JPH11293340A - Low core loss oriented silicon steel sheet and its production - Google Patents

Low core loss oriented silicon steel sheet and its production

Info

Publication number
JPH11293340A
JPH11293340A JP10095727A JP9572798A JPH11293340A JP H11293340 A JPH11293340 A JP H11293340A JP 10095727 A JP10095727 A JP 10095727A JP 9572798 A JP9572798 A JP 9572798A JP H11293340 A JPH11293340 A JP H11293340A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling direction
grain
oriented electrical
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10095727A
Other languages
Japanese (ja)
Inventor
Seiji Okabe
誠司 岡部
Masayoshi Ishida
昌義 石田
Kazuaki Tamura
和章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10095727A priority Critical patent/JPH11293340A/en
Publication of JPH11293340A publication Critical patent/JPH11293340A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a low core loss oriented silicon steel sheet in which problems such as the reduction of magnetic permeability and the increase of magneto strains caused by linear grooves and local strains for fractionating magnetic domains are reduced and to provide an advantageous producing method therefor. SOLUTION: A low core loss oriented silicon steel sheet is the one in which the surface of an oriented silicon steel sheet in which secondarily recrystallized grains are formed is provided with continuous or discontinuous linear grooves or local strains in the direction almost orthogonal to the rolling direction only in the region within ±A (mm) in the rolling direction from the center of the rolling direction of the secondarily recrystallized grains A denotes an optional numeric value satisfying the inequality of 0.015R<=A<=0.06R in the case that the radius of curvature of the steel sheet at the position in which the crystal grains exist at the time of finish annealing, defines as R (mm)} repeatedly in the rolling direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トランス等の用
途において好適な低鉄損かつ高透磁率の方向性電磁鋼板
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having low iron loss and high magnetic permeability suitable for use in transformers and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】トランス等の電気機器には、鉄損低減の
ために方向性電磁鋼板が用いられていて、この方向性電
磁鋼板には、省エネルギー、コスト削減の観点からます
ます鉄損を低減することが求められている。方向性電磁
鋼板は、磁化容易軸である結晶粒の[001]軸を圧延
方向に高度に配向させることで鉄損を低減していること
から、この配向度を上げるための各種方法が開発されて
きた。しかし、かかる結晶粒の配向度を上げるための各
種方法を適用すると、得られる方向性電磁鋼板の結晶粒
が大きくなる傾向があり、磁区幅が広がるために鉄損の
低減効果が小さくなることが知られている。
2. Description of the Related Art Grain-oriented electrical steel sheets are used in electrical equipment such as transformers to reduce iron loss, and these grain-oriented electrical steel sheets are increasingly reducing iron loss from the viewpoint of energy saving and cost reduction. Is required. Since grain-oriented electrical steel sheets reduce iron loss by highly orienting the [001] axis of crystal grains, which are axes of easy magnetization, in the rolling direction, various methods for increasing the degree of orientation have been developed. Have been. However, when various methods for increasing the degree of orientation of such crystal grains are applied, the crystal grains of the obtained grain-oriented electrical steel sheet tend to be large, and the magnetic domain width is widened, so that the effect of reducing iron loss is reduced. Are known.

【0003】このような配向度の高い鋼板の更なる低鉄
損化のために、鋼板表面に圧延方向とほぼ直交する方向
に線状溝を導入する処理(例えば、特公平3−6996
8号公報)、あるいはプラズマ炎照射(例えば、特開昭
62−96617号公報)やレーザー照射(例えば、特
開昭55−18566号公報)による局所加熱によって
局所歪を付与する処理が行われている。これらの処理
は、磁区細分化と呼ばれ、鋼板の磁区幅を未処理のもの
よりも狭くすることで鉄損を低減することができる。
[0003] In order to further reduce the iron loss of a steel sheet having a high degree of orientation, a process of introducing a linear groove in the surface of the steel sheet in a direction substantially perpendicular to the rolling direction (for example, Japanese Patent Publication No. 3-6996).
No. 8) or a process of imparting local strain by plasma heating irradiation (for example, JP-A-62-96617) or local heating by laser irradiation (for example, JP-A-55-18566). I have. These treatments are called magnetic domain refining, and iron loss can be reduced by making the magnetic domain width of the steel sheet smaller than that of the untreated steel sheet.

【0004】[0004]

【発明が解決しようとする課題】しかし、磁区細分化の
ために鋼板表面に線状溝を導入すると、この溝部分に反
磁界が生じて透磁率が低下し、トランスの励磁電流が増
大するという問題がある。また、磁区細分化のために局
所歪を付与した場合にも、この歪によって透磁率が低下
したり、磁歪が増加して騒音が増大するなどの問題があ
る。そこで、この発明は、上述した磁区細分化のための
線状溝や局所歪によって生じる透磁率低下、磁歪増加と
いった問題を軽減した低鉄損方向性電磁鋼板及びその有
利な製造方法を提案することを目的とする。
However, when a linear groove is introduced into the surface of the steel sheet for subdividing the magnetic domains, a demagnetizing field is generated in the groove, the magnetic permeability decreases, and the exciting current of the transformer increases. There's a problem. Also, when local strain is applied for subdividing magnetic domains, there are problems such as a decrease in magnetic permeability due to the strain and an increase in noise due to an increase in magnetostriction. Therefore, the present invention proposes a low-iron-loss directional electrical steel sheet which reduces the problems such as a decrease in magnetic permeability caused by the linear grooves and local strain for magnetic domain segmentation described above and an increase in magnetostriction, and an advantageous manufacturing method thereof. With the goal.

【0005】[0005]

【課題を解決するための手段】発明者らは、方向性電磁
鋼板の磁区幅と結晶粒の関係とを詳細に調査した結果、
各結晶粒の圧延方向中央付近のみに磁区細分化処理を行
うことで、磁区細分化処理によって生じる透磁率低下を
軽減しつつ低鉄損化が可能であることを見出した。
Means for Solving the Problems The present inventors have conducted a detailed investigation on the relationship between the magnetic domain width and the crystal grains of a grain-oriented electrical steel sheet.
It has been found that by performing magnetic domain refinement only near the center in the rolling direction of each crystal grain, it is possible to reduce iron loss while reducing magnetic permeability reduction caused by magnetic domain refinement.

【0006】上記知見に立脚するこの発明は、二次再結
晶粒を形成させた方向性電磁鋼板表面に、圧延方向にほ
ぼ直交する方向の連続又は不連続な線状の溝又は局所歪
を、二次再結晶粒の圧延方向中央から圧延方向に±A
(mm)以内の領域のみに(Aは、仕上焼鈍時にその結晶
粒があった位置の鋼板の曲率半径をR(mm)とすると
き、不等式0.015 R≦A≦0.06Rを満たす任意の数
値)、圧延方向に反復してそなえることを特徴とする低
鉄損方向性電磁鋼板である。また、この発明は、仕上焼
鈍後の方向性電磁鋼板表面に現出する二次結晶粒の圧延
方向に沿った長さを調べ、その二次再結晶粒の圧延方向
の中央から圧延方向に±A(mm)以内の領域のみに(A
は、仕上焼鈍時にその結晶粒があった位置の鋼板の曲率
半径をR(mm)とするとき、不等式0.015 R≦A≦0.06
Rを満たす任意の数値)、圧延方向にほぼ直交する方向
に連続又は不連続な線状の溝を圧延方向に反復して形成
する、あるいは圧延方向にほぼ直交する方向に連続又は
不連続な線状に熱的又は機械的局所歪を圧延方向に反復
して導入することを特徴とする低鉄損方向性電磁鋼板の
製造方法である。
The present invention, which is based on the above findings, provides a continuous or discontinuous linear groove or local strain in a direction substantially perpendicular to the rolling direction on the surface of a grain-oriented electrical steel sheet on which secondary recrystallized grains are formed. ± A from rolling center of secondary recrystallized grains in rolling direction
(A is an arbitrary value that satisfies the inequality 0.015 R ≦ A ≦ 0.06R, where R is the radius of curvature of the steel sheet at the position where the crystal grains were present during the finish annealing, where R is the mm). And a low iron loss grain-oriented electrical steel sheet which is provided repeatedly in the rolling direction. Further, the present invention examines the length along the rolling direction of the secondary crystal grains appearing on the surface of the grain-oriented electrical steel sheet after the finish annealing, and determines ± from the center of the rolling direction of the secondary recrystallized grains in the rolling direction. Only in the area within A (mm) (A
Is the inequality 0.015 R ≦ A ≦ 0.06, where R (mm) is the radius of curvature of the steel sheet at the position where the crystal grains were present during the finish annealing.
R is an arbitrary numerical value that satisfies R), a linear groove that is continuous or discontinuous in a direction substantially perpendicular to the rolling direction is repeatedly formed in the rolling direction, or a line that is continuous or discontinuous in a direction substantially perpendicular to the rolling direction. A method for producing a low iron loss grain-oriented electrical steel sheet, characterized in that thermal or mechanical local strain is repeatedly introduced in a rolling direction in the form of a sheet.

【0007】[0007]

【発明の実施の形態】発明者らの知見によれば、方向性
電磁鋼板の磁区幅は、同一の結晶粒内でも変化し、一つ
の結晶粒についてみれば、その圧延方向の中央付近が最
も磁区幅が広く、圧延方向両端部では磁区幅が狭い。こ
の理由として、結晶粒における圧延方向端部は、[00
1]軸が鋼板表面となす角度(以下、βと呼ぶ)が大き
いことが考えられる。すなわち、鋼板の仕上焼鈍は一般
に、コイル状に巻いた状態で行うため、図1に仕上焼鈍
時の鋼板の二次再結晶状況を模式的に示すように、鋼板
が圧延方向に所定の曲率を持った状態で二次再結晶が進
行する。そのため、仕上焼鈍後に平坦化したときにはそ
の曲率に応じて同一結晶粒内でも圧延方向にβが変化す
ることになる。このとき平均的には圧延方向中央付近が
β=0°であり、圧延方向に正負対称の値を取り、中央
から離れるほどβの絶対値が大きくなる。したがって、
磁区細分化処理を、βがほぼ0°のために磁区幅が広く
なっている結晶粒の中央付近のみに限定することによ
り、磁区細分化に伴う透磁率低下等の問題を最低限に抑
えつつ、これまで以上に鉄損を低減することが可能とな
る。
According to the findings of the present inventors, the magnetic domain width of a grain-oriented electrical steel sheet changes even within the same crystal grain. The magnetic domain width is wide, and the magnetic domain width is narrow at both ends in the rolling direction. For this reason, the end of the crystal grain in the rolling direction is [00]
1] It is conceivable that the angle between the axis and the steel sheet surface (hereinafter referred to as β) is large. That is, since the finish annealing of the steel sheet is generally performed in a coiled state, the steel sheet has a predetermined curvature in the rolling direction as schematically shown in FIG. 1 in a state of secondary recrystallization of the steel sheet during the finish annealing. Secondary recrystallization proceeds while holding. Therefore, when flattened after finish annealing, β changes in the rolling direction even within the same crystal grain according to the curvature. At this time, β = 0 ° on average in the vicinity of the center in the rolling direction, takes a symmetrical value in the rolling direction, and the absolute value of β increases as the distance from the center increases. Therefore,
By limiting the domain refining process only to the vicinity of the center of the crystal grain where the domain width is wide because β is almost 0 °, it is possible to minimize problems such as a decrease in magnetic permeability caused by domain refining. Thus, it is possible to reduce iron loss more than ever.

【0008】結晶粒の中央に対して距離A(mm)の位置
のβは、仕上げ焼鈍時の鋼板の曲率半径をR(mm)とす
ると、360 A/2πR度だけずれることになる。したが
って、距離Aが、Rによって決まる所定の数値より大き
い領域は、βが大きいために既に磁区幅が減少してお
り、磁区細分化が不必要な領域といえる。発明者らが調
査した結果、0.015 R≦A≦0.06Rなる不等式を満たす
範囲に限って磁区細分化処理を行った場合、鉄損は鋼板
全域を磁区細分化処理した場合とほぼ同等に低減され、
しかも透磁率の低下等の問題が軽減されることが分かっ
た。A<0.015 Rでは磁区細分化の効果が小さいため鉄
損が十分に低減されず、A>0.06Rでは磁区細分化処理
領域が必要以上に大きく、透磁率が低下するなど好まし
くない。したがって、この発明では、溝又は局所歪を形
成又は導入する範囲を、二次再結晶粒の圧延方向中央か
ら圧延方向に±A(mm)以内の領域のみに(Aは、仕上
焼鈍時にその結晶粒があった位置の鋼板の曲率半径をR
(mm)とするとき、不等式0.015 R≦A≦0.06Rを満た
す任意の数値)、限定する。
[0008] β at a position of a distance A (mm) with respect to the center of the crystal grain is shifted by 360 A / 2πR degrees, where R (mm) is the radius of curvature of the steel sheet during finish annealing. Therefore, an area where the distance A is larger than a predetermined value determined by R has a large magnetic domain width because β is large, and can be said to be an area where magnetic domain segmentation is unnecessary. As a result of the investigations by the inventors, when the magnetic domain refinement is performed only in a range satisfying the inequality 0.015 R ≦ A ≦ 0.06 R, the iron loss is reduced almost equally to the case where the magnetic domain refinement is performed on the entire steel sheet. ,
Moreover, it was found that problems such as a decrease in magnetic permeability were reduced. When A <0.015 R, the effect of magnetic domain refining is small, so that the iron loss is not sufficiently reduced. When A> 0.06 R, the magnetic domain refining processing region is unnecessarily large, and the magnetic permeability is unfavorably reduced. Therefore, in the present invention, the range in which grooves or local strains are formed or introduced is limited only to a region within ± A (mm) in the rolling direction from the center of the secondary recrystallized grains in the rolling direction. The radius of curvature of the steel sheet at the position where
(Mm), the inequality 0.015 R ≦ A ≦ 0.06 R (any numerical value that satisfies) is limited.

【0009】なお、かかる磁区細分化処理としてこの発
明で形成させる溝又は導入させる局所歪は、圧延方向に
ほぼ直交する方向(概ね90°〜60°)の連続又は不連続
な線状の溝又は局所歪とする。溝の深さは5〜50μm 程
度で、圧延方向の反復間隔は2〜8mm程度とすればよ
い。また、圧延方向にほぼ直交する方向(概ね90°〜60
°)の連続又は不連続な線状の局所歪については、その
圧延方向の反復間隔は2〜20mm程度とすればよい。この
発明の方向性電磁鋼板は、上述した条件を満たす溝又は
局所歪を鋼板表面に有する方向性電磁鋼板であれば、従
来公知のいずれの成分組成範囲になる方向性電磁鋼板も
が包含される。一般的には、鋼の比抵抗を高め鉄損を低
減する効果のあるSiを2wt%程度以上で含有する成分の
鋼板である。
The groove formed in the present invention or the local strain to be introduced as the magnetic domain refining process is a continuous or discontinuous linear groove or a direction substantially perpendicular to the rolling direction (approximately 90 ° to 60 °). Local strain. The groove depth may be about 5 to 50 μm, and the repetition interval in the rolling direction may be about 2 to 8 mm. In addition, a direction substantially perpendicular to the rolling direction (approximately 90 ° to 60 °
Regarding the continuous local strain of (°), the repetition interval in the rolling direction may be about 2 to 20 mm. The grain-oriented electrical steel sheet of the present invention includes a grain-oriented electrical steel sheet having a groove or a local strain on the steel sheet surface that satisfies the above-described conditions, and a grain-oriented electrical steel sheet having any conventionally known component composition range is also included. . Generally, it is a steel sheet having a content of about 2 wt% or more of Si which has an effect of increasing the specific resistance of the steel and reducing iron loss.

【0010】この発明の方向性電磁鋼板を得るための製
造方法について説明すると、従来公知の方法に従って仕
上焼鈍までの工程を施した後、磁区細分化処理として溝
又は局所歪を鋼板表面のうち、この発明で規定する領域
に形成することによって製造する。なお、仕上焼鈍まで
の工程は、一般的には、Si及びインヒビター成分を含有
する鋼を加熱してから熱間圧延を施し、必要に応じて熱
延板焼鈍を施してから、1回又は中間焼鈍を含む2回以
上の冷間圧延を施して最終板厚とし、次いで脱炭焼鈍、
更に焼鈍分離剤を塗布してから仕上焼鈍に供する工程に
なる。
The manufacturing method for obtaining a grain-oriented electrical steel sheet according to the present invention will be described. After performing steps up to finish annealing according to a conventionally known method, grooves or local strains are applied to the steel sheet surface as a magnetic domain refining treatment. It is manufactured by forming it in a region defined by the present invention. In addition, the process up to finish annealing is generally performed by heating steel containing Si and the inhibitor component, then performing hot rolling, and performing hot-rolled sheet annealing as necessary, and then once or intermediately. Cold rolling is performed two or more times including annealing to obtain the final thickness, and then decarburizing annealing,
Further, it is a step of applying an annealing separator and then subjecting it to finish annealing.

【0011】この発明では、仕上焼鈍後に、方向性電磁
鋼板表面に現出する二次結晶粒の圧延方向に沿った長さ
を調べ、その二次再結晶粒の圧延方向の中央から圧延方
向に±A(mm)以内の領域のみに(Aは、仕上焼鈍時に
その結晶粒があった位置の鋼板の曲率半径をR(mm)と
するとき、不等式0.015 R≦A≦0.06Rを満たす任意の
数値)、圧延方向にほぼ直交する方向に連続又は不連続
な線状の溝を圧延方向に反復して形成する、あるいは圧
延方向にほぼ直交する方向に連続又は不連続な線状に熱
的又は機械的局所歪を圧延方向に反復して導入する。結
晶粒の位置や圧延方向の長さを検出する方法としては、
超音波を使う方法や鋼板を圧延方向に磁化させて表面の
漏洩磁界強度を磁界センサーで検出する方法、磁性コロ
イドを用いて可視化する方法等、いずれの方法でも問題
はない。
In the present invention, the length along the rolling direction of the secondary crystal grains appearing on the surface of the grain-oriented electrical steel sheet after the finish annealing is determined, and the length of the secondary recrystallized grains from the center in the rolling direction to the rolling direction is determined. Only in the region within ± A (mm) (A is an arbitrary value that satisfies the inequality 0.015 R ≦ A ≦ 0.06R, where R (mm) is the radius of curvature of the steel sheet at the position where the crystal grain was present during finish annealing. Numerical value), a continuous or discontinuous linear groove is formed in the direction substantially perpendicular to the rolling direction repeatedly in the rolling direction, or a continuous or discontinuous linear groove is formed in the direction substantially perpendicular to the rolling direction. Mechanical local strain is repeatedly introduced in the rolling direction. As a method of detecting the position of the crystal grain and the length in the rolling direction,
There is no problem in any method such as a method using an ultrasonic wave, a method in which a steel sheet is magnetized in a rolling direction, and a leakage magnetic field strength on a surface is detected by a magnetic field sensor, and a method in which a magnetic colloid is used for visualization.

【0012】この発明で適用する磁区細分化処理として
は、圧延方向とほぼ直交する方向(概ね90°〜60°)に
連続又は不連続に反復的に線状に溝を形成する方法があ
る。具体的な溝形成手段は、例えば溝以外の箇所をレジ
ストインキでマスクしてから電解エッチング、化学エッ
チングにより溝を形成する方法が適用できる。溝の深さ
は5〜50μm 程度で、圧延方向の反復間隔は2〜8mm程
度である。また、上述の溝を形成する方法の他に、圧延
方向とほぼ直交する方向(概ね90°〜60°)に連続又は
不連続に反復的に線状に熱的又は機械的な局所歪を導入
する方法もこの発明で適用することができる。熱的な局
所歪の形成方法にはレーザー照射、プラズマ炎照射、放
電加工、電子ビーム照射等があり、機械的な局所歪の形
成方法にはボールペンけがき、刃物によるけがき等があ
る。局所歪の圧延方向の反復間隔は2〜20mm程度であ
る。
As the magnetic domain refining treatment applied in the present invention, there is a method in which grooves are formed continuously and discontinuously and repetitively in a direction substantially perpendicular to the rolling direction (approximately 90 ° to 60 °). As a specific groove forming means, for example, a method of forming a groove by electrolytic etching or chemical etching after masking a portion other than the groove with resist ink can be applied. The groove depth is about 5 to 50 μm, and the repetition interval in the rolling direction is about 2 to 8 mm. In addition to the above-described method of forming grooves, a thermal or mechanical local strain is introduced continuously or discontinuously and linearly in a direction substantially perpendicular to the rolling direction (approximately 90 ° to 60 °). This method can also be applied to the present invention. Methods of forming thermal local strain include laser irradiation, plasma flame irradiation, electric discharge machining, electron beam irradiation, and the like. Methods of forming mechanical local strain include ballpoint pen scribing and blade scribing. The repetition interval of the local strain in the rolling direction is about 2 to 20 mm.

【0013】上述した磁区細分化として、目的の結晶粒
中央付近にのみ溝又は局所歪を形成させることが肝要で
ある。目的の結晶粒中央付近にのみ溝を形成する方法と
しては、例えば鋼板表面にレジストインキを塗り、検出
された結晶粒中央付近のみにレーザーを照射してインキ
を焼失させた後、電解エッチングによって溝を形成する
方法等がある。また、目的の結晶粒中央付近にのみ局所
歪を導入する方法として、例えば走査するレーザーのシ
ャッターを、目的とする位置のみに開けるように制御す
る方法等がある。
As described above, it is important to form a groove or a local strain only in the vicinity of the center of the target crystal grain. As a method of forming a groove only near the center of a target crystal grain, for example, a resist ink is applied to the surface of a steel sheet, and a laser is irradiated only near the center of the detected crystal grain to burn off the ink, and then the groove is formed by electrolytic etching. And the like. As a method of introducing local strain only near the center of a target crystal grain, for example, there is a method of controlling a laser shutter for scanning so as to open only at a target position.

【0014】[0014]

【実施例】(実施例1)AlN 及びMnSeをインヒビター成
分として含有するスラブから既知の工程で中間焼鈍を含
む2回冷延法によって仕上げ焼鈍まで製造した0.23mm厚
の3.2 %のSiを含有する方向性電磁鋼板を用意した。こ
の鋼板から、仕上げ焼鈍のコイル半径R(mm)が300 mm
から50mm間隔で500 mmまで変えた各位置で幅30mm、長さ
280 mmの試験片を50枚ずつ作成した。そして、この試験
片の二次再結晶粒の分布を超音波法を用いて計測した。
これらの鋼板の両面にレジストインキを塗り、片面にY
AGレーザーを幅方向に走査してレーザーが照射された
位置のみレジストインキが焼失するようにして幅方向に
線状のレジストインキのない部分を形成した。このと
き、レーザーの出力シャッターの開閉を制御して、検出
しておいた結晶粒の中央から比例係数kを用いて±kR
(mm)で表される範囲以内のみにレーザーが照射される
ように制御した。kは0〜0.1 の範囲で10点選択し、各
kに対して5枚ずつ試験片を割り当てた。k=0の試験
片は比較のためのレーザーを照射していない試験片であ
る。次いで、食塩水中電解エッチングによって幅150 μ
m 、深さ20μm の溝を3mm間隔で選択的に形成し、レジ
ストインキを洗浄除去してからリン酸マグネシウム、コ
ロイダルシリカ、重クロム酸を主成分とする張力コーテ
ィングを施した。
EXAMPLE 1 A 0.23 mm thick 3.2% Si produced from a slab containing AlN and MnSe as inhibitor components to finish annealing in a known process by twice cold rolling including intermediate annealing. A grain-oriented electrical steel sheet was prepared. From this steel sheet, the coil radius R (mm) of finish annealing is 300 mm
30 mm width and length at each position changed from 500 mm to 500 mm at 50 mm intervals
Fifty 280 mm test pieces were prepared. Then, the distribution of the secondary recrystallized grains of the test piece was measured using an ultrasonic method.
Apply resist ink to both sides of these steel plates, and apply Y
An AG laser was scanned in the width direction to burn out the resist ink only at the position irradiated with the laser, thereby forming a linear resist ink-free portion in the width direction. At this time, the opening and closing of the laser output shutter is controlled, and ± kR is calculated from the center of the detected crystal grain using the proportional coefficient k.
The laser was controlled to be irradiated only within the range represented by (mm). k was selected from 10 points in the range of 0 to 0.1, and five test pieces were allocated to each k. The test piece with k = 0 is a test piece not irradiated with a laser for comparison. Next, 150 μm in width by electrolytic etching in saline
Grooves having a depth of 20 μm and a depth of 20 μm were selectively formed at intervals of 3 mm, the resist ink was washed away, and then a tension coating containing magnesium phosphate, colloidal silica, and dichromic acid as main components was applied.

【0015】溝を形成した範囲を決定する比例係数kと
溝形成後の鋼板のW17/50、B8(同一のkの全試験片の平
均値)の関係を図2に示す。W17/50はk≧0.015 の領域
でほぼ一定で十分に低減されているのに対して、透磁率
の目安であるB8はk>0.6 の領域で大きく劣化する。こ
れは、βが大きく磁化に不利な結晶方位になっている箇
所に更に溝が形成されたため、磁化特性が劣化したもの
と考えられる。
FIG. 2 shows the relationship between the proportional coefficient k that determines the range in which the groove is formed and W 17/50 and B 8 (the average value of all test pieces having the same k) of the steel sheet after the groove is formed. W 17/50 is substantially constant and sufficiently reduced in the region where k ≧ 0.015, whereas B 8, which is a measure of the magnetic permeability, is greatly deteriorated in the region where k> 0.6. It is considered that this is because magnetization was deteriorated because a groove was further formed at a portion where β was large and the crystal orientation was disadvantageous to magnetization.

【0016】(実施例2)AlN 及びMnSeをインヒビター
成分として含有するスラブから既知の工程で中間焼鈍を
含む2回冷延法によって仕上焼鈍まで製造した0.23mm厚
の3.2 %ののSiを含有する方向性電磁鋼板を用意した。
この鋼板から、仕上げ焼鈍時のコイル半径R(mm)が30
0 mmかよ50mm間隔で500 mmまで変えた各位置で幅30mm、
長さ280 mmの試験片を50枚ずつ作成した。これらの鋼板
にリン酸マグネシウム,コロイダルシリカ,重クロム酸
を主成分とする張力コーティングを施した。さらに、こ
れらの鋼板の片面にYAGレーザーを幅方向に走査して
レーザーが照射された位置のみに幅方向に線状にレーザ
ーを照射した。比例係数kは0 〜0.1 の範囲で10点選択
し、各kに対して5枚ずつ試験片を割り当てた。k=0
の試験片は比較のためレーザーを照射していないことを
表す。比例係数kとレーザー照射前後の鋼板のW17/50
磁気歪みの大きさ(同一のkの全試験片の平均値)の関
係を図3(a) , (b) に示す。W17/50はk≦0.015 の領域
でほぼ一定で十分に低減されているのに対して、騒音原
因である磁気歪みの大きさは、k>0.6 の領域で大きく
劣化する。これは、βが大きいため磁区構造が複雑にな
っている箇所に熱歪みが加わったため、磁区構造が更に
複雑化して磁気歪みが増大したものと考えられる。
Example 2 A slab containing AlN and MnSe as inhibitor components contains 0.23 mm thick 3.2% Si manufactured by a known process up to finish annealing by twice cold rolling including intermediate annealing. A grain-oriented electrical steel sheet was prepared.
From this steel sheet, the coil radius R (mm) at the time of finish annealing is 30
30 mm width at each position changed to 500 mm at 0 mm or 50 mm intervals,
50 test pieces each having a length of 280 mm were prepared. These steel sheets were subjected to a tension coating mainly composed of magnesium phosphate, colloidal silica and dichromic acid. Further, one side of each of these steel plates was scanned with a YAG laser in the width direction, and the laser was linearly irradiated in the width direction only at the position where the laser was irradiated. The proportional coefficient k was selected from 10 points in the range of 0 to 0.1, and five test pieces were assigned to each k. k = 0
The test piece of No. indicates that no laser was irradiated for comparison. Proportional coefficient k and W 17/50 of steel sheet before and after laser irradiation,
FIGS. 3A and 3B show the relationship between the magnitude of the magnetostriction (the average value of all the test pieces having the same k). W 17/50 is substantially constant and sufficiently reduced in the region where k ≦ 0.015, whereas the magnitude of magnetostriction, which is a cause of noise, is significantly deteriorated in the region where k> 0.6. This is presumably because thermal strain was applied to a portion where the magnetic domain structure was complicated because β was large, so that the magnetic domain structure was further complicated and magnetostriction increased.

【0017】[0017]

【発明の効果】かくしてこの発明によれば、結晶粒の圧
延方向中央付近のみに磁区細分化処理を施すことによっ
て、低鉄損かつ透磁率の高い方向性電磁鋼板を製造する
ことができる。
Thus, according to the present invention, a grain-oriented electrical steel sheet having a low iron loss and a high magnetic permeability can be manufactured by subjecting only the vicinity of the center of the crystal grains in the rolling direction to a magnetic domain refining treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上焼鈍時の鋼板の二次再結晶状況を模式的に
示す図である。
FIG. 1 is a view schematically showing a state of secondary recrystallization of a steel sheet during finish annealing.

【図2】曲率半径の比例係数kと磁気特性との関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a proportionality coefficient k of a radius of curvature and magnetic characteristics.

【図3】曲率半径の比例係数kと磁気特性,磁気歪みと
の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a proportionality coefficient k of a radius of curvature, magnetic characteristics, and magnetostriction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二次再結晶粒を形成させた方向性電磁鋼
板表面に、圧延方向にほぼ直交する方向の連続又は不連
続な線状の溝又は局所歪を、二次再結晶粒の圧延方向中
央から圧延方向に±A(mm)以内の領域のみに(Aは、
仕上焼鈍時にその結晶粒があった位置の鋼板の曲率半径
をR(mm)とするとき、不等式0.015R≦A≦0.06Rを
満たす任意の数値)、圧延方向に反復してそなえること
を特徴とする低鉄損方向性電磁鋼板。
1. A continuous or discontinuous linear groove or local strain in a direction substantially perpendicular to the rolling direction is formed on the surface of a grain-oriented electrical steel sheet on which secondary recrystallized grains are formed by rolling the secondary recrystallized grains. Only in the area within ± A (mm) in the rolling direction from the center of the direction (A is
When the radius of curvature of the steel sheet at the position where the crystal grains were present at the time of finish annealing is R (mm), any value satisfying the inequality 0.015R ≦ A ≦ 0.06R) is provided repeatedly in the rolling direction. Low iron loss oriented electrical steel sheet.
【請求項2】 仕上焼鈍後の方向性電磁鋼板表面に現出
する二次結晶粒の圧延方向に沿った長さを調べ、その二
次再結晶粒の圧延方向の中央から圧延方向に±A(mm)
以内の領域のみに(Aは、仕上焼鈍時にその結晶粒があ
った位置の鋼板の曲率半径をR(mm)とするとき、不等
式0.015 R≦A≦0.06Rを満たす任意の数値)、圧延方
向にほぼ直交する方向に連続又は不連続な線状の溝を圧
延方向に反復して形成する、あるいは圧延方向にほぼ直
交する方向に連続又は不連続な線状に熱的又は機械的局
所歪を圧延方向に反復して導入することを特徴とする低
鉄損方向性電磁鋼板の製造方法。
2. The length along the rolling direction of secondary crystal grains appearing on the surface of the grain-oriented electrical steel sheet after finish annealing is examined, and ± A from the center of the rolling direction of the secondary recrystallized grains in the rolling direction. (Mm)
(A is an arbitrary value that satisfies the inequality 0.015 R ≦ A ≦ 0.06R, where R is the radius of curvature of the steel sheet at the position where the crystal grains were present during the finish annealing). A continuous or discontinuous linear groove is formed in the rolling direction repeatedly in a direction substantially perpendicular to the rolling direction, or a thermal or mechanical local strain is formed in a continuous or discontinuous line in a direction substantially perpendicular to the rolling direction. A method for producing a low iron loss grain-oriented electrical steel sheet, which is repeatedly introduced in a rolling direction.
JP10095727A 1998-04-08 1998-04-08 Low core loss oriented silicon steel sheet and its production Withdrawn JPH11293340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095727A JPH11293340A (en) 1998-04-08 1998-04-08 Low core loss oriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095727A JPH11293340A (en) 1998-04-08 1998-04-08 Low core loss oriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH11293340A true JPH11293340A (en) 1999-10-26

Family

ID=14145518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095727A Withdrawn JPH11293340A (en) 1998-04-08 1998-04-08 Low core loss oriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH11293340A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012664A (en) * 2010-06-30 2012-01-19 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
WO2012017670A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2012067349A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
JP2015071815A (en) * 2013-10-04 2015-04-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
WO2017017908A1 (en) * 2015-07-28 2017-02-02 Jfeスチール株式会社 Linear groove forming method and linear grooves forming apparatus
JP2017025377A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Method for forming linear groove on the surface of steel sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
RU2721255C1 (en) * 2017-03-27 2020-05-18 Баошань Айрон Энд Стил Ко., Лтд. Laser-scribed textured silicon steel, which is resistant to stress relieving annealing, and method of its manufacturing
WO2023190328A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
WO2023190331A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented magnetic steel plate and manufacturing method therefor
WO2023190339A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012664A (en) * 2010-06-30 2012-01-19 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
WO2012017670A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2012052229A (en) * 2010-08-06 2012-03-15 Jfe Steel Corp Grain-oriented electromagnetic steel sheet and process for producing the same
CN103069033A (en) * 2010-08-06 2013-04-24 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and process for producing same
KR101309346B1 (en) * 2010-08-06 2013-09-17 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet and method for manufacturing the same
US9183984B2 (en) 2010-08-06 2015-11-10 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2012067349A (en) * 2010-09-22 2012-04-05 Jfe Steel Corp Method for manufacturing grain-oriented magnetic steel sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
JP2015071815A (en) * 2013-10-04 2015-04-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
JP2017025377A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Method for forming linear groove on the surface of steel sheet
WO2017017908A1 (en) * 2015-07-28 2017-02-02 Jfeスチール株式会社 Linear groove forming method and linear grooves forming apparatus
JPWO2017017908A1 (en) * 2015-07-28 2017-08-03 Jfeスチール株式会社 Linear groove forming method and linear groove forming apparatus
KR20180019211A (en) * 2015-07-28 2018-02-23 제이에프이 스틸 가부시키가이샤 Linear groove forming method and linear grooves forming apparatus
RU2685616C1 (en) * 2015-07-28 2019-04-22 ДжФЕ СТИЛ КОРПОРЕЙШН Method of linear grooves formation and device for linear grooves formation
US11045902B2 (en) 2015-07-28 2021-06-29 Jfe Steel Corporation Linear groove formation method and linear groove formation device
RU2721255C1 (en) * 2017-03-27 2020-05-18 Баошань Айрон Энд Стил Ко., Лтд. Laser-scribed textured silicon steel, which is resistant to stress relieving annealing, and method of its manufacturing
WO2023190328A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method therefor
WO2023190331A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented magnetic steel plate and manufacturing method therefor
WO2023190339A1 (en) * 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
EP0033878B1 (en) Method for treating an electromagnetic steel sheet by laser-beam irradiation
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
RU2238340C2 (en) Method for improving magnetic qualities of textured electrical silicon steel sheets by laser treatment
US4960652A (en) Grain-oriented electrical steel sheet having a low watt loss
EP0539236B1 (en) Low-iron loss grain oriented electromagnetic steel sheet and method of producing the same
US6083326A (en) Grain-oriented electromagnetic steel sheet
KR20010062073A (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP3482340B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JPH11293340A (en) Low core loss oriented silicon steel sheet and its production
JP2003027194A (en) Grain-oriented electrical steel sheet with excellent film characteristics and magnetic property, and its manufacturing method
EP1154025B1 (en) Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
WO2011162086A1 (en) Method for producing unidirectional electromagnetic steel sheet
JPS6342332A (en) Production of low iron loss grain oriented electrical steel sheet
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
KR100345722B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4276547B2 (en) Super high magnetic flux density unidirectional electrical steel sheet with excellent high magnetic field iron loss and coating properties
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
WO2024063163A1 (en) Grain-oriented electrical steel sheet
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
RU2776382C1 (en) Anisotropic electrical steel sheet and its production method
EP4317468A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
WO2022255172A1 (en) Grain-oriented electromagnetic steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JPH0949024A (en) Production of grain oriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705