed structure or a weak magnetic material having a saturation magnetization Ms of Ms <50 emu / cc or less. , Nb, Re, Ti, Y, and other non-magnetic elements are used. If the magnetization intensity of this material is 50 emu / cc or more, it is not desirable because the resolution at the time of recording / reproduction is reduced or noise is increased. The second underlayer is a perpendicular magnetic film 1 formed thereon.
4, and the difference in lattice constant between the two must be 5% or less in order to realize good matching growth. If the difference between the lattice constants is 5% or more, misfit dislocations are introduced, or the magnetic film is distorted, thereby lowering the magnetic anisotropy, which is not desirable.

【0022】磁性膜としては、合金元素としてCr,T
a,Pt,Pd,Si,V,Nb,W,Mo,Hf,R
e,Zr,B,P,Ruなどから選ばれたすくなくとも
1種の元素を含むCo合金が用いられる。この例では、
組成の異なる垂直磁化膜を上下に2層積層する。下層垂
直磁化膜14は、上層垂直磁性膜15に比べてCoに添
加する非磁性元素の総量を多くすることにより、磁気異
方性エネルギーKuを小さく調整すると同時に結晶粒界
により多くの非磁性元素の析出を行なわせるものであ
る。上層垂直磁化膜15は下層垂直磁化膜14と成長整
合性を保って形成され、結晶的には第2下地層13から
上層垂直磁化膜15表面まで連続した結晶成長が実現さ
れることになる。
The magnetic film is made of Cr, T as an alloying element.
a, Pt, Pd, Si, V, Nb, W, Mo, Hf, R
A Co alloy containing at least one element selected from e, Zr, B, P, and Ru is used. In this example,
Two layers of perpendicular magnetic films having different compositions are vertically stacked. The lower perpendicular magnetization film 14 adjusts the magnetic anisotropy energy Ku to be small by increasing the total amount of nonmagnetic elements added to Co as compared with the upper perpendicular magnetic film 15, and at the same time, increases the number of nonmagnetic elements in the crystal grain boundaries. Is caused to precipitate. The upper perpendicular magnetic film 15 is formed while maintaining the growth consistency with the lower perpendicular magnetic film 14, and crystallographically, continuous crystal growth from the second underlayer 13 to the surface of the upper perpendicular magnetic film 15 is realized.

【0023】この磁性膜は多結晶膜であり、高い線記録
密度特性と低いノイズ特性をもたせるために、結晶粒径
平均は15nm以下で、しかも特に下層垂直磁化膜14
の結晶粒界面には非磁性元素が優先的に偏析した構造が
用いられる。この垂直磁化膜は膜面方向では、結晶粒界
に偏析層が存在するために、磁気結合力は小さい。媒体
ノイズを低減するために、既に述べたように、この垂直
磁化膜の上に磁気異方性エネルギーKuが相対的に大き
い上層垂直磁化膜15を形成する。上層垂直磁化膜15
の表面には保護膜16が形成される。
This magnetic film is a polycrystalline film, and has an average crystal grain size of 15 nm or less and, in particular, a lower perpendicular magnetization film 14 in order to provide high linear recording density characteristics and low noise characteristics.
A structure in which nonmagnetic elements are preferentially segregated is used at the crystal grain interface. This perpendicular magnetization film has a small magnetic coupling force in the direction of the film surface because a segregation layer exists at the crystal grain boundary. In order to reduce the medium noise, as described above, the upper perpendicular magnetic film 15 having a relatively large magnetic anisotropy energy Ku is formed on the perpendicular magnetic film. Upper layer perpendicular magnetization film 15
A protective film 16 is formed on the surface of the substrate.

【0024】図2から図4は、本発明による垂直磁気記
録媒体の他の実施の形態を示す断面模式図である。図2
に断面構造を示した第2の実施の形態の垂直磁気記録媒
体は、非磁性基板21上に第1下地層22、第2下地層
23からなる2層の下地層を形成し、その上に磁性膜を
形成したものである。磁性膜は、下層垂直磁化膜24と
上層垂直磁化膜26からなる2層の積層した垂直磁化膜
の間に六方稠密構造を持つ非磁性もしくは飽和磁化Ms
がMs<50emu/ccの弱磁性を持つ中間層25を
設けたものであり、媒体のノイズ低減を促進する効果が
ある。
FIGS. 2 to 4 are schematic sectional views showing another embodiment of the perpendicular magnetic recording medium according to the present invention. FIG.
In the perpendicular magnetic recording medium according to the second embodiment, the cross-sectional structure of which is shown in FIG. 2, a two-layer underlayer consisting of a first underlayer 22 and a second underlayer 23 is formed on a non-magnetic substrate 21, and A magnetic film is formed. The magnetic film is made of a nonmagnetic or saturated magnetic material Ms having a hexagonal close-packed structure between two stacked perpendicular magnetic films composed of a lower perpendicular magnetic film 24 and an upper perpendicular magnetic film 26.
Is provided with an intermediate layer 25 having a weak magnetic property of Ms <50 emu / cc, and has an effect of promoting noise reduction of a medium.

【0025】中間層25は、上下の垂直磁化膜24,2
6と結晶的には整合成長している。中間層の厚さは0.
5nm以上5nm以下が望ましく、さらに望ましい厚さ
の範囲は1nm以上3nm以下である。このような構造
を採用することにより、垂直磁化膜の結晶粒径や配向の
高度制御が可能になり、更なる低ノイズ特性を実現する
ことができる。上層垂直磁化膜26の表面には保護膜2
7を形成する。第1下地層22、第2下地層23、下層
垂直磁化膜24、上層垂直磁化膜26などの材料には、
図1に示した第1の実施の形態の媒体構造と対応する部
分の材料と同じ材料を用いることができる。
The intermediate layer 25 is composed of upper and lower perpendicular magnetization films 24, 2
6 is grown in a crystalline manner. The thickness of the intermediate layer is 0.
The thickness is preferably 5 nm or more and 5 nm or less, and a more desirable thickness range is 1 nm or more and 3 nm or less. By adopting such a structure, the crystal grain size and orientation of the perpendicular magnetization film can be highly controlled, and further low noise characteristics can be realized. The protective film 2 is formed on the surface of the upper perpendicular magnetization film 26.
7 is formed. Materials such as the first underlayer 22, the second underlayer 23, the lower perpendicular magnetization film 24, and the upper perpendicular magnetization film 26 include:
The same material as the material of the portion corresponding to the medium structure of the first embodiment shown in FIG. 1 can be used.

【0026】図3に示した本発明の第3の実施の形態の
媒体構造は、第1図に示した第1の実施の形態の垂直磁
気記録媒体の磁性膜の上に金属膜36を設けたものに相
当する。すなわち、この媒体構造は、非磁性基板31上
に第1下地層31、第2下地層33からなる2層の下地
層を設け、その上に下層垂直磁化膜34、上層垂直磁化
膜35からなる2層構造の垂直磁化膜を用いる。上層垂
直磁化膜35の上に金属膜36を形成し、その上に保護
膜37を形成する。下地層や垂直磁化膜の材料には、第
1の実施の形態で述べた材料を用いることができる。金
属膜36としては、Pt,Pd,Ir,Re,Ruもし
くはこれらの元素を主成分とする合金、あるいはCoも
しくはCo合金と前述の元素もしくはそれらの元素を主
成分とする合金の積層膜、あるいは稀土類元素を含む非
晶質磁性材料膜を用いる。
In the medium structure of the third embodiment of the present invention shown in FIG. 3, a metal film 36 is provided on the magnetic film of the perpendicular magnetic recording medium of the first embodiment shown in FIG. Equivalent to In other words, this medium structure is provided with a two-layer underlayer consisting of a first underlayer 31 and a second underlayer 33 on a non-magnetic substrate 31, and a lower perpendicular magnetization film 34 and an upper perpendicular magnetization film 35 thereon. A perpendicular magnetization film having a two-layer structure is used. A metal film 36 is formed on the upper perpendicular magnetization film 35, and a protective film 37 is formed thereon. The materials described in the first embodiment can be used for the material of the underlayer and the perpendicular magnetization film. As the metal film 36, Pt, Pd, Ir, Re, Ru or an alloy containing these elements as a main component, or a laminated film of Co or a Co alloy and the above-described elements or an alloy containing these elements as a main component, or An amorphous magnetic material film containing a rare earth element is used.

【0027】図4に示した本発明の第4の実施の形態の
媒体構造は、図2に示した第2の実施の形態の垂直磁気
記録媒体の磁性膜の上に金属膜47を設けたものに相当
する。図4の非磁性基板41、第1下地層42、第2下
地層43、下層垂直磁化膜44、中間層45、上層垂直
磁化膜46、保護膜48は、図2の非磁性基板21、第
1下地層22、第2下地層23、下層垂直磁化膜24、
中間層25、上層垂直磁化膜26、保護膜27にそれぞ
れ対応する。金属膜48としては、Pt,Pd,Ir,
Re,Ruもしくはこれらの元素を主成分とする合金、
あるいはCoもしくはCo合金と前述の元素もしくはそ
れらの元素を主成分とする合金の積層膜、あるいは稀土
類元素を含む非晶質磁性材料膜を用いる。
In the medium structure according to the fourth embodiment of the present invention shown in FIG. 4, a metal film 47 is provided on the magnetic film of the perpendicular magnetic recording medium according to the second embodiment shown in FIG. Equivalent to something. The nonmagnetic substrate 41, the first underlayer 42, the second underlayer 43, the lower perpendicular magnetic film 44, the intermediate layer 45, the upper perpendicular magnetic film 46, and the protective film 48 of FIG. 1 underlayer 22, second underlayer 23, lower perpendicular magnetization film 24,
They correspond to the intermediate layer 25, the upper perpendicular magnetization film 26, and the protective film 27, respectively. As the metal film 48, Pt, Pd, Ir,
Re, Ru or alloys containing these elements as main components,
Alternatively, a laminated film of Co or a Co alloy and the above-described elements or alloys containing these elements as main components, or an amorphous magnetic material film containing a rare earth element is used.

【0028】図1から図4に示す媒体構造を採用するこ
とにより、垂直磁化膜の表面に存在する長周期、短周期
の磁気揺らぎが減少し、かつミクロな磁化揺らぎのピッ
チが記録ビット長より短くなり、媒体ノイズが低減す
る。以下、本発明を実施例により更に詳細に説明する。
By employing the medium structure shown in FIGS. 1 to 4, long-period and short-period magnetic fluctuations existing on the surface of the perpendicular magnetization film are reduced, and the pitch of the microscopic magnetic fluctuations is smaller than the recording bit length. And the media noise is reduced. Hereinafter, the present invention will be described in more detail with reference to examples.

【0029】[実施例1]直径2.5インチのガラス基
板を用いて、直流マグネトロンスパッタ法によって、図
1に示す断面構造を持つ磁気記録媒体を作製した。基板
11上に、下地層12,13、垂直磁化膜14,15、
保護膜16をこの順序で形成した。第1下地用にはTi
−10.2at%Crターゲット、第2下地用にはCo
−34at%Crターゲット、下層垂直磁化膜用にCo
−17at%Cr−5at%Taターゲット、上層垂直
磁化膜用にCo−10at%Cr−10at%Ptター
ゲット、保護膜用にカーボンターゲットを用いた。スパ
ッタのArガス圧力を3mTorr、スパッターパワー
を10W/cm2、基板温度を250℃とした条件でC
rTi膜を30nm、Co−Cr膜を30nm、下層垂
直磁化膜を30nm、上層垂直磁化膜を2nm、カーボ
ン膜を10nmの厚さ形成した。同様な条件で、上層垂
直磁化膜の厚さを5nm,10nm,15nm,20n
m,30nm,40nmとした以外は前記と同様な垂直
媒体を作製した。
Example 1 A magnetic recording medium having a cross-sectional structure shown in FIG. 1 was manufactured by a DC magnetron sputtering method using a glass substrate having a diameter of 2.5 inches. On a substrate 11, underlayers 12 and 13, perpendicular magnetization films 14 and 15,
The protective film 16 was formed in this order. Ti for the first base
-10.2 at% Cr target, Co for the second underlayer
-34 at% Cr target, Co for lower perpendicular magnetization film
A -17 at% Cr-5 at% Ta target, a Co-10 at% Cr-10 at% Pt target for the upper perpendicular magnetization film, and a carbon target for the protective film were used. Ar gas pressure for sputtering is 3 mTorr, sputtering power is 10 W / cm 2 , and substrate temperature is 250 ° C.
The thickness of the rTi film was 30 nm, the thickness of the Co-Cr film was 30 nm, the thickness of the lower perpendicular magnetization film was 30 nm, the thickness of the upper perpendicular magnetization film was 2 nm, and the thickness of the carbon film was 10 nm. Under the same conditions, the thickness of the upper perpendicular magnetization film is set to 5 nm, 10 nm, 15 nm, and 20 n.
A perpendicular medium similar to the above was prepared, except that m, 30 nm and 40 nm were used.

【0030】比較試料として、上層垂直磁化膜を設けな
い垂直磁気記録媒体及び上層垂直膜の膜厚を50nmと
した垂直磁気記録媒体を作製した。上層及び下層垂直磁
化膜の磁気特性を測定した結果、下層垂直磁化膜:Ms
=385emu/cc,Ku=1.8×106erg/
cc、上層垂直磁化膜:Ms=675emu/cc,K
u=4.1×106erg/ccであった。第2下地層
13の飽和磁化は、Ms=12emu/ccであった。
これらの垂直磁化膜の結晶粒径は、8〜14nmであ
り、結晶粒間には26〜28at%のCrが平均厚さ1
nmの幅で偏析していることを電子顕微鏡を用いた分析
で確認した。また、第2下地層13と下層垂直磁化膜1
4の格子定数の差は3.2%であった。
As comparative samples, a perpendicular magnetic recording medium having no upper perpendicular magnetic film and a perpendicular magnetic recording medium having an upper perpendicular film with a thickness of 50 nm were prepared. As a result of measuring the magnetic properties of the upper and lower perpendicular magnetic films, the lower perpendicular magnetic film: Ms
= 385 emu / cc, Ku = 1.8 × 10 6 erg /
cc, upper perpendicular magnetization film: Ms = 675 emu / cc, K
u = 4.1 × 10 6 erg / cc. The saturation magnetization of the second underlayer 13 was Ms = 12 emu / cc.
The crystal grain size of these perpendicular magnetization films is 8 to 14 nm, and 26 to 28 at% of Cr has an average thickness of 1 between crystal grains.
It was confirmed by analysis using an electron microscope that the particles were segregated in a width of nm. The second underlayer 13 and the lower perpendicular magnetization film 1
The difference in lattice constant of No. 4 was 3.2%.

【0031】これらの磁気記録媒体の記録再生特性を、
記録再生分離型の磁気ヘッドを用いて評価した。記録ヘ
ッドのギャップ長は0.2mm、再生用の磁気抵抗効果
型(MR)ヘッドのシールド間隔は0.2mm、測定時
のスペーシングは0.06mmとした。記録密度は低周
波の再生出力の半分になる出力半減記録密度(D50)を
測定して評価し、20kFCIの磁気記録を行なった場
合のS/Nは、上層垂直磁化膜のない比較試料のS/N
に対する相対値で評価した。これらの結果を表1に示
す。
The recording and reproducing characteristics of these magnetic recording media are
The evaluation was performed using a recording / reproducing separation type magnetic head. The gap length of the recording head was 0.2 mm, the shield interval of the magnetoresistive (MR) head for reproduction was 0.2 mm, and the spacing at the time of measurement was 0.06 mm. The recording density was evaluated by measuring the output half-reduced recording density (D 50 ) at which half of the low-frequency reproduction output was obtained. S / N
The relative value was evaluated. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】本実施例の磁気記録媒体は、比較例に比べ
て出力半減記録密度D50が大幅に向上し、しかも媒体S
/Nが向上しており、高密度磁気記録媒体として望まし
いことがわかった。本実施例で作製した磁気記録媒体を
用いて、再生素子としてMRヘッドを用いた2.5イン
チの磁気記録再生装置を作製した。面記録密度10Gb
/in2の条件でエラーレート10-9が確保でき、超高
密度記録再生装置として動作することを確認した。
In the magnetic recording medium of this embodiment, the output half-reduction recording density D 50 is greatly improved as compared with the comparative example, and the medium S
/ N has been improved, indicating that it is desirable as a high-density magnetic recording medium. Using the magnetic recording medium manufactured in this example, a 2.5-inch magnetic recording and reproducing apparatus using an MR head as a reproducing element was manufactured. Surface recording density 10Gb
It was confirmed that an error rate of 10 -9 could be secured under the condition of / in 2 and that the device operated as an ultra-high density recording / reproducing apparatus.

【0034】[実施例2]直径2.5インチのシリコン
基板を用いて、直流マグネトロンスパッタ法によって、
図2に示す断面構造を持つ垂直磁気記録媒体を作製し
た。基板21上に、第1下地層22、第2下地層23、
下層垂直磁化膜24、中間層25、上層垂直磁化膜2
6、保護膜27をこの順序で形成した。第1下地用には
Geターゲット、第2下地用にはCo−35at%Ru
ターゲット、下層垂直磁化膜用にはCo−15at%C
r−6at%Pt−3at%Yターゲット、中間層用に
はCo−45at%Ruターゲット、上層垂直磁化膜用
にはCo−14at%Cr−8at%Ptターゲット、
保護膜用にはカーボンターゲットを用いた。
Example 2 Using a 2.5 inch diameter silicon substrate, a DC magnetron sputtering method was used.
A perpendicular magnetic recording medium having the cross-sectional structure shown in FIG. 2 was manufactured. On a substrate 21, a first underlayer 22, a second underlayer 23,
Lower perpendicular magnetization film 24, intermediate layer 25, upper perpendicular magnetization film 2
6. The protective film 27 was formed in this order. Ge target for the first underlayer, Co-35 at% Ru for the second underlayer
Co-15at% C for target and lower perpendicular magnetization film
an r-6 at% Pt-3 at% Y target, a Co-45 at% Ru target for the intermediate layer, a Co-14 at% Cr-8 at% Pt target for the upper perpendicular magnetization film,
A carbon target was used for the protective film.

【0035】Co−35at%Ruの飽和磁化は15e
mu/cc以下であり、弱磁性膜が得られる。スパッタ
のArガス圧力を3mTorr、スパッターパワーを1
0W/cm2、基板温度を280℃とした条件でGe膜
を30nm、Co−Ru膜を15nm、下層垂直磁化膜
を30nm、中間層を0.1nm、上層垂直磁化膜のC
o−Cr−Pt膜を2nm、カーボン膜を10nmの厚
さ形成し、図2に断面構造を示す垂直磁気記録媒体を形
成した。さらに、中間層25の膜厚を1nm,2nm,
3nm,5nmとした以外は同様の垂直媒体を作製し
た。
The saturation magnetization of Co-35 at% Ru is 15 e
mu / cc or less, and a weak magnetic film can be obtained. Ar gas pressure for sputtering is 3 mTorr and sputtering power is 1
Under the conditions of 0 W / cm 2 and a substrate temperature of 280 ° C., the Ge film is 30 nm, the Co—Ru film is 15 nm, the lower perpendicular magnetization film is 30 nm, the intermediate layer is 0.1 nm, and the upper perpendicular magnetization film is C.
An o-Cr-Pt film was formed to a thickness of 2 nm and a carbon film was formed to a thickness of 10 nm to form a perpendicular magnetic recording medium whose sectional structure is shown in FIG. Further, the thickness of the intermediate layer 25 is set to 1 nm, 2 nm,
A similar perpendicular medium was prepared except that the thickness was 3 nm and 5 nm.

【0036】また、比較試料として、上層垂直磁化膜形
成に用いたCo−Cr−Pt膜35nmからなる単層垂
直磁気記録媒体を作製した。比較試料の下地と保護膜の
形成条件は上記実施例と同様とした。上層及び下層垂直
磁化膜の磁気特性を測定した結果、下層垂直磁化膜:M
s=370emu/cc,Ku=2.0×106erg
/cc、上層垂直磁化膜:Ms=600emu/cc,
Ku=4.3×106erg/ccであった。中間層2
5のMs=0emu/ccであった。上層垂直磁化膜の
表面で測定した結晶粒の平均粒径は11nmであり、下
層垂直磁化膜の結晶粒界には27at%のCrが平均厚
さ1.2nmの幅で偏析していることを電子顕微鏡を用
いた分析で確認した。また、第2下地層23と下層垂直
磁化膜24の格子定数の差は3%であった。
As a comparative sample, a single-layer perpendicular magnetic recording medium comprising a 35 nm Co-Cr-Pt film used for forming the upper perpendicular magnetic film was manufactured. The conditions for forming the underlayer and the protective film of the comparative sample were the same as those in the above example. As a result of measuring the magnetic properties of the upper and lower perpendicular magnetic films, the lower perpendicular magnetic film: M
s = 370 emu / cc, Ku = 2.0 × 10 6 erg
/ Cc, upper perpendicular magnetization film: Ms = 600 emu / cc,
Ku = 4.3 × 10 6 erg / cc. Middle layer 2
Ms of 5 = 0 emu / cc. The average grain size of the crystal grains measured on the surface of the upper perpendicular magnetic film is 11 nm, and 27 at% of Cr is segregated at the grain boundary of the lower perpendicular magnetic film with an average thickness of 1.2 nm. It was confirmed by analysis using an electron microscope. The difference in lattice constant between the second underlayer 23 and the lower perpendicular magnetization film 24 was 3%.

【0037】これらの磁気記録媒体の保磁力Hcと記録
再生特性の評価を、それぞれ振動型磁力計(VSM)、
記録再生分離型の磁気ヘッドを用いて行なった。記録ヘ
ッドのギャップ長は0.2mm、再生用の巨大磁気抵抗
効果型(GMR)ヘッドのシールド間隔は0.15m
m、測定時のスペーシングは0.04mmとした。記録
密度は低周波の再生出力の半分になる出力半減記録密度
(D50)を測定して評価し、20kFCIの磁気記録を
行なった場合のシグナルとノイズの比率S/Nは、比較
試料のS/Nに対する相対値によって評価した。これら
の結果を表2に示す。
Evaluations of the coercive force Hc and the recording / reproducing characteristics of these magnetic recording media were performed using a vibrating magnetometer (VSM) and
The recording and reproduction were performed using a separated magnetic head. The gap length of the recording head is 0.2 mm, and the shield distance of the giant magnetoresistive (GMR) head for reproduction is 0.15 m.
m, and the spacing at the time of measurement was 0.04 mm. The recording density was evaluated by measuring the output half-reduced recording density (D 50 ), which is half of the low-frequency reproduction output. / N. Table 2 shows the results.

【0038】[0038]

【表2】 [Table 2]

【0039】本実施例の垂直磁気記録媒体は、比較例に
比べてD50,S/Nが大幅に改善されており、高密度磁
気記録媒体として望ましいことがわかった。本実施例で
作製した垂直磁気記録媒体を用いて、再生素子としてG
MRヘッドを用いた2.5インチの磁気記録再生装置を
作製した。面記録密度20Gb/in2の条件でエラー
レート10-9が確保でき、超高密度記録再生装置として
動作することを確認した。
The perpendicular magnetic recording medium of this embodiment has a significantly improved D 50 and S / N as compared with the comparative example, indicating that it is desirable as a high-density magnetic recording medium. Using the perpendicular magnetic recording medium manufactured in this example, G
A 2.5-inch magnetic recording / reproducing apparatus using an MR head was manufactured. It was confirmed that an error rate of 10 -9 could be secured under the condition of a surface recording density of 20 Gb / in 2 , and that the device operated as an ultra-high density recording / reproducing apparatus.

【0040】[実施例3]直径2.5インチのガラス基
板を用いて、直流マグネトロンスパッタ法によって、図
3に示す断面構造を持つ垂直磁気記録媒体を作製した。
基板31上に、第1下地層32、第2下地層33、下層
垂直磁化膜34、上層垂直磁化膜35、金属膜36、保
護膜37をこの順序で形成した。第1下地層用にはTi
ターゲット、第2下地層用にはCo−30at%Cr−
10at%Ruターゲット、下層垂直磁化膜用にはCo
−17at%Cr−1at%Y−3at%Taターゲッ
ト、上層垂直磁化膜用にはCo−18at%Cr−10
at%Ptターゲット、金属膜用にはPtターゲット、
保護膜用にはカーボンターゲットを用いた。スパッタの
Arガス圧力を3mTorr、スパッターパワーを10
W/cm2、基板温度を250℃とした条件でTi膜を
30nm、Co−Cr−Ru膜を20nm、Co−Cr
−Y−Ta膜を20nm、Co−Cr−Pt膜を1n
m、Pt膜を0.5nm、カーボン膜を7nmの厚さ形
成した。
Example 3 Using a glass substrate having a diameter of 2.5 inches, a perpendicular magnetic recording medium having a sectional structure shown in FIG. 3 was produced by a DC magnetron sputtering method.
A first underlayer 32, a second underlayer 33, a lower perpendicular magnetization film 34, an upper perpendicular magnetization film 35, a metal film 36, and a protective film 37 were formed in this order on a substrate 31. Ti for the first underlayer
Co-30 at% Cr- for the target and second underlayer
10 at% Ru target, Co for lower perpendicular magnetization film
-17 at% Cr-1 at% Y-3 at% Ta target, Co-18 at% Cr-10 for upper perpendicular magnetization film
at% Pt target, Pt target for metal film,
A carbon target was used for the protective film. Ar gas pressure for sputtering is 3 mTorr and sputtering power is 10
W / cm 2 , a substrate temperature of 250 ° C., a Ti film of 30 nm, a Co—Cr—Ru film of 20 nm, and a Co—Cr film
-Y-Ta film is 20 nm, Co-Cr-Pt film is 1 n
m, a Pt film was formed to a thickness of 0.5 nm, and a carbon film was formed to a thickness of 7 nm.

【0041】金属膜36としてPt膜の代わりに、Pd
膜(1nm)、Ir膜(1.5nm)、Re膜(0.1
nm)、Ru膜(1.2nm)、及びCo/Pt多層膜
(3nm)を形成した以外は前記と同様な垂直磁気記録
媒体を作製した。ここでCo/Pt多層膜は、Coター
ゲットとPtターゲットを交互に用いてそれぞれ0.5
nmの厚さずつ6サイクル形成し、合計3nm厚とし
た。比較試料として、上層垂直磁化膜と金属膜を省いた
試料、及び金属膜を省いた以外は実施例と同様の垂直磁
気記録媒体を作製した。
Instead of the Pt film as the metal film 36, Pd
Film (1 nm), Ir film (1.5 nm), Re film (0.1
nm), a Ru film (1.2 nm), and a Co / Pt multilayer film (3 nm) were formed in the same manner as described above. Here, the Co / Pt multilayer film is formed by alternately using a Co target and a Pt target by 0.5% each.
Six cycles were formed with a thickness of nm each, giving a total thickness of 3 nm. As comparative samples, a sample in which the upper layer perpendicular magnetic film and the metal film were omitted, and a perpendicular magnetic recording medium similar to the example except that the metal film was omitted were produced.

【0042】上層及び下層垂直磁化膜の磁気特性を測定
した結果、下層垂直磁化膜:Ms=340emu/c
c,Ku=1.5×106erg/cc、上層垂直磁化
膜:Ms=420emu/cc,Ku=3×106er
g/ccであった。上層垂直磁化膜の表面で測定した結
晶粒の平均粒径は12nmであり、下層垂直磁化膜の結
晶粒界には26〜30at%のCrが平均厚さ1nmの
幅で偏析していることを電子顕微鏡を用いた分析で確認
した。また、第2下地層33と下層垂直磁化膜34の格
子定数の差は4%であった。これらの磁気記録媒体の記
録再生特性を実施例2の場合と同様の方法で評価した。
結果を表3に示す。
As a result of measuring the magnetic properties of the upper and lower perpendicular magnetic films, the lower perpendicular magnetic film: Ms = 340 emu / c
c, Ku = 1.5 × 10 6 erg / cc, upper perpendicular magnetization film: Ms = 420 emu / cc, Ku = 3 × 10 6 er
g / cc. The average grain size of the crystal grains measured on the surface of the upper perpendicular magnetic film is 12 nm, and 26 to 30 at% of Cr is segregated in the crystal grain boundary of the lower perpendicular magnetic film with an average thickness of 1 nm. It was confirmed by analysis using an electron microscope. The difference in lattice constant between the second underlayer 33 and the lower perpendicular magnetization film 34 was 4%. The recording and reproducing characteristics of these magnetic recording media were evaluated in the same manner as in Example 2.
Table 3 shows the results.

【0043】[0043]

【表3】 [Table 3]

【0044】本実施例の磁気記録媒体は、比較例に比べ
てD50,S/Nが大幅に改善されており、高密度磁気記
録媒体としてさらに望ましいことがわかった。本実施例
で作製した磁気記録媒体を用いて、再生素子として磁気
トンネル現象を応用した高感度再生ヘッドを用いた2.
5インチの磁気記録再生装置を作製した。面記録密度3
0Gb/in2の条件で、表3に示すようにエラーレー
ト10-9が確保でき、超高密度記録再生装置として動作
することを確認した。
The magnetic recording medium of the present embodiment has significantly improved D 50 and S / N as compared with the comparative example, and it has been found that the magnetic recording medium is more desirable as a high-density magnetic recording medium. 1. Using the magnetic recording medium manufactured in this example, a high-sensitivity read head applying a magnetic tunnel phenomenon was used as a read element.
A 5-inch magnetic recording / reproducing apparatus was manufactured. Surface recording density 3
Under the condition of 0 Gb / in 2 , it was confirmed that an error rate of 10 −9 was secured as shown in Table 3 and that the device operated as an ultra-high density recording / reproducing apparatus.

【0045】[実施例4]実施例2で試作した垂直磁気
記録媒体の上に、厚さ5nmの(Co−10at%Cr
−3at%Ta)/(Pt−45at%Re)多層膜を
設けた以外は同様にして、図4に示す断面構造を持つ垂
直磁気記録媒体を作製した。ここで(Co−10at%
Cr−3at%Ta)/(Pt−45at%Re)多層
膜は、Co−Cr−Taターゲット、及びPt−Reタ
ーゲットを交互に用いてそれぞれ0.25nmの厚さず
つ10サイクル形成し、合計5nm厚の金属膜を作製し
た。比較例として、金属膜及び下層垂直膜、中間膜を設
けない垂直磁気記録媒体も作製した。実施例2と同様な
記録再生条件で特性比較を行なった結果を、表4に示
す。
Example 4 A 5 nm-thick (Co-10 at% Cr) film was placed on the perpendicular magnetic recording medium experimentally produced in Example 2.
A perpendicular magnetic recording medium having a sectional structure shown in FIG. 4 was produced in the same manner except that a multilayer film of (-3 at% Ta) / (Pt-45 at% Re) was provided. Here, (Co-10at%
The Cr-3at% Ta) / (Pt-45at% Re) multilayer film is formed alternately using Co-Cr-Ta targets and Pt-Re targets for 10 cycles each having a thickness of 0.25 nm, for a total of 5 nm. A thick metal film was produced. As a comparative example, a perpendicular magnetic recording medium without a metal film, a lower perpendicular film, and an intermediate film was also manufactured. Table 4 shows the results of comparing the characteristics under the same recording and reproduction conditions as in Example 2.

【0046】[0046]

【表4】 [Table 4]

【0047】本発明の垂直磁気記録媒体の方が比較例に
比べ、D50,S/Nが改善されており、さらに高密度磁
気記録媒体として望ましいことが分かる。面記録密度2
0Gb/in2の条件で、表4に示すようにエラーレー
ト10-9が確保でき、超高密度記録再生装置として動作
することが分かった。
The perpendicular magnetic recording medium of the present invention has improved D 50 and S / N as compared with the comparative example, and it can be seen that it is more desirable as a high-density magnetic recording medium. Surface recording density 2
Under the condition of 0 Gb / in 2 , an error rate of 10 −9 was secured as shown in Table 4, and it was found that the device operates as an ultra-high density recording / reproducing apparatus.

【0048】[実施例5]実施例3で試作した垂直磁気
記録媒体と巨大磁気抵抗効果(GMR)を用いた高感度
再生素子を持つ録再分離ヘッドを用いて磁気記憶装置を
作製した。この磁気記憶装置は、図5(a)に概略平面
図を、図5(b)にそのAA′断面図を示すように、磁
気記録媒体駆動部52により回転駆動される磁気記録媒
体51、磁気ヘッド駆動部54により保持されて磁気記
録媒体51に対して記録および再生を行う磁気ヘッド5
3、磁気ヘッド53の記録信号および再生信号を処理す
る記録再生信号処理系55を備える周知の構成の装置で
ある。記録ヘッドのトラック幅0.4mm,再生用のG
MRヘッド素子のトラック幅0.32mm、ヘッドと媒
体のスペーシング15nmとした。信号処理としてPR
5方式を採用し、30Gb/in2の面記録密度の条件
で装置を動作させたところ、いずれの垂直媒体において
も10-8以下の誤り率が得られた。
[Embodiment 5] A magnetic storage device was manufactured using a perpendicular magnetic recording medium experimentally manufactured in Embodiment 3 and a recording / reproducing separation head having a high-sensitivity reproducing element using the giant magnetoresistance effect (GMR). As shown in a schematic plan view in FIG. 5A and a cross-sectional view along the line AA ′ in FIG. 5B, the magnetic storage device includes a magnetic recording medium 51 that is rotationally driven by a magnetic recording medium driving unit 52. Magnetic head 5 that is held by head drive unit 54 and performs recording and reproduction on magnetic recording medium 51
3. An apparatus having a known configuration including a recording / reproducing signal processing system 55 for processing a recording signal and a reproducing signal of the magnetic head 53. Track width of recording head 0.4 mm, G for reproduction
The track width of the MR head element was 0.32 mm, and the spacing between the head and the medium was 15 nm. PR as signal processing
When the apparatus was operated under the conditions of a surface recording density of 30 Gb / in 2 employing the five methods, an error rate of 10 -8 or less was obtained in any of the perpendicular media.

【0049】[0049]

【発明の効果】本発明によれば、垂直磁気記録媒体のノ
イズを低減することができ、この結果高いS/N比が得
られるので、磁気ディスク装置の高密度化が可能とな
る、特に10Gb/in2以上の高密度磁気記録が可能
となり、装置の小型化や大容量化が容易になる。
According to the present invention, the noise of the perpendicular magnetic recording medium can be reduced, and as a result, a high S / N ratio can be obtained, so that the density of the magnetic disk drive can be increased, especially 10 Gb. / In 2 or higher density magnetic recording becomes possible, making it easier to reduce the size and capacity of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気記録媒体の一例の断面図。FIG. 1 is a sectional view of an example of a magnetic recording medium according to the present invention.

【図2】本発明による磁気記録媒体の他の例の断面図。FIG. 2 is a sectional view of another example of the magnetic recording medium according to the present invention.

【図3】本発明による磁気記録媒体の他の例の断面図。FIG. 3 is a sectional view of another example of the magnetic recording medium according to the present invention.

【図4】本発明による磁気記録媒体の他の例の断面図。FIG. 4 is a sectional view of another example of the magnetic recording medium according to the present invention.

【図5】磁気記憶装置の構成図。FIG. 5 is a configuration diagram of a magnetic storage device.

【符号の説明】[Explanation of symbols]

11…基板、12…第1下地層、13…第2下地層、1
4…下層垂直磁化膜、15…上層垂直磁化膜、16…保
護膜、21…基板、22…第1下地層、23…第2下地
層、24…下層垂直磁化膜、25…中間層、26…上層
垂直磁化膜、27…保護膜、31…基板、32…第1下
地層、33…第2下地層、34…下層垂直磁化膜、35
…上層垂直磁化膜、36…金属膜、37…保護膜、41
…基板、42…第1下地層、43…第2下地層、44…
下層垂直磁化膜、45…中間層、46…上層垂直磁化
膜、47…金属膜、48…保護膜、51…磁気記録媒
体、52…磁気記録媒体駆動部、53…磁気ヘッド、5
4…磁気ヘッド駆動部、55…信号処理部
11 ... substrate, 12 ... first underlayer, 13 ... second underlayer, 1
4 ... Lower perpendicular magnetization film, 15 ... Upper perpendicular magnetization film, 16 ... Protective film, 21 ... Substrate, 22 ... First underlayer, 23 ... Second underlayer, 24 ... Lower perpendicular magnetization film, 25 ... Intermediate layer, 26 ... Upper perpendicular magnetic film, 27 ... Protective film, 31 ... Substrate, 32 ... First underlayer, 33 ... Second underlayer, 34 ... Lower perpendicular magnetic film, 35
... upper perpendicular magnetization film, 36 ... metal film, 37 ... protective film, 41
... substrate, 42 ... first underlayer, 43 ... second underlayer, 44 ...
Lower perpendicular magnetization film, 45 middle layer, 46 upper perpendicular magnetization film, 47 metal film, 48 protective film, 51 magnetic recording medium, 52 magnetic recording medium drive unit, 53 magnetic head, 5
4: magnetic head drive unit, 55: signal processing unit

フロントページの続き (72)発明者 吉田 和悦 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 本多 幸雄 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内Continued on the front page (72) Inventor Kazuyoshi Yoshida 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Yukio Honda 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi, Ltd. Inside

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に下地層を介して形成した
垂直磁化膜を備える垂直磁気記録媒体において、 前記下地層は、六方稠密構造もしくは非晶質構造を持つ
材料からなり前記基板と接する第1下地層と、六方稠密
構造を持ち優先成長方位が[0001]であってその上
に形成される垂直磁化膜と整合成長し得る材料からなる
第2下地層とからなり、 前記垂直磁化膜は前記第2下地層に接する下層垂直磁化
膜と上層垂直磁化膜とを含み、前記下層及び上層の垂直
磁化膜はCo合金多結晶膜であって、前記上層垂直磁化
膜は前記下層垂直磁化膜より非磁性元素の総添加元素濃
度が低く、かつ飽和磁化(Ms)及び磁気異方性エネル
ギー(Ku)が大きく、 前記第2下地層から前記上層垂直磁化膜まで連続的に整
合成長が実現されており、前記垂直磁化膜の総厚が5n
m以上70nm以下であり、前記上層垂直磁化膜の表面
側で測定した結晶粒の平均粒径が5nm以上15nm以
下であることを特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium comprising a perpendicular magnetic film formed on a nonmagnetic substrate via an underlayer, wherein the underlayer is made of a material having a hexagonal close-packed structure or an amorphous structure, and is in contact with the substrate. A first underlayer and a second underlayer made of a material having a hexagonal close-packed structure, having a preferential growth orientation of [0001], and capable of growing in alignment with a perpendicular magnetization film formed thereon; Includes a lower perpendicular magnetic film in contact with the second underlayer and an upper perpendicular magnetic film, wherein the lower and upper perpendicular magnetic films are Co alloy polycrystalline films, and the upper perpendicular magnetic film is the lower perpendicular magnetic film. The total added element concentration of the non-magnetic element is lower, the saturation magnetization (Ms) and the magnetic anisotropy energy (Ku) are larger, and matching growth is continuously realized from the second underlayer to the upper perpendicular magnetization film. And said The total thickness of the perpendicular magnetization film is 5n
a perpendicular magnetic recording medium, wherein the average grain size of the crystal grains measured on the surface side of the upper perpendicular magnetic film is 5 nm or more and 15 nm or less.
【請求項2】 請求項1記載の垂直磁気記録媒体におい
て、前記下層垂直磁化膜と上層垂直磁化膜の間に六方稠
密構造を持つ非磁性もしくはMs<50emu/ccの
中間層が設けられており、前記第2下地層から前記上層
垂直磁化膜まで連続的に整合成長されていることを特徴
とする垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein a non-magnetic or Ms <50 emu / cc intermediate layer having a hexagonal close-packed structure is provided between the lower perpendicular magnetic film and the upper perpendicular magnetic film. A perpendicular magnetic recording medium characterized by being continuously grown from the second underlayer to the upper perpendicular magnetization film.
【請求項3】 請求項1又は2項記載の垂直磁気記録媒
体において、前記上層垂直磁化膜の上に厚さ0.1nm
から5nmの金属膜が形成されており、前記金属膜はP
t,Pd,Ir,Re,Ruもしくはこれらの元素を主
成分とする合金、あるいはCoもしくはCo合金とP
t,Pd,Ir,Re,Ruもしくはそれらの元素を主
成分とする合金との積層膜、あるいは稀土類元素を含む
非晶質磁性材料膜であることを特徴とする垂直磁気記録
媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein a thickness of 0.1 nm is formed on said upper perpendicular magnetization film.
A 5 nm metal film is formed, and the metal film is formed of P
t, Pd, Ir, Re, Ru or alloys containing these elements as main components, or Co or a Co alloy and P
A perpendicular magnetic recording medium characterized by being a laminated film of t, Pd, Ir, Re, Ru or an alloy containing these elements as a main component, or an amorphous magnetic material film containing a rare earth element.
【請求項4】 請求項1、2又は3記載の垂直磁気記録
媒体において、前記下層垂直磁化膜はその結晶粒界に2
5at%以上の非磁性元素の偏析層を持つ多結晶膜であ
ることを特徴とする垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 1, wherein said lower perpendicular magnetic film has a crystal grain boundary of 2 mm.
A perpendicular magnetic recording medium comprising a polycrystalline film having a segregation layer of a nonmagnetic element of 5 at% or more.
【請求項5】 請求項1〜4のいずれか1項記載の垂直
磁気記録媒体において、前記下層垂直磁化膜の磁気異方
性エネルギーが1×106erg/cc以上2.5×1
6erg/cc以下、上層垂直磁化膜の磁気異方性エ
ネルギーが2.5×106erg/cc以上5×106
rg/cc以下であることを特徴とする垂直磁気記録媒
体。
5. The perpendicular magnetic recording medium according to claim 1, wherein said lower perpendicular magnetic film has a magnetic anisotropy energy of 1 × 10 6 erg / cc or more and 2.5 × 1.
0 6 erg / cc or less, and the magnetic anisotropy energy of the upper perpendicular magnetization film is 2.5 × 10 6 erg / cc or more and 5 × 10 6 e.
rg / cc or less.
【請求項6】 請求項1〜5のいずれか1項記載の垂直
磁気記録媒体において、前記第2下地層と前記下層垂直
磁化膜の格子定数の差が5%以下であることを特徴とす
る垂直磁気記録媒体。
6. The perpendicular magnetic recording medium according to claim 1, wherein a difference in lattice constant between said second underlayer and said lower perpendicular magnetic film is 5% or less. Perpendicular magnetic recording medium.
【請求項7】 請求項1〜6のいずれか1項記載の垂直
磁気記録媒体において、前記下層垂直磁化膜の厚さが前
記上層垂直磁化膜の厚さの2倍以上であることを特徴と
する垂直磁気記録媒体。
7. The perpendicular magnetic recording medium according to claim 1, wherein the thickness of said lower perpendicular magnetic film is at least twice the thickness of said upper perpendicular magnetic film. Perpendicular magnetic recording medium.
【請求項8】 磁気記録媒体と、前記磁気記録媒体を駆
動する磁気記録媒体駆動手段と、記録部と再生部とを備
える磁気ヘッドと、前記磁気ヘッドを駆動する磁気ヘッ
ド駆動手段と、前記磁気ヘッドの記録再生信号処理手段
とを含む磁気記憶装置において、 前記磁気記録媒体として請求項1〜7のいずれか1項記
載の垂直磁気記録媒体を用い、前記磁気ヘッドの再生部
として磁気抵抗効果素子もしくは巨大磁気抵抗効果素子
を用い、面記録密度10Gb/in2以上で磁気記録再
生を行なうことを特徴とする磁気記憶装置。
8. A magnetic recording medium, a magnetic recording medium driving unit for driving the magnetic recording medium, a magnetic head including a recording unit and a reproducing unit, a magnetic head driving unit for driving the magnetic head, and the magnetic head 8. A magnetic storage device comprising: a read / write signal processing means for a head; wherein the perpendicular magnetic recording medium according to claim 1 is used as the magnetic recording medium, and a magnetoresistive element is used as a reproducing unit of the magnetic head. Alternatively, a magnetic storage device using a giant magnetoresistive element and performing magnetic recording and reproduction at a surface recording density of 10 Gb / in 2 or more.
【請求項9】 磁気記録媒体と、前記磁気記録媒体を駆
動する磁気記録媒体駆動手段と、記録部と再生部とを備
える磁気ヘッドと、前記磁気ヘッドを駆動する磁気ヘッ
ド駆動手段と、前記磁気ヘッドの記録再生信号処理手段
とを含む磁気記憶装置において、 前記磁気記録媒体として請求項1〜7のいずれか1項記
載の垂直磁気記録媒体を用い、前記磁気ヘッドの再生部
として磁気トンネル効果を用いた素子を用い、面記録密
度30Gb/in2以上で磁気記録再生を行なうことを
特徴とする磁気記憶装置。
9. A magnetic recording medium, a magnetic recording medium driving unit for driving the magnetic recording medium, a magnetic head including a recording unit and a reproducing unit, a magnetic head driving unit for driving the magnetic head, and the magnetic head A magnetic storage device including a recording / reproducing signal processing means for a head, wherein the perpendicular magnetic recording medium according to any one of claims 1 to 7 is used as the magnetic recording medium, and a magnetic tunnel effect is provided as a reproducing unit of the magnetic head. A magnetic storage device characterized by performing magnetic recording and reproduction at a surface recording density of 30 Gb / in 2 or more using the used element.
JP10093334A 1998-04-06 1998-04-06 Perpendicular magnetic recording medium and magnetic storage device Expired - Fee Related JP3011918B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10093334A JP3011918B2 (en) 1998-04-06 1998-04-06 Perpendicular magnetic recording medium and magnetic storage device
US09/285,751 US6183893B1 (en) 1998-04-06 1999-04-05 Perpendicular magnetic recording medium and magnetic storage apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10093334A JP3011918B2 (en) 1998-04-06 1998-04-06 Perpendicular magnetic recording medium and magnetic storage device

Publications (2)

Publication Number Publication Date
JPH11296833A true JPH11296833A (en) 1999-10-29
JP3011918B2 JP3011918B2 (en) 2000-02-21

Family

ID=14079381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10093334A Expired - Fee Related JP3011918B2 (en) 1998-04-06 1998-04-06 Perpendicular magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP3011918B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111040A (en) * 2002-09-19 2004-04-08 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
JP2005222675A (en) * 2004-01-09 2005-08-18 Tohoku Univ Perpendicular magnetic recording medium
JP2005353278A (en) * 2001-01-03 2005-12-22 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
SG118167A1 (en) * 2001-12-07 2006-01-27 Fuji Electric Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
JP2006155865A (en) * 2004-10-29 2006-06-15 Ken Takahashi Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
WO2007114401A1 (en) * 2006-03-31 2007-10-11 Hoya Corporation Vertical magnetic recording disk and method for manufacturing the same
KR100803201B1 (en) * 2002-07-27 2008-02-14 삼성전자주식회사 Perpendicular magnetic recording media
US7566507B2 (en) 2003-05-02 2009-07-28 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium
JP2010272202A (en) * 2004-01-09 2010-12-02 Tohoku Univ Perpendicular magnetic recording medium
JP2011003260A (en) * 2009-06-22 2011-01-06 Showa Denko Kk Magnetic recording medium and magnetic recording and reproducing device
US8034470B2 (en) 2007-03-16 2011-10-11 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the medium
US8149547B2 (en) 2008-03-13 2012-04-03 Tdk Corporation Magnetoresistive effect element and thin-film magnetic head with the magnetoresistive effect element
JP2012509547A (en) * 2008-11-17 2012-04-19 シーゲイト テクノロジー エルエルシー Low bond oxide media (LCOM)
US9129635B2 (en) 2012-04-27 2015-09-08 Hitachi, Ltd. Magnetic recording medium with controlled anisotropic fields and magnetic memory device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353278A (en) * 2001-01-03 2005-12-22 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
SG118167A1 (en) * 2001-12-07 2006-01-27 Fuji Electric Co Ltd Perpendicular magnetic recording medium and a method for manufacturing the same
KR100803201B1 (en) * 2002-07-27 2008-02-14 삼성전자주식회사 Perpendicular magnetic recording media
JP2004111040A (en) * 2002-09-19 2004-04-08 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
US7566507B2 (en) 2003-05-02 2009-07-28 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium
JP4678716B2 (en) * 2004-01-09 2011-04-27 国立大学法人東北大学 Perpendicular magnetic recording medium
JP2005222675A (en) * 2004-01-09 2005-08-18 Tohoku Univ Perpendicular magnetic recording medium
US8691402B2 (en) 2004-01-09 2014-04-08 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
JP2010272202A (en) * 2004-01-09 2010-12-02 Tohoku Univ Perpendicular magnetic recording medium
US8323808B2 (en) 2004-01-09 2012-12-04 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
JP2006155865A (en) * 2004-10-29 2006-06-15 Ken Takahashi Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
WO2007114401A1 (en) * 2006-03-31 2007-10-11 Hoya Corporation Vertical magnetic recording disk and method for manufacturing the same
US8034470B2 (en) 2007-03-16 2011-10-11 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the medium
US8149547B2 (en) 2008-03-13 2012-04-03 Tdk Corporation Magnetoresistive effect element and thin-film magnetic head with the magnetoresistive effect element
JP2012509547A (en) * 2008-11-17 2012-04-19 シーゲイト テクノロジー エルエルシー Low bond oxide media (LCOM)
US8709619B2 (en) 2008-11-17 2014-04-29 Seagate Technology Llc Low-coupling oxide media (LCOM)
JP2011003260A (en) * 2009-06-22 2011-01-06 Showa Denko Kk Magnetic recording medium and magnetic recording and reproducing device
US9129635B2 (en) 2012-04-27 2015-09-08 Hitachi, Ltd. Magnetic recording medium with controlled anisotropic fields and magnetic memory device

Also Published As

Publication number Publication date
JP3011918B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JP3665261B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US6183893B1 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US7846563B2 (en) Perpendicular magnetic recording exchange-spring type medium with a lateral coupling layer for increasing intergranular exchange coupling in the lower magnetic layer
US20070003794A1 (en) Tilted Media for Hard Disk Drives and Magnetic Data Storage Devices
JP2008071479A (en) Perpendicular magnetic recording medium with exchange-spring recording structure and lateral coupling layer for increasing intergranular exchange coupling
US7666529B2 (en) Anti-ferromagnetically coupled soft underlayer
EP1930882A1 (en) Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer
JP2005276410A (en) Magnetic recording disk provided with antiferromagnetically coupled magnetic layer having ferromagnetically coupled multiple lower layer
JP3011918B2 (en) Perpendicular magnetic recording medium and magnetic storage device
EP1378893B1 (en) Perpendicular magnetic recording media
KR20040076819A (en) Magnetic recording media with write-assist layer
US8263239B2 (en) Laminated magnetic thin films for magnetic recording with weak ferromagnetic coupling
Doerner et al. Demonstration of 35 Gbits/in/sup 2/in media on glass substrates
US20040072027A1 (en) Intermediate layer for perpendicular magnetic recording media
US6706426B1 (en) Longitudinal magnetic recording media
JPH10334440A (en) Magnetic recording medium and magnetic recording and reproducing device
JP3217012B2 (en) Magnetic recording media
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP2004272982A (en) Manufacturing method of perpendicular magnetic recording medium, and perpendicular magnetic recording medium
JP3136133B2 (en) Magnetic recording media
EP1569207A1 (en) Magnetic recording disk with antiferromagnetically-coupled magnetic layer having multiple lower layers
KR100374794B1 (en) Perpendicular magnetic recording media
JP2002230735A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2993927B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000315311A (en) Vertical magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees