JPH11293228A - Infrared reflecting composition - Google Patents

Infrared reflecting composition

Info

Publication number
JPH11293228A
JPH11293228A JP9554998A JP9554998A JPH11293228A JP H11293228 A JPH11293228 A JP H11293228A JP 9554998 A JP9554998 A JP 9554998A JP 9554998 A JP9554998 A JP 9554998A JP H11293228 A JPH11293228 A JP H11293228A
Authority
JP
Japan
Prior art keywords
oxide
composition
microparticles
group iii
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9554998A
Other languages
Japanese (ja)
Inventor
Shuzo Fukunishi
修三 福西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9554998A priority Critical patent/JPH11293228A/en
Publication of JPH11293228A publication Critical patent/JPH11293228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost infrared reflecting composition which can give an inexpensive infrared reflecting sheet or coating material by adding a specified amount of a Group III element oxide to a base comprising zinc oxide. SOLUTION: This composition contains a base comprising zinc oxide and 2-6 wt.% Group III element oxide. The Group III element oxide used is at least the one selected from the group consisting of aluminum oxide, boron oxide, gallium oxide, indium oxide, and yttrium oxide. In order to apply this composition to a coating material exhibiting reflectivity in the ultraviolet region, it must be comminuted into microparticles. To attain a good visible light transmittance, it is generally necessary that the microparticles have a particle diameter being at most half of the wavelength and being desirably 0.02-0.03 μm. As the method for comminuting the composition into microparticles, a vaporization- in-gas method which belongs to a gas-phase chemical deposition method can be adopted. The microparticles are mixed and dispersed in a binder solution such as an acrylic resin or a styrene/butadiene resin to form a coating material, and this is applied to a substrate such as a plastic sheet or glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外光を反射遮蔽
する透明シート、透明塗料の原材料となる組成物に関す
るもので、主として建物、車両などの窓ガラスに利用さ
れる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent sheet for reflecting and shielding infrared light and a composition which is a raw material of a transparent paint, and is mainly used for windows of buildings and vehicles.

【0002】[0002]

【従来の技術】地域環境保護問題が強く唱われるなか
で、省エネに対する関心は益々強くなっている。特に電
力問題に関連して夏期における冷房に消費される電力は
全消費電力の大きな割合を占めており、その節減が望ま
れている。その対策の一つに、太陽の熱線スペクトル
すなわち 赤外光の遮蔽がある。
2. Description of the Related Art As the issue of local environmental protection is strongly urged, interest in energy saving is increasing. Particularly in connection with the power problem, the power consumed for cooling in the summertime accounts for a large proportion of the total power consumption, and it is desired to reduce it. One of the measures is the solar heat spectrum.
That is, there is the shielding of infrared light.

【0003】透明物体(窓ガラスなど)に入射した太陽
光のうち、赤外光を吸収 あるいは反射するガラスはす
でに開発されており、ビル、高級車の窓ガラスに用いら
れている。このような用途に使われる赤外光遮蔽ガラス
の多くは酸化インジュウム薄膜(酸化スズを添加)をス
パッタリングもしくは真空蒸着で形成されている。しか
し コストが高く、一般用としては普及していない。こ
のほかの例として、例えば 特開平7-24957号公報
に見られるようにプラスチックシートの上にスパッタリ
ングもしくは塗布により酸化インジュウムと微少の酸化
スズからなる薄膜を形成した赤外線反射機能を有するフ
ィルムが開発されている。酸化インジュウム-酸化スズ
系の薄膜に替えて金属微粒子をフィルムに分散させて赤
外線反射シートを製作した例も報告されている。また、
別の例に、酸化インジュウム-酸化スズの微粒子をシロ
キサン系バインダーに分散させ塗料化し、公衆電話ボッ
クスの窓ガラスに塗布した。その結果、ボックス内の温
度上昇を抑制でき、特に盛夏時において効果があること
が示されている(雑誌「TRIGGER」,1996年12月、p.6
2)。
[0003] Glass that absorbs or reflects infrared light among sunlight incident on a transparent object (such as a window glass) has already been developed, and is used for windows of buildings and luxury cars. Many of the infrared light shielding glasses used in such applications are formed by sputtering or vacuum depositing an indium oxide thin film (adding tin oxide). However, the cost is high and it is not widely used for general use. As another example, a film having an infrared reflecting function in which a thin film composed of indium oxide and a small amount of tin oxide is formed on a plastic sheet by sputtering or coating as disclosed in, for example, JP-A-7-24957 has been developed. ing. There has also been reported an example in which metal particles are dispersed in a film instead of an indium oxide-tin oxide thin film to produce an infrared reflective sheet. Also,
In another example, fine particles of indium oxide-tin oxide were dispersed in a siloxane-based binder to form a paint, which was applied to a window glass of a public telephone box. As a result, it has been shown that the temperature rise in the box can be suppressed, and it is particularly effective in the midsummer (Magazine "TRIGGER", December 1996, p.
2).

【0004】以上、すでに開発されている赤外光反射シ
ートあるいは塗料の例を挙げたが、一般家庭用としては
市場に出てきていないのが現状である。その要因の一つ
は、コストの問題であると推測される。従来使われてき
た酸化インジュウムと酸化スズの原材料費は高く、特に
酸化インジュウムは埋蔵量が少ないためコストが高い。
酸化インジュウムと 本発明の赤外線反射組成物の主成
分である酸化亜鉛を コスト面で対比すると、一桁以上
酸化インジュウムの方が高い。また 酸化スズを添加し
た酸化インジュウム薄膜を樹脂シートにスパッタリング
法により作製した赤外反射シートにおいても、製造がロ
ール ツー ロール方式でおこなわれるため高額の設備投
資が必要であり、それが起因して製品コストを高くなら
しめていた。 すなわち 一般家庭用、例えば窓ガラス用
として普及を妨げているのはコストであり、大幅なコス
ト低減が望まれている。
As mentioned above, examples of infrared light reflecting sheet or paint which have already been developed have been mentioned, but at present, they have not been marketed for general household use. One of the factors is presumed to be a cost problem. The raw material costs of indium oxide and tin oxide, which have been used conventionally, are high. In particular, indium oxide is expensive due to its small reserves.
Compared with indium oxide and zinc oxide, which is the main component of the infrared reflective composition of the present invention, by more than one digit in terms of cost
Indium oxide is higher. Infrared reflective sheets made by sputtering an indium oxide thin film with tin oxide added to a resin sheet also require a high capital investment because production is performed in a roll-to-roll manner. The cost was increasing. That is, it is the cost that has hindered the spread for general household use, for example, for window glass, and significant cost reduction is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は 従来製品の
課題であるコストを低減化する目的でなされたものであ
り、例えば 一般家庭の窓ガラス、一般車の窓ガラスな
どに簡便な方法で赤外光反射シートを張り付ける、ある
いは赤外光反射塗料を塗布することにより 安価な赤外
光反射シートもしくは塗料を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made for the purpose of reducing the cost, which is a problem of conventional products. An inexpensive infrared light reflection sheet or paint is provided by attaching an external light reflection sheet or applying an infrared light reflection paint.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、従来 赤外光反射用と
して用いられている酸化インジュウム-酸化スズ系の組
成物、あるいは金属微粒子、金属薄膜に替えて、安価な
酸化亜鉛を主成分とし、赤外光反射機能を付与するた
め、不純物としてIII族酸化物を 2-6重量%含有するこ
とを特徴とし、III族酸化物として酸化アルミニュウ
ム、酸化ほう素、酸化ガリウム、酸化インジュウム、酸
化イットリュウムのうち少なくとも一つを添加すること
により得られる安価な赤外光反射組成物である。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an indium oxide-tin oxide composition or a metal fine particle conventionally used for infrared light reflection. It is characterized by containing inexpensive zinc oxide as a main component instead of a metal thin film and containing 2-6% by weight of a group III oxide as an impurity in order to impart an infrared light reflecting function. An inexpensive infrared light reflecting composition obtained by adding at least one of aluminum oxide, boron oxide, gallium oxide, indium oxide, and yttrium oxide.

【0007】[0007]

【発明の実施の形態】酸化スズを添加した酸化インジュ
ウム酸化物半導体は透明導電性を示すことはよく知ら
れ、薄膜の形で液晶ディスプレーなどに広く用いられて
いる。この系の材料はプラズマ振動数より長い波長の光
を反射するという固有の性質を持つこともよく知られて
おり、赤外線反射シート、塗料の素材として用いられて
いることは既に記した。 この現象は次のように説明さ
れる。自由電子が存在する電導体では、電気的に中性を
保っている状態にある波長領域の光が入射すると電荷密
度の変化をもたらし、中性に戻ろうとする時 振動を生
じる。この振動をプラズマ振動といい、これより振動数
の高い(波長は短い)光は透過し、また振動数の低い
(波長の長い)光は反射する現象である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is well known that an indium oxide oxide semiconductor to which tin oxide is added has a transparent conductivity, and is widely used in the form of a thin film for a liquid crystal display or the like. It is well known that the material of this system has a unique property of reflecting light having a wavelength longer than the plasma frequency, and it has already been described that it is used as a material for infrared reflection sheets and paints. This phenomenon is explained as follows. In a conductor in which free electrons exist, the incidence of light in a wavelength region that is in a state of being electrically neutral causes a change in charge density and causes oscillation when trying to return to neutral. This vibration is called plasma vibration, which is a phenomenon in which light having a higher frequency (short wavelength) is transmitted, and light having a lower frequency (long wavelength) is reflected.

【0008】ところでII-VI族化合物半導体である酸化
亜鉛も 酸化スズを添加した酸化インジュウム酸化物半
導体(ITO)と同様バンドギャップが広く約3eVであり
可視光領域では高い透明性を示す。この酸化亜鉛にアル
ミニュウムなどを不純物として添加することにより導電
性をもたらすことは公知であり、ITO に替わる透明導電
材料として開発されている。しかし、これを赤外光反射
材料として適用した例はない。
By the way, zinc oxide, which is a II-VI group compound semiconductor, has a wide band gap of about 3 eV, similarly to indium oxide semiconductor (ITO) to which tin oxide is added.
It shows high transparency in the visible light region. It is known that zinc oxide is made conductive by adding aluminum or the like as an impurity, and has been developed as a transparent conductive material replacing ITO. However, there is no example of applying this as an infrared light reflecting material.

【0009】酸化亜鉛を主成分としIII族酸化物を不純
物添加した組成物を可視光領域においては透明で、赤外
光領域では反射性を示す塗料に適用するには、この組成
物を微粒子化しなければならない。一般に微粒子の粒径
を波長の半分以下にする必要があり、好ましくは 0.02-
0.03μm が良好な可視光透過率を与える。
In order to apply a composition containing zinc oxide as a main component and a group III oxide added as an impurity to a paint which is transparent in the visible light region and reflective in the infrared light region, the composition is made into fine particles. There must be. Generally, the particle size of the fine particles must be less than half the wavelength, preferably 0.02-
0.03 μm gives good visible light transmission.

【0010】酸化亜鉛に対するIII族酸化物の添加量は2
-6重量%が好ましい。添加量が2重量%未満であると、
赤外光領域における反射遮蔽効果が薄まり好ましくな
い。また添加量が6重量%を越えると、青色に着色が著
しくなり、可視光領域での透過率の低下をもたらすので
好ましくない。
The addition amount of the group III oxide to zinc oxide is 2
-6% by weight is preferred. When the addition amount is less than 2% by weight,
The reflection shielding effect in the infrared light region is undesirably reduced. On the other hand, if the addition amount exceeds 6% by weight, blue coloring becomes remarkable and the transmittance in the visible light region is lowered, which is not preferable.

【0011】微粒子化技術には大別して気相法、液相法
がある。金属化合物の場合、噴霧加水分解法、気相化学
析出法 あるいは 化合物沈殿法が使われる。本発明の酸
化亜鉛の場合、気相化学析出法の一つに属するガス中蒸
発法を採用した。詳細は実施例において示すが、不活性
ガス中で不純物を添加した酸化亜鉛を蒸発させ超微粒子
化する技術であり、超微粒子の製作に広く用いられてい
る。
[0011] The fine particle technology is roughly classified into a gas phase method and a liquid phase method. In the case of metal compounds, spray hydrolysis, chemical vapor deposition or compound precipitation is used. In the case of the zinc oxide of the present invention, an in-gas evaporation method belonging to one of the gas phase chemical deposition methods was employed. Although details will be shown in Examples, this is a technique for evaporating zinc oxide to which impurities are added in an inert gas to form ultrafine particles, and is widely used for producing ultrafine particles.

【0012】上記方法で製作した超微粒子を溶解したア
クリル樹脂、スチレン-ブタジエン系樹脂などに攪拌分
散した。これを塗料として、プラスチックシート(PE
T、PESなど)、ガラス等の基体に塗布する。
The ultrafine particles produced by the above method were dispersed by stirring in an acrylic resin, styrene-butadiene resin or the like in which the ultrafine particles were dissolved. Using this as a paint, a plastic sheet (PE
T, PES, etc.), glass, etc.

【0013】[0013]

【実施例】以下、実施例により本発明を詳細に例示する
が、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0014】[実施例1]純度99.999%の酸化亜鉛粉体
に、これに対し3重量%の純度99.99%酸化アルミニウム
粉体を攪拌混合した組成物を アルゴンガスを充填した
石英ガラス管内で加熱蒸発させた。加熱温度は800℃
で、また 石英ガラス管内の圧力は 0.1 Paとした。石英
ガラス管の壁面に付着した超微粒子を捕集し、アルミニ
ウム添加酸化亜鉛超微粒子を作製した。得られ超微粒子
の平均粒径は約 0.03μmであった。次にアクリル樹脂を
アセトンで溶解し液状バインダーを準備し、アルミニュ
ウム添加酸化亜鉛超微粒子 65重量部を アクリル樹脂 3
5重量部(アセトンの重量は除く)に混合の後、攪拌分
散させた。 これらの課程を経て赤外反射塗料は完成さ
れた。この塗料を厚さ 0.1mmのPETフィルム上にバー
コーターで塗布した。塗料の膜厚は 25μmとした。赤外
反射塗料が塗布されたPETフィルムを 50℃に設定さ
れた乾燥機に 1時間挿入し アセトンを揮発させた。上
記製作課程で得られたアルミニュウム添加酸化亜鉛超微
粒子から成る赤外反射フィルムの透過率を分光光度計に
より測定した。測定波長領域は 300-2000nmである。代
表的な波長における透過率の測定結果を表1に示す。
Example 1 A composition obtained by stirring and mixing 3% by weight of 99.99% aluminum oxide powder with 99.999% purity zinc oxide powder was heated and evaporated in a quartz glass tube filled with argon gas. I let it. Heating temperature is 800 ℃
The pressure inside the quartz glass tube was 0.1 Pa. The ultrafine particles adhering to the wall surface of the quartz glass tube were collected to produce aluminum-added zinc oxide ultrafine particles. The average particle size of the obtained ultrafine particles was about 0.03 μm. Next, an acrylic resin is dissolved in acetone to prepare a liquid binder, and 65 parts by weight of aluminum-added zinc oxide ultrafine particles are added to the acrylic resin 3
After mixing in 5 parts by weight (excluding the weight of acetone), the mixture was stirred and dispersed. Through these steps, the infrared reflective paint was completed. This paint was applied on a 0.1 mm thick PET film with a bar coater. The thickness of the paint was 25 μm. The PET film coated with the infrared reflective paint was inserted into a dryer set at 50 ° C for 1 hour to evaporate the acetone. The transmittance of the infrared reflective film composed of the aluminum-added ultrafine zinc oxide particles obtained in the above production process was measured with a spectrophotometer. The measurement wavelength range is 300-2000 nm. Table 1 shows the measurement results of the transmittance at typical wavelengths.

【0015】[比較例1]実施例1において、酸化アル
ミニウム粉体を含有しないフィルムを製作し、同様な測
定をおこなった。その結果を表1に示す。
[Comparative Example 1] In Example 1, a film containing no aluminum oxide powder was produced, and the same measurement was performed. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、実施例1は ア
ルミニュウム添加なしのサンプルと比較して 可視光波
長領域では僅か透過率が低くなるが、赤外光波長領域で
の透過率は大幅に低下している。これはプラズマ振動に
よる赤外光の遮蔽効果を明確に示している。
As is clear from Table 1, Example 1 has a slightly lower transmittance in the visible light wavelength region than the sample without aluminum addition, but has a significantly lower transmittance in the infrared light wavelength region. doing. This clearly shows the effect of shielding the infrared light by the plasma vibration.

【0018】[実施例2]純度99.999%の酸化亜鉛粉体
に これに対して4重量%の純度99.9%酸化ガリウム粉
体を加え、攪拌混合した組成物を作製した。次に前記
実施例2に記載したと同様な方法を用いてガリウム添加
酸化亜鉛超微粒子を得た。加熱温度は 850℃で、焼成し
た。得られ超微粒子の平均粒径は約 0.03μmであった。
次にシリコーンポリエステル樹脂をエタノールで溶解し
液状バインダーを準備し、ガリウム添加酸化亜鉛超微
粒子 60 重量部を ウレタン樹脂 40重量部(エタノール
の重量は除く)に混合の後、攪拌分散させた。 これら
の課程を経てガリウム添加酸化亜鉛赤外反射塗料は完成
された。この塗料を厚さ 0.1mmのPETフィルム上にバ
ーコーターで塗布した。塗料の膜厚は 22μmとした。赤
外反射塗料が塗布されたPETフィルムを 50℃に設定
された乾燥機に 1時間挿入し エタノールを揮発させ
た。上記製作課程で得られたガリウム添加酸化亜鉛超微
粒子から成る赤外反射フィルムの透過率を実施例1と同
様に測定した。測定結果を表2に示す。
Example 2 A composition was prepared by adding 4% by weight of 99.9% pure gallium oxide powder to 99.999% pure zinc oxide powder and mixing with stirring. Next,
Using the same method as described in Example 2, gallium-added zinc oxide ultrafine particles were obtained. The firing temperature was 850 ° C. The average particle size of the obtained ultrafine particles was about 0.03 μm.
Next, the silicone polyester resin was dissolved in ethanol to prepare a liquid binder, and 60 parts by weight of gallium-added zinc oxide ultrafine particles were mixed with 40 parts by weight of the urethane resin (excluding the weight of ethanol), followed by stirring and dispersion. Through these steps, a gallium-doped zinc oxide infrared reflective paint was completed. This paint was applied on a 0.1 mm thick PET film with a bar coater. The thickness of the paint was 22 μm. The PET film coated with the infrared reflective paint was inserted into a dryer set at 50 ° C for 1 hour to volatilize the ethanol. The transmittance of the infrared reflective film comprising the gallium-doped ultrafine zinc oxide particles obtained in the above production process was measured in the same manner as in Example 1. Table 2 shows the measurement results.

【0019】[比較例2]実施例2において、酸化ガリ
ウム粉体を混合せずにサンプルを製作し、同様な測定を
おこなった。その結果を表2に示す。
[Comparative Example 2] In Example 2, a sample was manufactured without mixing gallium oxide powder, and the same measurement was performed. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、実施例2は ガ
リウム添加なしのサンプルと比較して可視光波長領域で
は僅か透過率が低くなるが、赤外光波長領域での透過率
は大幅に低下している。
As is clear from Table 2, Example 2 has a slightly lower transmittance in the visible light wavelength region than the sample without gallium addition, but has a significantly lower transmittance in the infrared light wavelength region. doing.

【0022】[実施例3〜5]添加不純物として酸化ほ
う素、酸化インジュウム、酸化イットリュウムについて
も表1に示した条件以外は実施例1と同様にしてサンプ
ルを作成し評価した。その作製条件および結果を表3に
示す。
[Examples 3 to 5] Boron oxide, indium oxide, and yttrium oxide as additional impurities were prepared and evaluated in the same manner as in Example 1 except for the conditions shown in Table 1. Table 3 shows the production conditions and results.

【0023】[0023]

【表3】 [Table 3]

【0024】[比較例3]さらに 従来使われてきた酸
化スズを不純物として添加した酸化インジュウム酸化物
半導体(ITO)についても比較のため上記実施例と同様
に料作製、透過率測定をおこなった。その作製条件およ
び測定結果を表4に示す。
[Comparative Example 3] For comparison, an indium oxide oxide semiconductor (ITO) to which tin oxide was added as an impurity, which had been conventionally used, was prepared and the transmittance was measured in the same manner as in the above example for comparison. Table 4 shows the manufacturing conditions and measurement results.

【0025】[0025]

【表4】 [Table 4]

【0026】[実施例6〜8]添加不純物として表5に
示すようにIII族酸化物を2種以上選び、表5に示した
条件以外は実施例1と同様にしてフィルムを作成し評価
した。その結果を表5に示す。
[Examples 6 to 8] As shown in Table 5, two or more kinds of group III oxides were selected as additional impurities, and films were prepared and evaluated in the same manner as in Example 1 except for the conditions shown in Table 5. . Table 5 shows the results.

【0027】[0027]

【表5】 [Table 5]

【0028】この場合、1種の酸化物を選んだ場合と比
較すると僅かではあるが異なった分光透過率特性が得ら
れる。従って、赤外反射の波長特性の微細な調整に2種
以上の酸化物不純物を適切な比率で添加することができ
る。
In this case, a slightly different spectral transmittance characteristic can be obtained as compared with the case where one kind of oxide is selected. Therefore, two or more oxide impurities can be added at an appropriate ratio for fine adjustment of the wavelength characteristics of infrared reflection.

【0029】[0029]

【発明の効果】本発明の酸化亜鉛を主成分とする赤外線
反射組成物を原材料として作製したシート もしくは 塗
料化して作製した塗布膜は 可視光領域では透過率が高
く、すなわち 透明性が良好で、赤外光領域の光に対し
ては選択的に反射する性質を有することが明らかにな
り、従来使われてきた酸化スズを添加した酸化インジュ
ウム酸化物半導体に比べ同等もしくはそれ以上の赤外線
反射率を示した。特記すべきことは、本発明の亜鉛酸化
物を主成分とする赤外線反射組成物は酸化スズ-酸化イ
ンジュウム酸化物系組成物に比べコストが低いことであ
り、これにより既に製品化されている赤外線反射シー
ト、塗料より安価な製品を提供できるようになったこと
である。
According to the present invention, a sheet or a coating film prepared by using the infrared reflecting composition containing zinc oxide as a main component as a raw material has a high transmittance in a visible light region, that is, a good transparency. It has been revealed that it has the property of selectively reflecting light in the infrared region, and has an infrared reflectance equal to or higher than that of the conventionally used indium oxide semiconductor with tin oxide added. Indicated. It should be noted that the infrared reflecting composition containing zinc oxide as the main component of the present invention is lower in cost than the tin oxide-indium oxide based composition, and thus the infrared ray already commercialized It is now possible to provide products that are less expensive than reflective sheets and paints.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、III族酸化物を
2-6重量%含有することを特徴とする赤外光反射組成
物。
1. An infrared light reflecting composition comprising zinc oxide as a main component and a Group III oxide in an amount of 2 to 6% by weight.
【請求項2】 III族酸化物が、酸化アルミニュウム、
酸化ほう素、酸化ガリウム、酸化インジュウム及び酸化
イットリュウムからなる群より選ばれた1種以上のIII
族酸化物である、請求項1記載の赤外光反射組成物。
2. The group III oxide is aluminum oxide,
At least one III selected from the group consisting of boron oxide, gallium oxide, indium oxide and yttrium oxide
The infrared light reflecting composition according to claim 1, which is a group III oxide.
JP9554998A 1998-04-08 1998-04-08 Infrared reflecting composition Pending JPH11293228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9554998A JPH11293228A (en) 1998-04-08 1998-04-08 Infrared reflecting composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9554998A JPH11293228A (en) 1998-04-08 1998-04-08 Infrared reflecting composition

Publications (1)

Publication Number Publication Date
JPH11293228A true JPH11293228A (en) 1999-10-26

Family

ID=14140667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9554998A Pending JPH11293228A (en) 1998-04-08 1998-04-08 Infrared reflecting composition

Country Status (1)

Country Link
JP (1) JPH11293228A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051273A (en) * 2005-07-22 2007-03-01 Toshiba Lighting & Technology Corp Uv blocking material, uv blocking visible selective transmitting filter, visible selective transmitted resin material, light source and lighting fixture
WO2009142254A1 (en) * 2008-05-23 2009-11-26 石原産業株式会社 Infra-red reflective material and production method thereof, and paint and resin composition containing the same
JP2010540748A (en) * 2007-10-05 2010-12-24 ビー・エイ・エス・エフ、コーポレーション Method for maintaining the color of a cured film formed from a coating composition
JP2011043713A (en) * 2009-08-21 2011-03-03 Nikon Corp Optical device
CN101983983A (en) * 2010-10-26 2011-03-09 湖北大学 Sunshine polyvinyl butyral nanocomposite for blocking the sun's radiation and method for preparing the same
JP2011094086A (en) * 2009-11-02 2011-05-12 Ishihara Sangyo Kaisha Ltd Infrared reflective material, method for producing the same, and paint and resin composition containing the same
JP2014501947A (en) * 2010-12-06 2014-01-23 サン−ゴバン グラス フランス Electrochemical device with electrically controllable light and / or energy transmission characteristics
KR20140051165A (en) * 2011-04-06 2014-04-30 크로모제닉스 에이비 Electrochromic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051273A (en) * 2005-07-22 2007-03-01 Toshiba Lighting & Technology Corp Uv blocking material, uv blocking visible selective transmitting filter, visible selective transmitted resin material, light source and lighting fixture
JP2010540748A (en) * 2007-10-05 2010-12-24 ビー・エイ・エス・エフ、コーポレーション Method for maintaining the color of a cured film formed from a coating composition
EP2284240A4 (en) * 2008-05-23 2013-07-24 Ishihara Sangyo Kaisha Infra-red reflective material and production method thereof, and paint and resin composition containing the same
WO2009142254A1 (en) * 2008-05-23 2009-11-26 石原産業株式会社 Infra-red reflective material and production method thereof, and paint and resin composition containing the same
JP2010202489A (en) * 2008-05-23 2010-09-16 Ishihara Sangyo Kaisha Ltd Infrared reflective material and production method thereof, and paint and resin composition containing the same
US8906272B2 (en) 2008-05-23 2014-12-09 Ishihara Sangyo Kaisha, Ltd. Infra-red reflective material and production method thereof, and paint and resin composition containing the same
JP2011043713A (en) * 2009-08-21 2011-03-03 Nikon Corp Optical device
JP2011094086A (en) * 2009-11-02 2011-05-12 Ishihara Sangyo Kaisha Ltd Infrared reflective material, method for producing the same, and paint and resin composition containing the same
CN101983983A (en) * 2010-10-26 2011-03-09 湖北大学 Sunshine polyvinyl butyral nanocomposite for blocking the sun's radiation and method for preparing the same
JP2014501947A (en) * 2010-12-06 2014-01-23 サン−ゴバン グラス フランス Electrochemical device with electrically controllable light and / or energy transmission characteristics
US9274396B2 (en) 2010-12-06 2016-03-01 Saint-Gobain Glass France Electrochemical device having electrically controllable optical and/or energy transmission properties
KR20140051165A (en) * 2011-04-06 2014-04-30 크로모제닉스 에이비 Electrochromic device
JP2014512026A (en) * 2011-04-06 2014-05-19 クロモジェニクス・アクチボラーグ Electrochromic devices

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
EP1676890B1 (en) Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
EP0007224B1 (en) Heat wave-reflective or electrically conductive laminated structure
Dietrich et al. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2
EP0035906B2 (en) Selectively light-transmitting laminated structure
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JPH08295514A (en) Electrically conductive oxide and electrode using the same
JPH11293228A (en) Infrared reflecting composition
CN109872835A (en) A kind of infrared transparent conductive film, and its preparation method and application
CN1801400A (en) In203-Sn02 nano film coating material and its preparing method
JP3163015B2 (en) Transparent conductive film
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JPS6036940B2 (en) Film formation method
JP2006010759A (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding body, and method for adjusting color tone of visible light passing through the near-infrared shielding material
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JPH10101375A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
US20230106637A1 (en) Broadband infrared absorber based on epsilon-near-zero material
JPH11292621A (en) Infrared reflection composition
JPH108010A (en) Heat ray blocking tacky agent, its production and heat ray blocking transparent sheet
WO2004060807A1 (en) FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING
CN103304152B (en) A kind of on-line coating anti reflection glass of five tunic architecture and working method thereof
Haacke Materials for transparent heat mirror coatings
JP2004210570A (en) METHOD OF MANUFACTURING SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE AND SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE
JPS5810228B2 (en) laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212