JPH11294364A - Control method of bearing oil film thickness - Google Patents

Control method of bearing oil film thickness

Info

Publication number
JPH11294364A
JPH11294364A JP9715498A JP9715498A JPH11294364A JP H11294364 A JPH11294364 A JP H11294364A JP 9715498 A JP9715498 A JP 9715498A JP 9715498 A JP9715498 A JP 9715498A JP H11294364 A JPH11294364 A JP H11294364A
Authority
JP
Japan
Prior art keywords
film thickness
oil film
oil
displacement
axial displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9715498A
Other languages
Japanese (ja)
Inventor
Yoshihiro Miyata
義弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP9715498A priority Critical patent/JPH11294364A/en
Publication of JPH11294364A publication Critical patent/JPH11294364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably maintain the viscosity of lubricant and thrust bearing oil film thickness by indirectly measuring variation in the bearing oil film thickness from an axial movement. SOLUTION: The thrust bearing oil film thickness is indirectly measured by detecting the axial displacement of projecting rotor by a displacement meter 12. A control valve 10 is operated according to the displacement detected by a displacement meter 12k so that the axial displacement may not move to an oil film thickness reducing direction from a position capable of keeping the required oil film thickness of thrust bearing. Accordingly, the required film thickness can be kept by controlling the axial displacement by changing the temperature of lubrication oil for changing its viscousity. In this case, it is required to determine a basic position of axial displacement in order to control the axial displacement, and at first the projecting rotor is pushed in to the thrust load direction by a jack or the like to obtain a position where the thrust bearing oil film thickness becomes substantially zero. A position moved from this position to a counter-thrust load direction by a required oil film pressure serves as the basic position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スクリュー型強制
給油式ガス圧縮機の軸受けの必要油膜厚さ維持方法に関
する。
The present invention relates to a method for maintaining a required oil film thickness of a bearing of a screw type forced oil supply type gas compressor.

【0002】[0002]

【従来の技術】回転式容積型のスクリュー型強制給油式
ガス圧縮機は、ガスを圧縮し圧力を高め、吐出側に押し
出す工程を回転運動によって行う構造の圧縮機である。
非対称の形状をした凸型の歯型のローターと凹型の歯型
のローターが噛み合っており、凸型ローターが駆動機で
回転され、凹型ローターが凸型ローターの回転に従動し
て回転する。ガスは噛み合い部の空間に閉じこめられ、
回転が進むと共に吐出側に移動しながらその容積を次第
に小さくし圧力を高め、吐出側に押し出される。ロータ
ーを支え運転するために、凸凹ローター各々の両側軸の
ラジアル軸受けで軸垂直方向の荷重を受けている。ま
た、ローターは一種のヘリカルギヤーであるため、駆動
とガス圧力により軸方向の荷重が発生するので、スラス
ト軸受けで荷重を受けている。特にスラスト荷重の大き
い凸ローターは油圧ピストンを用い荷重をバランスさせ
ている。
2. Description of the Related Art A rotary positive displacement screw type forced oil supply type gas compressor is a compressor having a structure in which a process of compressing a gas, increasing a pressure, and extruding the gas to a discharge side is performed by a rotary motion.
An asymmetrical convex toothed rotor and a concave toothed rotor mesh with each other, the convex rotor is rotated by a driving machine, and the concave rotor rotates following the rotation of the convex rotor. The gas is trapped in the space of the meshing part,
As the rotation proceeds, the volume gradually decreases while moving to the discharge side, and the pressure is increased. In order to support and operate the rotor, the radial bearings on both side shafts of each of the uneven rotors receive a load in the direction perpendicular to the axis. Further, since the rotor is a kind of helical gear, an axial load is generated by driving and gas pressure. Therefore, the load is received by a thrust bearing. In particular, a convex rotor having a large thrust load uses a hydraulic piston to balance the load.

【0003】吐出圧力の調整は、圧縮に使用されるロー
ター部分の長さを変化させる機構で圧縮直前の吸入ガス
を機内でバイパスさせ吸入側へ戻すことで行っている。
[0003] The discharge pressure is adjusted by changing the length of a rotor portion used for compression so that the suction gas immediately before compression is bypassed inside the device and returned to the suction side.

【0004】潤滑油は、ローター歯面の潤滑,軸受け潤
滑のために外部から強制給油され、それぞれの役割を果
たした後は、吐出ガスに混入して排出される。
[0004] Lubricating oil is forcibly supplied from outside for lubrication of the rotor tooth surface and bearing lubrication, and after fulfilling its respective functions, is mixed into the discharge gas and discharged.

【0005】従来技術のスクリュー型強制給油式ガス圧
縮機の模式系統例を図3に示す。
FIG. 3 shows an example of a schematic system of a conventional screw type forced oil supply type gas compressor.

【0006】スクリュー型強制給油式ガス圧縮機1は、
ガスと油を混在した状態で吐出するため、油分離機構2
で油とガスを二層分離し、昇圧ガスを下流側へ供給す
る。一方、分離した油は油移送機構3にてスクリュー型
強制給油式ガス圧縮機1へ循環給油される。
[0006] The screw type forced oil supply type gas compressor 1
Since oil and gas are discharged in a mixed state, the oil separation mechanism 2
Separates oil and gas into two layers, and supplies pressurized gas to the downstream side. On the other hand, the separated oil is circulated and supplied to the screw type forced oil supply type gas compressor 1 by the oil transfer mechanism 3.

【0007】回転機の軸受けは、所定の油膜厚さを確保
して運転する必要があるが、油の粘度が低下すると油膜
厚さは減少する関係があるため、スクリュー型強制給油
式ガス圧縮機1へ循環給油される油は、適正粘度を維持
する必要がある。
The bearing of the rotating machine must be operated with a predetermined oil film thickness. However, since the oil film thickness decreases as the oil viscosity decreases, the screw type forced oil supply type gas compressor is required. The oil circulated to 1 needs to maintain an appropriate viscosity.

【0008】油は、温度上昇に伴い粘度が低下する特性
があり、吐出油は、圧縮過程の入熱により給油温度より
高温になるため、粘度が低下する。このため、軸受けの
所定の油膜厚さを確保するために、再循環給油する際に
適正粘度となるよう油粘度,温度特性に基づき、適正粘
度を確保できる油温に油ライン4上に設ける油冷却機構
5で冷却し、粘度低下を防止している。粘度低下を防止
することで軸受けの必要油膜厚さを確保することができ
る。
[0008] Oil has a characteristic that its viscosity decreases as the temperature rises, and the viscosity of the discharged oil drops because it becomes higher than the oil supply temperature due to heat input during the compression process. For this reason, in order to ensure a predetermined oil film thickness of the bearing, the oil provided on the oil line 4 at an oil temperature at which the appropriate viscosity can be ensured based on the oil viscosity and the temperature characteristics so that the appropriate viscosity is obtained when recirculating the oil. Cooling is performed by the cooling mechanism 5 to prevent a decrease in viscosity. By preventing the viscosity from decreasing, the required oil film thickness of the bearing can be secured.

【0009】図4に従来技術の制御方法の模式図を示
す。給油温度の調整は、油ライン4上に設けた温度計6
で油温を測定し、給油温度の上昇に応じて油冷却機構5
と油冷却機構バイパスライン11を流れる油の分配量を
調節弁10で調節して、油冷却機構5出口と油冷却機構
バイパスライン11が合流した後の油温が所定の給油温
度に冷却されるようにしている。
FIG. 4 shows a schematic diagram of a conventional control method. The lubrication temperature is adjusted by a thermometer 6 provided on the oil line 4.
The oil temperature is measured with the oil cooling mechanism 5
The distribution amount of the oil flowing through the oil cooling mechanism bypass line 11 is adjusted by the control valve 10 so that the oil temperature after the oil cooling mechanism 5 outlet and the oil cooling mechanism bypass line 11 merge is cooled to a predetermined oil supply temperature. Like that.

【0010】[0010]

【発明が解決しようとする課題】従来技術は、給油温度
上昇による粘度低下を防止できるため、軸受けに所定の
油膜厚さを確保することができる有効な技術である。
The prior art is an effective technique which can prevent a decrease in viscosity due to an increase in lubricating oil temperature, thereby ensuring a predetermined oil film thickness on a bearing.

【0011】しかし、油粘度は温度特性以外に、油に油
より粘度が低い物質が溶解すると混合則により粘度が低
下する特性もある。スクリュー型強制給油式ガス圧縮機
の潤滑油は、一般に炭化水素を主成分とした鉱物油が使
用されるため、吸入ガスが炭化水素を主成分とする成分
の場合、加圧された雰囲気で相溶性により油中にガスが
溶解し粘度を低下させることになる。このため、ガス性
状,運転温度,運転圧力などの条件から油中へのガス溶
解量の予測をたて、温度特性による粘度低下にガス溶解
による粘度低下を含めて、更に給油温度を下げて粘度低
下を防止するなどの対応が必要であった。
However, besides the temperature characteristic, the oil viscosity also has a characteristic that when a substance having a lower viscosity than the oil is dissolved in the oil, the viscosity is reduced by the mixing rule. The lubricating oil of a screw-type forced oil refueling gas compressor is generally a mineral oil containing hydrocarbons as a main component. Due to the solubility, the gas dissolves in the oil to lower the viscosity. For this reason, the amount of gas dissolved in oil is predicted from conditions such as gas properties, operating temperature, and operating pressure. It was necessary to take measures such as preventing the decline.

【0012】しかしながら、ガス性状,温度が変化する
と油中へのガス溶解量も変化するため、その条件により
給油温度を見直し、設定する必要があるため管理に手間
を要した。
However, when the gas properties and temperature change, the amount of gas dissolved in the oil also changes. Therefore, it is necessary to review and set the refueling temperature according to the conditions, which requires time and effort for management.

【0013】また、油の粘度劣化,経年的な劣化が生じ
た場合は、正規の油の粘度,温度特性を外れ粘度が低下
することから、所定の給油温度を維持しても粘度が正規
特性より低下しているので油膜厚さが減少することにな
る。このため、油分析などにより、定期的に油分析を行
い給油温度管理を補正する必要があった。
If the viscosity of the oil deteriorates or deteriorates over time, the viscosity of the oil deviates from the normal viscosity and temperature characteristics, and the viscosity decreases. Since the oil film thickness has been further reduced, the oil film thickness will be reduced. For this reason, it was necessary to correct oil supply temperature management by performing oil analysis periodically by oil analysis or the like.

【0014】本発明の目的は、給油温度の管理設定を容
易な方法かつ、油膜厚さを間接的に管理し、潤滑油粘度
及び、軸受け油膜厚さをできるだけ安定維持する軸受け
油膜厚さ制御方法を提供することにある。
An object of the present invention is to provide a method for easily controlling and setting the lubricating temperature and for controlling the oil film thickness indirectly to maintain the lubricating oil viscosity and the bearing oil film thickness as stable as possible. Is to provide.

【0015】[0015]

【課題を解決するための手段】前記課題を解決する本発
明の要旨は次の通りである。
The gist of the present invention for solving the above problems is as follows.

【0016】スラスト軸受けにティルティングパッドを
使用したスクリュー型強制給油式ガス圧縮機の軸受けの
必要油膜厚さ維持方法であって、変位計を備え軸方向の
変位を検出し、軸方向の移動量からスラスト軸受けの油
膜厚さの変化を間接的に測定し、軸受けの必要油膜厚さ
を確保できる位置から油膜減少方向への偏差が生じない
よう、給油温度を調整することで軸受け油膜厚さを維持
することを特徴とする制御方法である。
A method for maintaining a required oil film thickness of a bearing of a screw type forced oil supply type gas compressor using a tilting pad as a thrust bearing, comprising a displacement meter, detecting an axial displacement, and displacing the axial displacement. The indirect measurement of the change in the oil film thickness of the thrust bearing from, and adjusting the oil supply temperature to prevent the deviation in the oil film decrease direction from the position where the required oil film thickness of the bearing can be secured, This is a control method characterized by maintaining.

【0017】変位計にてスラスト軸受け油膜厚さの変化
を間接的に監視し、油膜厚さを必要厚さ以上に常に維持
するよう制御しているため、油中へのガス溶解量増加に
よる粘度低下や、油劣化による粘度低下が生じても、必
要油膜厚さを維持するために必要な油粘度を確保するよ
うな給油温度へ自ずと調整されることになる。
[0017] Since the change in the film thickness of the thrust bearing oil is indirectly monitored by a displacement meter and the oil film thickness is controlled to be constantly maintained at a required thickness or more, the viscosity caused by the increase in the amount of gas dissolved in the oil is increased. Even if the oil viscosity decreases due to the oil deterioration or the oil deterioration, the oil supply temperature is naturally adjusted to the oil oil temperature necessary to maintain the required oil film thickness.

【0018】即ち、油粘度が種々の要因にて変化して
も、軸方向の変位がスラスト軸受けの必要油膜厚さを減
少させる方向に移動しないよう制御するため、必要油膜
厚さを常に維持できる。したがって、軸受けは良好な潤
滑状態を継続することができる。また、給油温度は、必
要油膜厚さを維持するために必要な所定の油粘度を確保
するような温度へ、軸方向の変位により調整されるの
で、運転状態に応じて給油温度設定値を変更するなどの
手間や給油温度を制御する必要はない。
That is, even if the oil viscosity changes due to various factors, the axial displacement is controlled so as not to move in the direction of decreasing the required oil film thickness of the thrust bearing, so that the required oil film thickness can be always maintained. . Therefore, the bearing can maintain a good lubrication state. In addition, since the lubrication temperature is adjusted by axial displacement to a temperature that ensures the required oil viscosity required to maintain the required oil film thickness, the lubrication temperature set value is changed according to the operating conditions. There is no need to control the refueling temperature or the trouble of doing so.

【0019】[0019]

【発明の実施の形態】本発明の一実施例を図を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings.

【0020】図1は、本発明の装置を示す模式図であ
る。スラスト軸受けにティルティングパッドを使用した
スクリュー型強制給油式ガス圧縮機1は変位計12を備
えている。図2は、本発明の制御方法を示す模式図であ
る。
FIG. 1 is a schematic view showing an apparatus of the present invention. The screw-type forced oil supply type gas compressor 1 using a tilting pad for a thrust bearing is provided with a displacement meter 12. FIG. 2 is a schematic diagram illustrating the control method of the present invention.

【0021】従来の設備では、温度計6で測定した給油
温度に応じて調節弁10を動作させ、給油温度を所定の
温度あるいは、所定の温度以下になるように給油温度を
制御することで所定の粘度を確保し、この結果として軸
受けの必要油膜厚さを維持していたが、本実施例では、
変位計12で凸ローターの軸方向の変位を検出すること
でスラスト軸受けの油膜厚さを間接的に測定し、軸方向
の変位がスラスト軸受けの必要油膜厚さを確保できる位
置より油膜減少方向に移動しないように、変位計12で
検出した変位に応じて調節弁10を動作させ、給油温度
を変化させることで粘度を変えて軸方向の変位を制御す
ることで必要油膜厚さを維持することが特徴である。
In the conventional equipment, the control valve 10 is operated in accordance with the refueling temperature measured by the thermometer 6, and the refueling temperature is controlled to a predetermined temperature or lower than a predetermined temperature, thereby controlling the refueling temperature. Was ensured, and as a result, the required oil film thickness of the bearing was maintained.
The displacement gauge 12 indirectly measures the oil film thickness of the thrust bearing by detecting the axial displacement of the convex rotor, and the displacement in the axial direction decreases in the oil film decreasing direction from the position where the required oil film thickness of the thrust bearing can be secured. The required oil film thickness is maintained by operating the control valve 10 in accordance with the displacement detected by the displacement meter 12 so as not to move, changing the viscosity by changing the lubrication temperature, and controlling the axial displacement. Is the feature.

【0022】軸方向の変位を制御するに当たり、軸方向
変位の基準位置を定める必要があるが、まず、凸ロータ
ーをジャッキなどでスラスト荷重方向へ押し込みスラス
ト軸受け油膜厚さがほぼ0となる位置を求める。油膜厚
さ0の位置から必要油膜厚さ分だけ反スラスト荷重方向
へ移動した位置が基準位置となる。なお、必要油膜厚さ
に余裕をとるために前記基準位置より更に反スラスト荷
重方向へ移動した位置を制御の基準位置に設定すること
が望ましい。
In controlling the displacement in the axial direction, it is necessary to determine a reference position for the displacement in the axial direction. First, the convex rotor is pushed in the thrust load direction with a jack or the like to determine the position where the thickness of the thrust bearing oil film becomes substantially zero. Ask. The position moved from the position of the oil film thickness 0 by the required oil film thickness in the anti-thrust load direction is the reference position. It is desirable that a position further moved in the anti-thrust load direction than the reference position be set as a control reference position in order to allow a sufficient oil film thickness.

【0023】[0023]

【発明の効果】油粘度がどのような要因にて変化した場
合でも、必要油膜厚さを常に維持できる所定の油粘度と
なるように給油温度を調整するため、常に正常な軸受け
潤滑が維持できる。
Even if the oil viscosity changes due to any factors, the oil supply temperature is adjusted so that the required oil film thickness can always be maintained, so that normal bearing lubrication can always be maintained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のスクリュー型強制給油式ガス圧縮機
の模擬系統図である。
FIG. 1 is a schematic system diagram of a screw-type forced oil supply type gas compressor of a first embodiment.

【図2】実施例1のスクリュー型強制給油式ガス圧縮機
の模擬制御系統図である。
FIG. 2 is a schematic control system diagram of the screw-type forced oil supply type gas compressor of the first embodiment.

【図3】従来例のスクリュー型強制給油式ガス圧縮機の
模擬系統図である。
FIG. 3 is a schematic system diagram of a conventional screw type forced oil supply type gas compressor.

【図4】従来例のスクリュー型強制給油式ガス圧縮機の
模擬制御系統図である。
FIG. 4 is a simulation control system diagram of a conventional screw type forced oil supply type gas compressor.

【符号の説明】[Explanation of symbols]

1…スクリュー型強制給油式ガス圧縮機、2…油分離機
構、3…油移送機構、4…油ライン、5…油冷却機構、
6…温度計、7…吸入ガスライン、8…吐出ライン、9
…吐出ガスライン、10…調節弁、11…油冷却機構バ
イパスライン、12…変位計、13…電動機、14…熱
伝対、15…起電力/電圧変換器、16…制御器(偏
差,比例,微分,積分)、17…信号変換器、18…電
流/空気変換器、19…フィルタ減圧弁、20…制御空
気、21…変位発信器。
DESCRIPTION OF SYMBOLS 1 ... Screw type forced oil supply type gas compressor, 2 ... Oil separation mechanism, 3 ... Oil transfer mechanism, 4 ... Oil line, 5 ... Oil cooling mechanism,
6 thermometer, 7 suction gas line, 8 discharge line, 9
... discharge gas line, 10 ... control valve, 11 ... oil cooling mechanism bypass line, 12 ... displacement gauge, 13 ... motor, 14 ... thermocouple, 15 ... electromotive force / voltage converter, 16 ... controller (deviation, proportional , Differential, integral), 17: signal converter, 18: current / air converter, 19: filter pressure reducing valve, 20: control air, 21: displacement transmitter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スラスト軸受けにティルティングパッドを
使用したスクリュー型強制給油式ガス圧縮機の軸受け油
膜厚さ維持方法であって、変位計を備え軸方向の変位を
検出し、軸方向の移動量からスラスト軸受けの油膜厚さ
の変化を間接的に測定し、軸受けの必要油膜厚さを確保
できる位置から油膜減少方向への偏差が生じないよう、
軸方向の変位を制御することで軸受け油膜厚さを維持す
ることを特徴とする軸受け油膜厚さ制御方法。
1. A method for maintaining a bearing oil film thickness of a screw-type forced oil supply type gas compressor using a tilting pad as a thrust bearing, comprising a displacement meter, detecting an axial displacement, and displacing the axial displacement. Indirectly measures the change in the oil film thickness of the thrust bearing from, so that there is no deviation in the oil film decrease direction from the position where the required oil film thickness of the bearing can be secured.
A method of controlling a bearing oil film thickness, comprising maintaining a bearing oil film thickness by controlling an axial displacement.
JP9715498A 1998-04-09 1998-04-09 Control method of bearing oil film thickness Pending JPH11294364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9715498A JPH11294364A (en) 1998-04-09 1998-04-09 Control method of bearing oil film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9715498A JPH11294364A (en) 1998-04-09 1998-04-09 Control method of bearing oil film thickness

Publications (1)

Publication Number Publication Date
JPH11294364A true JPH11294364A (en) 1999-10-26

Family

ID=14184662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9715498A Pending JPH11294364A (en) 1998-04-09 1998-04-09 Control method of bearing oil film thickness

Country Status (1)

Country Link
JP (1) JPH11294364A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529721A (en) * 2000-03-30 2003-10-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for controlling bacterial growth in a circulation system equipped with a compressor
JPWO2006013636A1 (en) * 2004-08-03 2008-05-01 株式会社前川製作所 Lubricating oil supply system and operation method for multi-system lubricated screw compressor
JP2009243361A (en) * 2008-03-31 2009-10-22 Ihi Corp Turbocharger system
US7682084B2 (en) 2003-07-18 2010-03-23 Kobe Steel, Ltd. Bearing and screw compressor
CN102536828A (en) * 2010-10-20 2012-07-04 株式会社神户制钢所 Displacement meter installing structure
CN109186442A (en) * 2018-11-14 2019-01-11 大连三环复合材料技术开发股份有限公司 A kind of measurement method of thrust bearing oil film thickness
US10288069B2 (en) 2013-12-18 2019-05-14 Carrier Corporation Refrigerant compressor lubricant viscosity enhancement
CN109973518A (en) * 2019-03-01 2019-07-05 东南大学 The control device and control method of sliding bearing bearer properties
CN112412751A (en) * 2020-11-25 2021-02-26 珠海格力电器股份有限公司 Compressor lubricating oil supply method and system
CN116415462A (en) * 2023-04-14 2023-07-11 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing
CN117242304A (en) * 2021-04-28 2023-12-15 大金工业株式会社 Air supply device and air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982023B2 (en) * 2000-03-30 2012-07-25 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for inhibiting bacterial growth in a circulation system with a compressor
JP2003529721A (en) * 2000-03-30 2003-10-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for controlling bacterial growth in a circulation system equipped with a compressor
US7682084B2 (en) 2003-07-18 2010-03-23 Kobe Steel, Ltd. Bearing and screw compressor
JPWO2006013636A1 (en) * 2004-08-03 2008-05-01 株式会社前川製作所 Lubricating oil supply system and operation method for multi-system lubricated screw compressor
JP4588708B2 (en) * 2004-08-03 2010-12-01 株式会社前川製作所 Lubricating oil supply system and operation method for multi-system lubricated screw compressor
JP2009243361A (en) * 2008-03-31 2009-10-22 Ihi Corp Turbocharger system
CN102536828A (en) * 2010-10-20 2012-07-04 株式会社神户制钢所 Displacement meter installing structure
CN102536828B (en) * 2010-10-20 2015-05-20 株式会社神户制钢所 Displacement meter installing structure
US10288069B2 (en) 2013-12-18 2019-05-14 Carrier Corporation Refrigerant compressor lubricant viscosity enhancement
CN109186442A (en) * 2018-11-14 2019-01-11 大连三环复合材料技术开发股份有限公司 A kind of measurement method of thrust bearing oil film thickness
CN109186442B (en) * 2018-11-14 2020-08-25 大连三环复合材料技术开发股份有限公司 Method for measuring thickness of oil film of thrust bearing
CN109973518A (en) * 2019-03-01 2019-07-05 东南大学 The control device and control method of sliding bearing bearer properties
CN112412751A (en) * 2020-11-25 2021-02-26 珠海格力电器股份有限公司 Compressor lubricating oil supply method and system
CN117242304A (en) * 2021-04-28 2023-12-15 大金工业株式会社 Air supply device and air conditioner
CN117242304B (en) * 2021-04-28 2024-04-19 大金工业株式会社 Air supply device and air conditioner
CN116415462A (en) * 2023-04-14 2023-07-11 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing
CN116415462B (en) * 2023-04-14 2023-11-17 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing

Similar Documents

Publication Publication Date Title
JPH11294364A (en) Control method of bearing oil film thickness
EP2573391B1 (en) Method and arrangement for controlling the lubrication of a gear system
US5878842A (en) Volumetric lubricant dispensing apparatus and method of use for same
Selvaraj et al. Experimental analysis of factors influencing the cage slip in cylindrical roller bearing
US9816553B2 (en) Compressor having balance mechanism for a thrust bearing
KR20010108082A (en) Screw compressor
US9341186B2 (en) Scroll vacuum pump and method of maintenance including replacing a tip seal of a scroll vacuum pump
US20210017987A1 (en) Systems and methods for enhanced compressor bearing life
Dufrane et al. Thermally induced seizures of journal bearings
EP1598557B1 (en) Compressor lubrication control
JPH06174106A (en) Shaft seal device for oilless compressor
JP7254635B2 (en) GEAR DAMAGE PREDICTION DEVICE, GEAR DAMAGE PREDICTION SYSTEM, AND GEAR DAMAGE PREDICTION METHOD
CN111426469A (en) Speed reducer testing system and testing method
JPH08327163A (en) Device for control in starting time of operation in refrigerating cycle
JPS617008A (en) Method and device for controlling supply temperature of lubricating oil for roll bearing of rolling mill
JP2018115722A (en) Gear temperature control system and gear temperature control method
JP4355872B2 (en) Lubricating oil performance monitoring method
CN114547811B (en) Method for predicting engine transient working condition abrasion loss
US3255628A (en) Rating gear designs
CN108984854B (en) Method and device for determining wear depth
JP2024033828A (en) Monitoring device for fluid pump
JPH0730338U (en) Lubricant supply device for gas turbine
JP2021085493A (en) Lubricant inspection device
GB2415752A (en) A method of montioring the condition of a bearing or engine
JP2022187075A (en) Grease supply method and grease supply system