JPH11295281A - Ultrasonic transducer for measurement - Google Patents

Ultrasonic transducer for measurement

Info

Publication number
JPH11295281A
JPH11295281A JP11413098A JP11413098A JPH11295281A JP H11295281 A JPH11295281 A JP H11295281A JP 11413098 A JP11413098 A JP 11413098A JP 11413098 A JP11413098 A JP 11413098A JP H11295281 A JPH11295281 A JP H11295281A
Authority
JP
Japan
Prior art keywords
piezoelectric element
measurement
wave
ultrasonic
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11413098A
Other languages
Japanese (ja)
Inventor
Mikio Fukuhara
幹夫 福原
Asao Sanpei
麻雄 三瓶
Mitsuhiro Hoshino
充宏 星野
Masaaki Nakada
正明 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN PROBE KK
Tungaloy Corp
Original Assignee
JAPAN PROBE KK
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN PROBE KK, Toshiba Tungaloy Co Ltd filed Critical JAPAN PROBE KK
Priority to JP11413098A priority Critical patent/JPH11295281A/en
Publication of JPH11295281A publication Critical patent/JPH11295281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the ultraprecise measurement of the load and residual stress of machine parts which receive thermal stress and stress fluctuations, the axial tension of bolts, the elastic modulus of various materials, and internal wear. SOLUTION: A polymer-quality damper 3 and a substrate shaped piezoelectric element 4 are at least assembled in the case 2 of an ultrasonic transducer 1. The inner surface 4a of the piezoelectric element 4 is provided with an electrode 7 to be connected to a lead wire 6a, and the outer surface 4b is constituted so as to directly come into contact with an object to be measured. Two polarized types of a piezoelectric domain for generating longitudinal waves and a piezoelectric domain for generating transverse waves are present in the piezoelectric element 4, and ultrasonic waves in longitudinal and transverse waves are simultaneously transmitted from the piezoelectric element 4 toward the object to be measured at the time when a voltage is impressed through the use of the above-mentioned electrode 7 and the object to be measured. By this, it becomes possible to measure ultrasonic waves in longitudinal and transverse waves simultaneously and to measure an undispersed mixed-phase structure without being restricted by the thickness of a sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、計測用の超音波ト
ランスジュ−サ−に関し、特に、縦波及び横波の超音波
を同時発信させることによって、精密な計測が得られる
ようにしたものである。用途としては、熱応力や応力変
動を受ける機械部品の負荷及び残量応力、ボルトの軸応
力、各種材料の弾性率、内部摩耗等の計測が挙げられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic transducer for measurement and, more particularly, to an ultrasonic transducer for transmitting longitudinal and transverse ultrasonic waves at the same time to obtain a precise measurement. is there. Applications include measurement of load and residual stress of mechanical parts subjected to thermal stress and stress fluctuation, axial stress of bolts, elastic modulus of various materials, internal wear, and the like.

【0002】[0002]

【従来の技術】従来、超音波を利用した計測では、第1
に、縦波及び横波のトランジュ−サ−を取り替えること
で別々に用いる場合、第2に、縦波及び横波のトランジ
ュ−サ−を上下、横並び、同心円状又は放物線状に設置
する場合、第3に、縦波から横波にモ−ド変換する場合
がある。
2. Description of the Related Art Conventionally, in measurement using ultrasonic waves,
Secondly, when the longitudinal wave and the transverse wave transducers are used separately by replacing them, secondly, when the longitudinal wave and the transverse wave transducers are arranged vertically and horizontally, concentrically or parabolically, the third method is used. In some cases, mode conversion is performed from longitudinal waves to transverse waves.

【0003】そして、これら第1〜第3の場合は、通
常、トランスジュ−サ−と被計測物の間には、接触媒質
を介在させ、また被計測物側にある圧電体の表面には、
圧電体保護のためポリマ−やセラミックス質の薄膜保護
層を被覆させた間接的な接触構成を採用している。さら
に、トランジュ−サ−の被計測物に対する圧接について
は、通常、作業者の手圧、重しの負荷により行なわれて
いる。
In these first to third cases, usually, a couplant is interposed between the transducer and the object to be measured, and the surface of the piezoelectric body on the side of the object to be measured is usually provided. ,
In order to protect the piezoelectric body, an indirect contact configuration in which a polymer or ceramic thin film protective layer is coated is adopted. Further, the pressure contact of the transducer with the object to be measured is usually performed by the hand pressure of the operator and the load of the weight.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、第1の
場合では、計測中に取り替えのできない低温、高温計測
には不向きであり、第2の場合では、被計測物の同一箇
所の計測でないことから、材料の精密計測ができず、均
一に分散していない混合相の組織の計測で誤差を生じる
問題点があり、第3の場合では、トランジュ−サ−径の
約40%よりも小さい厚さの試料は、計測できないとい
う欠点を有している。
However, in the first case, it is unsuitable for low-temperature and high-temperature measurement which cannot be replaced during measurement, and in the second case, it is not the measurement of the same portion of the object to be measured. There is a problem that accurate measurement of the material cannot be performed and an error occurs in the measurement of the structure of the mixed phase that is not uniformly dispersed. In the third case, the thickness is smaller than about 40% of the diameter of the transducer. Has the disadvantage that it cannot be measured.

【0005】また、接触媒質の使用は、媒質の経時変化
により、精密計測ができないという重大な欠陥があり、
ポリマ−やセラミックス質の薄膜保護層は、圧電体との
材質違いにより、精密計測の阻害要因であることも判明
した。
Further, the use of a couplant has a serious defect that precise measurement cannot be performed due to a change with time of the medium.
It has also been found that the polymer or ceramics thin film protective layer is an obstacle to precision measurement due to the difference in material from the piezoelectric body.

【0006】さらに、トランジュ−サの被計測物に対す
る圧接は、多くの場合片押しとなり、精密計測を阻害す
るという問題点があった。
In addition, the pressure contact of the transducer with the object to be measured is often one-sided, which hinders precision measurement.

【0007】[0007]

【課題を解決するための手段】本発明は上述の点に鑑み
なされたもので、計測用の超音波トランスジュ−サ−
は、ケ−ス内には、少なくともダンパ−及び基板状の圧
電素子が組込まれ、特に、この圧電素子の位置関係及び
圧電現象を改善するようにしたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has an ultrasonic transducer for measurement.
In the case, at least a damper and a substrate-like piezoelectric element are incorporated in a case, and in particular, the positional relationship of the piezoelectric element and the piezoelectric phenomenon are improved.

【0008】すなわち、前記圧電素子は、ケ−ス内で
は、電極を備えた内表面が位置し、また被計測物側で
は、被計測物に対して接触媒質や薄膜保護層を介在させ
ずに直接接触する外表面が位置するように構成され、圧
電素子中には、分極された縦波発生用の圧電ドメイン及
び横波発生用の圧電ドメインの二種類が存在するように
構成したものである。したがって、本発明の計測用の超
音波トランスジュ−サ−は、圧電素子が被計測物に間接
ではなく直接接触するとともに、超音波が圧電素子から
被計測物に向って同時発信するものである。この結果、
従来技術では、不可能な縦波及び横波超音波の同時計
測、また均一に分散していない混合相の組織の計測がで
き、材料厚さの制約も受けないものである。この場合、
圧電素子の外表面は、超音波の伝播から、面粗度が40
0メッシュ以上の平坦面になっていることが好ましい。
また、縦波の超音波及び横波の超音波は、各周波数が
0.5〜200MHzの範囲内、好ましく1〜30MH
zの範囲内で設定され、また、縦波と横波の発進速度比
が10:1〜1:10の範囲内、好ましくは2:1〜
1:2の範囲内で設定される。
[0008] That is, the piezoelectric element has an inner surface provided with electrodes in the case, and on the measurement object side, the couplant or the thin film protective layer does not intervene with the measurement object. The piezoelectric element is configured so that an outer surface that directly contacts the piezoelectric element is located, and two types of piezoelectric domains for generating polarized longitudinal waves and piezoelectric domains for generating transverse waves exist in the piezoelectric element. Therefore, in the ultrasonic transducer for measurement of the present invention, the piezoelectric element directly contacts the object to be measured, not indirectly, and simultaneously transmits ultrasonic waves from the piezoelectric element to the object to be measured. . As a result,
According to the prior art, simultaneous measurement of longitudinal and transverse ultrasonic waves, which is impossible, and measurement of mixed phase structure that is not uniformly dispersed can be performed, and there is no restriction on material thickness. in this case,
The outer surface of the piezoelectric element has a surface roughness of 40 due to the propagation of ultrasonic waves.
Preferably, it is a flat surface of 0 mesh or more.
The longitudinal ultrasonic wave and the transverse ultrasonic wave have respective frequencies within a range of 0.5 to 200 MHz, preferably 1 to 30 MHz.
z, and the starting speed ratio of the longitudinal wave and the transverse wave is in the range of 10: 1 to 1:10, preferably 2: 1 to 1
It is set within the range of 1: 2.

【0009】また、前記ケ−スについては、永久磁石又
は電磁石で構成すれば、鉄系からなる被計測物の吸着が
可能になり、被計測物への圧接が均一になって精密計測
を常時確保できる。
Further, if the case is constituted by a permanent magnet or an electromagnet, it is possible to adsorb an iron-based object to be measured, and the pressure contact with the object to be measured becomes uniform, so that precise measurement is always performed. Can be secured.

【0010】[0010]

【発明の実施の形態】以下、本発明計測用の超音波トラ
ンスジュ−サ−について、その一実施例につき図を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the ultrasonic transducer for measurement according to the present invention will be described below with reference to the drawings.

【0011】図1(a)(b)は、本発明計測用の超音
波トランスジュ−サ−1を示す概念図であり、ケ−ス2
の内部には、少なくとも、ポリマ−質のダンパ−3及び
基板状の圧電素子4が組込まれている。そして、前記圧
電素子4は、使用周波数によって制約があり、その厚み
が0.1〜1mm程度になっている。そして、圧電素子
4の内表面4aには、同軸ケ−ブル5のリ−ド線6aに
接続される電極7が設けられ、この内表面4aの反対側
にある露出した外表面4bが被計測物8に直接接触する
ように構成されている。この場合、前記ダンパ−3は、
絶縁性を兼ねているものであり、また、ケ−ス2の内周
壁部分には、ゴムなどの吸収材を利用して吸音壁を構成
することが好ましい。さらに、圧電素子4の内表面4a
に設けられる電極7は、例えば塗布又は乾質もしくは湿
質メッキされたものである。
FIGS. 1A and 1B are conceptual diagrams showing an ultrasonic transducer 1 for measurement according to the present invention.
At least a polymer damper 3 and a substrate-like piezoelectric element 4 are incorporated in the inside of the device. The thickness of the piezoelectric element 4 is limited to about 0.1 to 1 mm, depending on the frequency used. An electrode 7 connected to the lead wire 6a of the coaxial cable 5 is provided on the inner surface 4a of the piezoelectric element 4, and the exposed outer surface 4b on the opposite side of the inner surface 4a is measured. It is configured to directly contact the object 8. In this case, the damper-3 is
In addition, it is preferable that the inner peripheral wall portion of the case 2 is formed of a sound absorbing wall using an absorbing material such as rubber. Further, the inner surface 4a of the piezoelectric element 4
Is provided, for example, by coating or by dry or wet plating.

【0012】なお、圧電素子4の外表面4bを被計測物
8に直接接触させたのは、伝播時間の誤差要因となる電
極層やポリマ−、セラミック保護層、接触媒質を除去す
ることによって、精密な伝播時間の計測を可能にするた
めである。そして、圧電素子4の外表面4bは、超音波
の伝播から、外表面4bの面粗度を400メッシュ以上
の平坦面にすることが好ましい。
The outer surface 4b of the piezoelectric element 4 is brought into direct contact with the object 8 by removing the electrode layer, the polymer, the ceramic protective layer, and the couplant which cause errors in the propagation time. This is to enable accurate measurement of the propagation time. The outer surface 4b of the piezoelectric element 4 is preferably a flat surface having a surface roughness of 400 mesh or more from the propagation of ultrasonic waves.

【0013】また、前記圧電素子4は、例えばペロブス
カイト型結晶構造を有する(Ti,Zr)Pb03もし
くはTiPb03などの酸化物やポリ弗化ビニリデン
(PVDF)共重合体などのポリマ−からなり、圧電素
子4中には、分極された縦波発生用の圧電ドメイン及び
横波発生用の圧電ドメインの二種類が存在している。こ
の場合、ドメインとは、粒子の集合をいい、普通10〜
100μmの大きさをもっているものである。したがっ
て、例えばBNCコネクタ−、RS232C(いずれも
図示せず)に接続される前記同軸ケ−ブル5のリ−ド線
6aを使用して、電極7及び被計測物8間に印加電圧し
たときには、縦波の超音波及び横波の超音波が圧電素子
4から被計測物8に向って同時発信する。この場合、前
記被計測物8は、図2で示されるように電極を兼ねてい
るものであり、電極用のリ−ド線6bが接続されるよう
になっている。
Further, the piezoelectric element 4, for example having a perovskite crystal structure (Ti, Zr) Pb0 3 or TiPb0 oxide and polyvinylidene fluoride (PVDF), such as 3 copolymer polymers such as - made, The piezoelectric element 4 has two types of piezoelectric domains for generating polarized longitudinal waves and piezoelectric domains for generating transverse waves. In this case, the domain refers to a set of particles, usually 10 to
It has a size of 100 μm. Therefore, for example, when a voltage is applied between the electrode 7 and the measured object 8 using the lead wire 6a of the coaxial cable 5 connected to the BNC connector or RS232C (both not shown), A longitudinal ultrasonic wave and a transverse ultrasonic wave are simultaneously transmitted from the piezoelectric element 4 to the measured object 8. In this case, the object to be measured 8 also serves as an electrode as shown in FIG. 2, and is connected to a lead wire 6b for the electrode.

【0014】このような構成の圧電素子4を採用した本
発明の計測用の超音波トランスジュ−サ−1は、従来技
術では、不可能な縦波及び横波超音波の同時計測、均一
に分散していない混合相の組織の計測ができ、しかも材
料厚さの制約も受けないものである。
The ultrasonic transducer for measurement 1 of the present invention employing the piezoelectric element 4 having such a configuration is capable of simultaneously measuring longitudinal and transverse ultrasonic waves, which cannot be achieved by the prior art, and uniformly dispersing the ultrasonic waves. It is possible to measure the structure of a mixed phase that has not been performed, and is not subject to restrictions on the material thickness.

【0015】なお、超音波の縦波の超音波及び横波の超
音波は、各周波数が0.5〜200MHzの範囲内、好
ましく1〜30MHzの範囲内で設定される。周波数が
0.5MHz未満では、波形がブロ−ドになって精密計
測を不能にするとともに、200MHzをこえると、圧
電素子4が薄くなりすぎて破損を起こしたり、縦波と横
波の同時伝播ができなくなったりするからである。ま
た、縦波と横波の発進速度比が10:1〜1:10の範
囲内、好ましくは2:1〜1:2の範囲内で設定され
る。これは、この範囲内であると、縦波と横波の伝播時
間の同時計測及びピ−ク高さの計測が容易になるからで
ある。
The longitudinal ultrasonic waves and the transverse ultrasonic waves are set to have respective frequencies within a range of 0.5 to 200 MHz, preferably within a range of 1 to 30 MHz. If the frequency is less than 0.5 MHz, the waveform becomes a broad band, making precise measurement impossible. If the frequency exceeds 200 MHz, the piezoelectric element 4 becomes too thin and may be damaged, or simultaneous propagation of longitudinal and transverse waves may occur. It is because it becomes impossible. The starting speed ratio between the longitudinal wave and the transverse wave is set in the range of 10: 1 to 1:10, preferably in the range of 2: 1 to 1: 2. This is because within this range, simultaneous measurement of the propagation time of the longitudinal and transverse waves and measurement of the peak height are facilitated.

【0016】さらに、前記ケ−ス2は、図1(a)
(b)及び図2では、例えば、SUS432からなる永
久磁石2aにより構成されている。したがって、鉄系の
被計測物8を対象にした場合には、ケ−ス2が被計測物
8を吸着する。この結果、この被計測物8への圧接は、
均一になって精密計測を常時確保できる。そして、電磁
石2bの場合は、例えば、図3に示されたように、鉄心
9を介してN極及びS極が同心円状に設けられるように
なっている。
Further, the case 2 is shown in FIG.
In FIG. 2B and FIG. 2, for example, it is configured by a permanent magnet 2a made of SUS432. Therefore, when the iron-based measurement object 8 is targeted, the case 2 attracts the measurement object 8. As a result, the pressure contact with the object 8 is
It becomes uniform and accurate measurement can always be secured. In the case of the electromagnet 2b, for example, as shown in FIG. 3, an N pole and an S pole are provided concentrically via an iron core 9.

【0017】なお、図4は、被計測物8として、鋼製の
丸棒(φ10×10mm)を選択し、本発明品A及び従
来の比較品Bにおける横波の伝播時間の経時変化を示し
た特性図である。この場合、比較品Bは、トランスジュ
−サ−の先端部分に電極層やポリマ−、セラミック保護
層、接触媒質などを介在させた従来方式のものである。
この結果、本発明品Aは、伝播時間が安定しており、精
密音速計測が可能になることを知見した。これに対し、
比較品Bは、保護膜や接触媒質などの膜厚及び膜質が経
時変化し、正確な伝播時間の計測を阻害していることが
判明した。この場合、横波の伝播時間を比較し、図示し
たのは、縦波の伝播時間の経時変化が少なく、横波の場
合の方が有意差が明瞭になるからである。
FIG. 4 shows a change with time of the propagation time of the shear wave in the product A of the present invention and the comparative product B of the related art when a steel round bar (φ10 × 10 mm) was selected as the object 8 to be measured. It is a characteristic diagram. In this case, the comparative product B is of a conventional type in which an electrode layer, a polymer, a ceramic protective layer, a couplant, and the like are interposed at the tip of the transducer.
As a result, it has been found that the product A of the present invention has a stable propagation time and enables precise sound velocity measurement. In contrast,
In Comparative Example B, it was found that the film thickness and film quality of the protective film, the couplant, and the like changed with time, which hindered accurate measurement of the propagation time. In this case, the transit time of the shear wave is compared and shown in the figure because the temporal change of the transit time of the longitudinal wave is small, and the significant difference is clearer in the case of the shear wave.

【0018】[0018]

【発明の効果】本発明は、以上説明したように、圧電素
子4については、電極7を設けた内表面4a及び被計測
物8に直接接触する外表面4bが構成されたものである
から、超音波の伝播時間の経時変化が少なくなり、超精
密な計測が常時可能になるという利点を有する。
According to the present invention, as described above, the piezoelectric element 4 has the inner surface 4a provided with the electrode 7 and the outer surface 4b which is in direct contact with the object 8 to be measured. There is an advantage that the change with time of the propagation time of the ultrasonic wave is reduced, and ultra-precision measurement is always possible.

【0019】また、圧電素子4による超音波の伝播は、
縦波及び横波の超音波を同時発信できるように構成した
ものであるから、低温、高温計測や振動が発生している
計測、不均一混合相の組織計測も可能で、試料厚さの制
約もないなどの利点を有する。したがって、熱応力や応
力変動を受ける機械部品の負荷及び残量応力、ボルトの
軸応力、各種材料の弾性率、内部摩耗等の計測にも好適
するという利点を有する。
The propagation of the ultrasonic wave by the piezoelectric element 4 is as follows.
Because it is configured to transmit longitudinal and transverse ultrasonic waves at the same time, it is possible to measure low and high temperatures, measurement where vibration is occurring, texture measurement of heterogeneous mixed phase, and limit sample thickness. There are advantages such as not. Therefore, there is an advantage that it is suitable for measurement of load and residual stress of mechanical parts subjected to thermal stress and stress fluctuation, axial stress of bolt, elastic modulus of various materials, internal wear and the like.

【0020】さらに、前記ケ−ス2については、永久磁
石2a又は電磁石2bで構成すれば、鉄系からなる被計
測物8の吸着が可能になり、被計測物8への圧接が均一
になって精密計測を常時確保できるという利点を有す
る。
Further, if the case 2 is constituted by the permanent magnet 2a or the electromagnet 2b, the object to be measured 8 made of iron can be attracted and the pressure contact with the object to be measured 8 becomes uniform. Therefore, there is an advantage that precise measurement can be always secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明計測用の超音波トランスジュ−サ−の一
実施例を示す概念図であり、(a)は正面図、(b)は
平面図。
FIGS. 1A and 1B are conceptual diagrams showing an embodiment of an ultrasonic transducer for measurement according to the present invention, wherein FIG. 1A is a front view and FIG. 1B is a plan view.

【図2】計測状態の説明図。FIG. 2 is an explanatory diagram of a measurement state.

【図3】電磁石の構成を概念的に示す説明図。FIG. 3 is an explanatory view conceptually showing a configuration of an electromagnet.

【図4】本発明品及び比較品における横波の伝播時間の
経時変化を示す特性図。
FIG. 4 is a characteristic diagram showing a change over time of a propagation time of a shear wave in the product of the present invention and a comparative product.

【符号の説明】[Explanation of symbols]

l 計測用の超音波トランスジュ−サ− 2 ケ−ス 2a 永久磁石 2b 電磁石 3 ダンパ− 4 圧電素子 4a 内表面 4b 外表面 5 同軸ケ−ブル 6a リ−ド線 6b リ−ド線 7 電極 8 被計測物 9 鉄心 1 Ultrasonic transducer for measurement 2 Case 2a Permanent magnet 2b Electromagnet 3 Damper 4 Piezoelectric element 4a Inner surface 4b Outer surface 5 Coaxial cable 6a Lead wire 6b Lead wire 7 Electrode 8 DUT 9 Iron core

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 充宏 神奈川県横浜市南区中村町1−1−14 ジ ャパン プローブ株式会社内 (72)発明者 中田 正明 神奈川県横浜市南区中村町1−1−14 ジ ャパン プローブ株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mitsuhiro Hoshino 1-1-14 Nakamura-cho, Minami-ku, Yokohama-shi, Kanagawa Prefecture Inside Japan Probe Corporation (72) Inventor Masaaki Nakata 1--1, Nakamura-cho, Minami-ku, Yokohama-shi, Kanagawa 1-14 Japan Probe Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ケ−ス2内には、少なくともダンパ−3
及び基板状の圧電素子4が組込まれるようにした計測用
の超音波トランスジュ−サ−において、 前記圧電素子4は、ケ−ス2内では、電極7を備えた内
表面4aが位置し、また被計測物8側では、被計測物8
に直接接触する露出した外側面4bが位置するようにな
っており、しかも圧電素子4中には、分極された縦波発
生用の圧電ドメイン及び横波発生用の圧電ドメインの二
種類が存在して、前記電極7及び被計測物8を利用して
印加電圧したときには、縦波の超音波及び横波の超音波
が圧電素子4から被計測物8に向って同時発信するよう
にしたことを特徴とする計測用の超音波トランスジュ−
サ−。
1. A casing 2 having at least a damper-3.
And an ultrasonic transducer for measurement in which a substrate-like piezoelectric element 4 is incorporated, wherein the piezoelectric element 4 has an inner surface 4a provided with an electrode 7 in a case 2, On the object 8 side, the object 8
The piezoelectric element 4 has two types of piezoelectric domains, one for generating a polarized longitudinal wave and the other for generating a transverse wave, in the piezoelectric element 4. When an applied voltage is applied using the electrode 7 and the object 8, longitudinal ultrasonic waves and transverse ultrasonic waves are simultaneously transmitted from the piezoelectric element 4 to the object 8. Ultrasonic transducer for measurement
Sir.
【請求項2】 前記ケ−ス2は、永久磁石2a又は電磁
石2bにより構成され、鉄系の被計測物8を吸着してい
る請求項1に記載の計測用の超音波トランスジュ−サ
−。
2. The ultrasonic transducer for measurement according to claim 1, wherein said case 2 is constituted by a permanent magnet 2a or an electromagnet 2b and adsorbs an iron-based object 8 to be measured. .
【請求項3】 前記縦波の超音波及び横波の超音波は、
各周波数が0.5〜200MHzの範囲内、好ましく1
〜30MHzの範囲内で設定される請求項1に記載の計
測用の超音波トランスジュ−サ−。
3. The ultrasonic wave of the longitudinal wave and the ultrasonic wave of the transverse wave,
Each frequency is in the range of 0.5 to 200 MHz, preferably 1
2. The ultrasonic transducer for measurement according to claim 1, wherein the ultrasonic transducer is set within a range of about 30 MHz.
【請求項4】 前記縦波の超音波及び横波の超音波は、
縦波と横波の発進速度比が10:1〜1:10の範囲
内、好ましくは2:1〜1:2の範囲内で設定されてい
る請求項1〜請求項3のいずれかに記載の超音波トラン
スジュ−サ−。
4. The ultrasonic wave of the longitudinal wave and the ultrasonic wave of the transverse wave,
The launch speed ratio between the longitudinal wave and the transverse wave is set in the range of 10: 1 to 1:10, preferably in the range of 2: 1 to 1: 2. Ultrasonic transducer.
【請求項5】 前記圧電素子の外表面は、面粗度が40
0メッシュ以上の平坦面になっている請求項1〜請求項
4のいずれかに記載の超音波トランスジュ−サ−。
5. An outer surface of the piezoelectric element has a surface roughness of 40.
The ultrasonic transducer according to any one of claims 1 to 4, wherein the ultrasonic transducer has a flat surface of 0 mesh or more.
JP11413098A 1998-04-08 1998-04-08 Ultrasonic transducer for measurement Pending JPH11295281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11413098A JPH11295281A (en) 1998-04-08 1998-04-08 Ultrasonic transducer for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11413098A JPH11295281A (en) 1998-04-08 1998-04-08 Ultrasonic transducer for measurement

Publications (1)

Publication Number Publication Date
JPH11295281A true JPH11295281A (en) 1999-10-29

Family

ID=14629898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11413098A Pending JPH11295281A (en) 1998-04-08 1998-04-08 Ultrasonic transducer for measurement

Country Status (1)

Country Link
JP (1) JPH11295281A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365270A (en) * 2001-06-06 2002-12-18 Toshiba Tungaloy Co Ltd Ultrasonic probe having excellent impact resistance, abrasion resistance and elasticity
WO2007145127A1 (en) 2006-06-15 2007-12-21 Koichi Hirama Composite resonator
CN102411031A (en) * 2011-11-30 2012-04-11 北京科技大学 Device and method for ultrasonically measuring elastic modulus of magnetostrictive material
CN102879468A (en) * 2012-09-18 2013-01-16 东北大学 Double-bending-element ultrasonic sensing test device and method for evaluating rock damage
CN106370731A (en) * 2016-09-09 2017-02-01 中国石油大学(华东) Ultrasonic longitudinal and shear wave-resistivity integrated type probe for rock physical experiment
CN115094393A (en) * 2022-06-21 2022-09-23 武汉大学 ZnO piezoelectric coating material capable of simultaneously exciting longitudinal-transverse waves and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365270A (en) * 2001-06-06 2002-12-18 Toshiba Tungaloy Co Ltd Ultrasonic probe having excellent impact resistance, abrasion resistance and elasticity
WO2007145127A1 (en) 2006-06-15 2007-12-21 Koichi Hirama Composite resonator
US8179209B2 (en) 2006-06-15 2012-05-15 Koichi Hirama Complex resonance circuit
CN102411031A (en) * 2011-11-30 2012-04-11 北京科技大学 Device and method for ultrasonically measuring elastic modulus of magnetostrictive material
CN102879468A (en) * 2012-09-18 2013-01-16 东北大学 Double-bending-element ultrasonic sensing test device and method for evaluating rock damage
CN106370731A (en) * 2016-09-09 2017-02-01 中国石油大学(华东) Ultrasonic longitudinal and shear wave-resistivity integrated type probe for rock physical experiment
CN115094393A (en) * 2022-06-21 2022-09-23 武汉大学 ZnO piezoelectric coating material capable of simultaneously exciting longitudinal-transverse waves and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Gallego-Juarez Piezoelectric ceramics and ultrasonic transducers
Gururaja et al. Piezoelectric composite materials for ultrasonic transducer applications. Part II: Evaluation of ultrasonic medical applications
US6215231B1 (en) Hollow sphere transducers
Wong et al. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer
US4703656A (en) Temperature independent ultrasound transducer device
CN101524682A (en) High-frequency ultrasonic transducer made of piezoelectric monocrystalline composite material as well as manufacturing method and application thereof
Smith et al. Properties of composite piezoelectric materials for ultrasonic transducers
JP2018520547A (en) Impedance matching layer for ultrasonic transducer with metallic protective structure
Chen et al. High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal
Lafleur et al. Acoustically active surfaces using piezorubber
JPH11295281A (en) Ultrasonic transducer for measurement
Bowen et al. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components
Wenger et al. Acoustic emission signal detection by ceramic/polymer composite piezoelectrets embedded in glass‐epoxy laminates
JP3923846B2 (en) Ultrasonic probe
Liu et al. Broadband ultrasonic transducer based on textured lead-free NKN-based piezoceramics
Jiang et al. Nonlinear properties of lead zirconate–titanate piezoceramics
KR100941684B1 (en) Ultrasonic Transducer for Non-destructive Evaluation of Highly Attenuative Material using PMN-PT single crystal
JPS61253873A (en) Piezoelectric ceramic material
Amini Design and manufacture of an ultrasonic transducer for long-term high temperature operation
JP2000119063A (en) Porous dielectric sheet and piezoelectric oscillator
Kim et al. Comparison of PMN-PT and PZN-PT single-crystal-based ultrasonic transducers for nondestructive evaluation applications
CN210665625U (en) Double-crystal composite ultrasonic probe with high sensitivity
INOUE et al. Measurements for piezoelectric ceramic properties applied compressive stress parallel to the polar axis
Brown et al. Fabrication and performance of a single-crystal lead magnesium niobate-lead titanate cylindrical hydrophone
Herzog et al. High-performance ultrasonic transducers based on PMN-PT single crystals fabricated in 1-3 Piezo-Composite Technology

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040126

Free format text: JAPANESE INTERMEDIATE CODE: A02