JPH11292528A - Production of inorganic porous material - Google Patents

Production of inorganic porous material

Info

Publication number
JPH11292528A
JPH11292528A JP11010125A JP1012599A JPH11292528A JP H11292528 A JPH11292528 A JP H11292528A JP 11010125 A JP11010125 A JP 11010125A JP 1012599 A JP1012599 A JP 1012599A JP H11292528 A JPH11292528 A JP H11292528A
Authority
JP
Japan
Prior art keywords
gel
compound
solvent
dissolved
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11010125A
Other languages
Japanese (ja)
Inventor
Naohiro Soga
直弘 曽我
Kazuki Nakanishi
和樹 中西
Hiroyoshi Mizuguchi
博義 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MRC KK
Original Assignee
MRC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MRC KK filed Critical MRC KK
Priority to JP11010125A priority Critical patent/JPH11292528A/en
Publication of JPH11292528A publication Critical patent/JPH11292528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of an inorg. porous material having a homogeneous structure with good reproducibility all over the area in a member having a narrow space such as a capillary and of between that plates, and consequently, which shows high separation performance when used for chromatography. SOLUTION: A compd. to be pyrolyzed is preliminarily dissolved in a reaction soln. to prepare a gel by a solgel method in a member having a space of <=1 mm distance. The gel consists of a solvent-rich phase having a three-dimensional mesh structure of >=100 nm average diameter which is rich in the solvent, and a matrix phase which is rich in an inorg. material and has pores on the surface. Then the wet gel is heated to pyrolyze the low mol.wt. compd. preliminarily dissolved in the preparing process of the gel, and then the gel is dried and heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は無機多孔質材料の
製造方法に関する。この発明の製造方法は、電気クロマ
トグラフィー用毛細管カラムや酵素担体用多孔質などの
製造に好適に利用される。
[0001] The present invention relates to a method for producing an inorganic porous material. The production method of the present invention is suitably used for producing a capillary column for electrochromatography, a porous material for an enzyme carrier, and the like.

【0002】[0002]

【従来の技術】この種のクロマトグラフィー用カラムと
しては、シリカゲル等の無機系充填剤を毛細管内に物理
的手法によって充填したものが知られている。電気クロ
マトグラフィーに利用されるカラム充填剤は、その表面
に荷電した部分を有する必要がある。したがって中性の
pH領域で安定な負電荷を有する無機系多孔質、特にシ
リカゲルが、汎用されている。
2. Description of the Related Art As this type of chromatography column, there is known a column in which an inorganic filler such as silica gel is packed in a capillary tube by a physical method. The column packing used for electrochromatography needs to have a charged portion on its surface. Accordingly, inorganic porous materials having a stable negative charge in a neutral pH range, particularly silica gel, are widely used.

【0003】一般にシリカゲル等の無機質多孔体は、液
相反応であるゾル−ゲル法によって作製される。ゾル−
ゲル法とは、重合可能な低分子化合物を生成し、最終的
に凝集体や重合体を得る方法一般のことを指す。例え
ば、金属アルコキシドの加水分解のほか、金属塩化物の
加水分解、カルボキシル基、β−ジケトンのような加水
分解性の官能基を持つ金属塩あるいは配位化合物の加水
分解、金属アミン類の加水分解が挙げられる。
Generally, inorganic porous materials such as silica gel are produced by a sol-gel method which is a liquid phase reaction. Sol-
The gel method generally refers to a method for producing a polymerizable low-molecular compound and finally obtaining an aggregate or a polymer. For example, in addition to hydrolysis of metal alkoxides, hydrolysis of metal chlorides, hydrolysis of metal salts or coordination compounds having a hydrolyzable functional group such as carboxyl group and β-diketone, hydrolysis of metal amines Is mentioned.

【0004】電気クロマトグラフィーに利用されるカラ
ムは、一般的に微粒子状の無機系充填剤を物理的な方法
で毛細管中に充填し、微粒子が移動して充填状態が変わ
ることを防ぐために、比較的気孔率の低いフリットとよ
ばれる部品によって、毛細管の両端を封じるという方法
によって作製されてきた。
The column used for electrochromatography is generally prepared by packing a finely divided inorganic filler into a capillary by a physical method and preventing the fine particles from moving and changing the packed state. It has been made by sealing both ends of a capillary tube with a component called a frit having a low porosity.

【0005】[0005]

【発明が解決しようとする課題】しかし、粒子充填によ
る毛細管カラムは、充填手法が複雑で長時間を要する
上、分離性能に優れた充填状態を再現することが難し
い。さらにカラム長が増加するに従って、微粒子の均一
な充填が飛躍的に困難になるので、カラム長を増すこと
による分離性能の向上を図り難い。また粒子充填による
毛細管カラムでは、フリットと充填層の間の空間におい
てしばしば試料溶液中に気泡を生じ、分離性能を低下さ
せるという問題がある。粒子の充填状態によって決まる
カラム内の多孔構造が、毛細管カラムの分離性能に強い
影響を与えるにもかかわらず、粒子充填法によって安定
で均一な充填状態を再現性良く作り出す方法は未だに確
立されていない。
However, a capillary column packed with particles requires a complicated packing method and requires a long time, and it is difficult to reproduce a packed state having excellent separation performance. Further, as the column length increases, uniform packing of fine particles becomes extremely difficult, so that it is difficult to improve the separation performance by increasing the column length. In addition, in a capillary column packed with particles, there is a problem that air bubbles are often generated in a sample solution in a space between a frit and a packed bed, thereby deteriorating separation performance. Despite the fact that the porous structure in the column, which is determined by the packed state of the particles, has a strong effect on the separation performance of the capillary column, a method for creating a stable and uniform packed state with good reproducibility by the particle packing method has not yet been established. .

【0006】そこで本発明者等が研究したところ、まず
内径1ミリメートル以下の毛細管などの部材中におい
て、約100ナノメートル以上の巨大空孔となる溶媒リ
ッチ相を持つゲルをゾル−ゲル法によって作製し、その
湿潤状態のバルク状ゲルを粉砕せずに加熱することによ
り、ゲル調製時にあらかじめ溶解させておいた低分子化
合物を熱分解させ、これによってゲルと共存する溶媒に
シリカが溶解しやすくなることにより、巨大空孔の内壁
が最大50ナノメートル程度の狭い細孔分布を持った、
二重気孔の多孔質体に変化し、この連続多孔構造を持っ
たゲルが毛細管などの部材の全長さにわたって均質に生
成することが分かった。
Accordingly, the present inventors have studied and found that a gel having a solvent-rich phase that forms a huge pore of about 100 nanometers or more in a member such as a capillary having an inner diameter of 1 millimeter or less is produced by a sol-gel method. Then, by heating the wet bulk gel without crushing, the low molecular weight compound previously dissolved at the time of gel preparation is thermally decomposed, whereby silica is easily dissolved in a solvent coexisting with the gel. As a result, the inner wall of the huge cavities had a narrow pore distribution of up to about 50 nanometers,
It turned out to be a porous body having double pores, and it was found that the gel having this continuous porous structure was homogeneously formed over the entire length of a member such as a capillary tube.

【0007】この発明はこのような知見に基づいてなさ
れたものである。その目的は、従来の粒子充填法によっ
て避け得なかった、均質性、再現性、分離性能のいずれ
も低い毛細管カラムではなく、所望する中心細孔径と狭
い分布を持つ細孔構造を再現性良く与え、しかも毛細管
中の全域にわたって再現性の高い均質な構造を持ち、そ
の結果高い分離性能を与える無機系多孔質体の製造方法
を確立することにある。
The present invention has been made based on such findings. The aim is to provide a pore structure with a desired central pore size and a narrow distribution with good reproducibility, not a capillary column with low homogeneity, reproducibility and separation performance, which could not be avoided by the conventional particle packing method. Another object of the present invention is to establish a method for producing an inorganic porous material having a homogeneous structure with high reproducibility over the entire area in a capillary tube and consequently giving high separation performance.

【0008】[0008]

【課題を解決するための手段】その手段は、反応溶液に
あらかじめ熱分解する化合物を溶解させ、ゾル−ゲル法
により、平均直径100ナノメートル以上の3次元網目
状に連続した溶媒に富む溶媒リッチ相と無機物質に富み
表面に細孔を有する骨格相とからなるゲルを、間隙1ミ
リメートル以下の部材内において調製し、次いで湿潤状
態のゲルを加熱することにより、ゲル調製時にあらかじ
め溶解させておいた化合物を熱分解させ、ゲルを乾燥
し、加熱することを特徴とする。
Means for solving the problem are as follows. A solvent-rich solvent rich in a three-dimensional network-like solvent having an average diameter of 100 nm or more is dissolved by a sol-gel method by dissolving a compound which is thermally decomposed in advance in a reaction solution. A gel consisting of a phase and a skeletal phase rich in inorganic substances and having pores on the surface is prepared in a member having a gap of 1 mm or less, and then the gel in a wet state is heated to be dissolved in advance during gel preparation. The compound is thermally decomposed, and the gel is dried and heated.

【0009】この手段において、望ましいのは、無機物
質をシリカSiO2とし、あらかじめ共存させる熱分解
する化合物を熱分解によって液性を塩基性に変える尿素
等のアミド系化合物とする場合である。
In this means, it is preferable that the inorganic substance is silica SiO 2 and the compound that is thermally decomposed in advance is an amide-based compound such as urea that changes its liquidity to basic by thermal decomposition.

【0010】同じく上記目的達成の手段は、水溶性高分
子、熱分解する化合物を酸性水溶液に溶かし、それに加
水分解性の官能基を有する金属化合物を添加して加水分
解反応を行い、間隙1ミリメートル以下の部材内におい
て生成物が固化した後、次いで湿潤状態のゲルを加熱す
ることにより、ゲル調製時にあらかじめ溶解させておい
た低分子化合物を熱分解させ、次いで乾燥し加熱するこ
とを特徴とする。
Means for achieving the above object is to dissolve a water-soluble polymer and a compound which can be thermally decomposed in an acidic aqueous solution, add a metal compound having a hydrolyzable functional group to the solution, and carry out a hydrolysis reaction to obtain a gap of 1 mm. After the product is solidified in the following components, the low molecular weight compound previously dissolved at the time of gel preparation is thermally decomposed by heating the gel in a wet state, and then dried and heated. .

【0011】ここで、水溶性高分子は、理論的には適当
な濃度の水溶液と成し得る水溶性有機高分子であって、
加水分解性の官能基を有する金属化合物によって生成す
るアルコールを含む反応系中に均一に溶解し得るもので
あれば良いが、具体的には高分子金属塩であるポリスチ
レンスルホン酸のナトリウム塩またはカリウム塩、高分
子酸であって解離してポリアニオンとなるポリアクリル
酸、高分子塩基であって水溶液中でポリカチオンを生ず
るポリアリルアミンおよびポリエチレンイミン、あるい
は中性高分子であって主鎖にエーテル結合を持つポリエ
チレンオキシド、側鎖にカルボニル基を有するポリビニ
ルピロリドン等が好適である。また、有機高分子に代え
てホルムアミド、多価アルコール、界面活性剤を用いて
もよく、その場合多価アルコールとしてはグリセリン
が、界面活性剤としてはポリオキシエチレンアルキルエ
ーテル類が最適である。
Here, the water-soluble polymer is a water-soluble organic polymer which can theoretically be formed into an aqueous solution having an appropriate concentration.
Any one can be used as long as it can be uniformly dissolved in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group, and specifically, a sodium salt or potassium salt of polystyrene sulfonic acid, which is a polymer metal salt Salts, polyacrylic acid which is a polymer acid and dissociates into a polyanion, polyallylamine and polyethyleneimine which are polymer bases and generate polycation in aqueous solution, or neutral polymer which is an ether bond to the main chain And polyethylene pyrrolidone having a carbonyl group in the side chain. In addition, formamide, polyhydric alcohol, and a surfactant may be used in place of the organic polymer. In this case, glycerin is most suitable as the polyhydric alcohol, and polyoxyethylene alkyl ether is most suitable as the surfactant.

【0012】加水分解性の官能基を有する金属化合物と
しては、金属アルコキシド又はそのオリゴマーを用いる
ことができ、これらのものは例えば、メトキシ基、エト
キシ基、プロポキシ基等の炭素数の少ないものが好まし
い。また、その金属としては、最終的に形成される酸化
物の金属、例えばSi、Ti、Zr、Alが使用され
る。この金属としては1種又は2種以上であっても良い。
一方オリゴマーとしてはアルコールに均一に溶解分散で
きるものであればよく、具体的には10量体程度まで使
用できる。
As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms such as a methoxy group, an ethoxy group and a propoxy group are preferable. . As the metal, a metal of an oxide finally formed, for example, Si, Ti, Zr, or Al is used. One or more of these metals may be used.
On the other hand, any oligomer can be used as long as it can be uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mers can be used.

【0013】また、酸性水溶液としては、通常塩酸、硝
酸等の鉱酸0.001モル濃度以上のもの、あるいは酢
酸、ギ酸等の有機酸0.01モル濃度以上のものが好ま
しい。
The acidic aqueous solution is preferably one having a concentration of at least 0.001 mol of a mineral acid such as hydrochloric acid or nitric acid or a solution having a concentration of 0.01 mol or more of an organic acid such as acetic acid or formic acid.

【0014】間隙1ミリメートル以下の部材とは、例え
ば毛細管、2枚の平板、ハニカムなどによって構成さ
れ、毛細管の場合は、間隙は内径に相当し、2枚の平板
の場合は向かい合わせた平板の間隔に相当する。これら
毛細管、平板などは、例えば、シリカガラスからなり、
間隙は、好ましくは30〜200μmである。また、平
板を用いる場合は、平板自体のサイズは、厚さ0.3〜
10mm、横3〜500mm、縦3〜500mmが好ま
しい。また、平板は、2枚に限定されず、複数枚順次向
かい合せ、複数の間隙を作成してもよい。さらに、ハニ
カムにおける間隙の数も限定されない。これら複数枚の
平板、ハニカムを使用することによりマルチキャピラリ
ーを作製できる。また、毛細管を複数本束ねてもよい。
The member having a gap of 1 mm or less is constituted by, for example, a capillary tube, two flat plates, a honeycomb, or the like. In the case of a capillary tube, the gap corresponds to the inner diameter. Corresponds to the interval. These capillaries, flat plates, etc. are made of, for example, silica glass,
The gap is preferably between 30 and 200 μm. When a flat plate is used, the size of the flat plate itself is 0.3 to 0.3 mm.
10 mm, 3 to 500 mm in width, and 3 to 500 mm in length are preferred. Further, the number of flat plates is not limited to two, and a plurality of flat plates may be sequentially faced to form a plurality of gaps. Further, the number of gaps in the honeycomb is not limited. A multi-capillary can be manufactured by using these plural flat plates and honeycombs. Further, a plurality of capillaries may be bundled.

【0015】加水分解にあたっては、毛細管などの中に
溶液を室温40〜80℃で0.5〜5時間保存すること
により達成できる。加水分解は、当初透明な溶液が白濁
して水溶性高分子との相分離を生じついにゲル化する過
程を経る。この加水分解過程で水溶性高分子は分散状態
にありそれらの沈殿は実質的に生じない。
The hydrolysis can be achieved by storing the solution in a capillary tube or the like at room temperature of 40 to 80 ° C. for 0.5 to 5 hours. Hydrolysis involves a process in which a clear solution becomes cloudy at first and undergoes phase separation with a water-soluble polymer to finally gel. During this hydrolysis process, the water-soluble polymers are in a dispersed state, and their precipitation does not substantially occur.

【0016】あらかじめ共存させる熱分解性の化合物の
具体的な例としては、尿素あるいはヘキサメチレンテト
ラミン、ホルムアミド、N−メチルホルムアミド、N,
N−ジメチルホルムアミド、アセトアミド、N−メチル
アセトアミド、N,N−ジメチルアセトアミド等の有機
アミド類を利用できるが、後述する実施例にも示すよう
に、加熱後の溶媒のpH値が重要な条件であるので、熱
分解後に溶媒を塩基性にする化合物であれば特に制限は
ない。共存させる熱分解性化合物は、化合物の種類にも
よるが、例えば尿素の場合には、反応溶液10gに対
し、0.05〜0.8g、好ましくは0.1〜0.7g
である。また、加熱温度は、例えば尿素の場合には40
〜200℃で、加熱後の溶媒のpH値は、6.0〜1
2.0が好ましい。また、熱分解によってフッ化水素酸
のようにシリカを溶解する性質のある化合物を生じるも
のも、同様に利用できる。
Specific examples of the thermally decomposable compound to be coexisted in advance include urea or hexamethylenetetramine, formamide, N-methylformamide, N,
Organic amides such as N-dimethylformamide, acetamide, N-methylacetamide, and N, N-dimethylacetamide can be used. However, as shown in Examples described below, under the condition that the pH value of the solvent after heating is important. There is no particular limitation as long as the compound makes the solvent basic after thermal decomposition. The thermally decomposable compound to be coexisted depends on the kind of the compound. For example, in the case of urea, 0.05 to 0.8 g, preferably 0.1 to 0.7 g, per 10 g of the reaction solution.
It is. The heating temperature is, for example, 40 in the case of urea.
The pH value of the solvent after heating at -200 ° C is 6.0-1.
2.0 is preferred. Further, a compound which produces a compound having a property of dissolving silica, such as hydrofluoric acid, by thermal decomposition can also be used.

【0017】本発明において最も有効に細孔構造を制御
することができる無機多孔質の作製法としては、金属ア
ルコキシドを出発原料とし、適当な共存物質を原料に添
加して、巨大空孔となる溶媒リッチ相を持つ構造を生じ
せしめる、ゾル−ゲル法を挙げることができる。適当な
共存物質とは、ゾル−ゲル転移と相分離過程とを同時に
誘起する働きをもつ物質であり、これによって溶媒リッ
チ相と骨格相とに分離すると同時にゲル化する。共存物
質としてはポリエチレンオキシドのように溶媒に溶ける
高分子あるいはポリオキシエチレン鎖を含む界面活性剤
が望ましい。
In the present invention, as a method for producing an inorganic porous material capable of controlling the pore structure most effectively, a metal alkoxide is used as a starting material, and an appropriate coexisting substance is added to the material to form a huge pore. A sol-gel method that produces a structure having a solvent-rich phase can be used. A suitable coexisting substance is a substance that has a function of simultaneously inducing a sol-gel transition and a phase separation process, and thereby separates into a solvent-rich phase and a skeletal phase and gels at the same time. As the coexisting substance, a polymer soluble in a solvent such as polyethylene oxide or a surfactant containing a polyoxyethylene chain is desirable.

【0018】水溶性高分子を酸性水溶液に溶かし、それ
に加水分解性の官能基を有する金属化合物を添加して加
水分解反応を行うと、間隙1ミリメートル以下の部材内
において、溶媒リッチ相と骨格相とに分離したゲルが生
成する。生成物(ゲル)が固化した後、適当な熟成時間
を経た後、湿潤状態のゲルを加熱することによって、反
応溶液にあらかじめ溶解させておいたアミド系化合物が
熱分解し、骨格相の内壁面に接触している溶媒のpHが
上昇する。そして、溶媒がその内壁面を浸食し、内壁面
の凹凸状態を変えることによって細孔径を徐々に拡大す
る。シリカを主成分とするゲルの場合には、酸性あるい
は中性領域においては変化の度合は非常に小さいが、熱
分解が盛んになり水溶液の塩基性が増すにつれて、細孔
を構成する部分が溶解し、より平坦な部分に再析出する
ことによって、平均細孔径が大きくなる反応が顕著に起
こるようになる。
When a water-soluble polymer is dissolved in an aqueous acidic solution, and a metal compound having a hydrolyzable functional group is added thereto to carry out a hydrolysis reaction, a solvent-rich phase and a skeletal phase are formed in a member having a gap of 1 mm or less. A separated gel is formed. After the product (gel) solidifies and after an appropriate aging time, the amide compound dissolved in the reaction solution is thermally decomposed by heating the wet gel, and the inner wall of the skeletal phase is heated. The pH of the solvent in contact with increases. Then, the solvent erodes the inner wall surface and changes the unevenness of the inner wall surface, thereby gradually expanding the pore diameter. In the case of a gel containing silica as the main component, the degree of change is very small in the acidic or neutral region, but as the thermal decomposition becomes active and the basicity of the aqueous solution increases, the parts that make up the pores dissolve. However, by re-precipitation on a flatter portion, a reaction of increasing the average pore diameter becomes remarkable.

【0019】巨大空孔を持たず3次元的に束縛された細
孔のみを持つゲルでは、平衡条件としては溶解し得る部
分でも、溶出物質が外部の溶液にまで拡散できないため
に、元の細孔構造が相当な割合で残る。これに対して巨
大空孔となる溶媒リッチ相を持つゲルにおいては、2次
元的にしか束縛されていない細孔が多く、外部の水溶液
との物質のやり取りが十分頻繁に起こるため、大きい細
孔の発達に並行して小さい細孔は消滅し、全体の細孔径
分布は顕著に広がることがない。
In a gel having only three-dimensionally constrained pores without huge pores, the eluting substance cannot diffuse to an external solution even in a portion that can be dissolved under equilibrium conditions, so that the original fine A significant proportion of the pore structure remains. On the other hand, in a gel having a solvent-rich phase that is a huge pore, many pores are restricted only two-dimensionally, and exchange of substances with an external aqueous solution occurs frequently enough. The small pores disappear in parallel with the development of, and the entire pore size distribution does not remarkably widen.

【0020】なお、加熱過程においては、ゲルを密閉条
件下に置き、熱分解生成物の蒸気圧が飽和して溶媒のp
Hが速やかに定常値をとるようにすることが有効であ
る。
In the heating step, the gel is kept under closed conditions, and the vapor pressure of the pyrolysis product is saturated, and the p
It is effective that H quickly takes a steady value.

【0021】溶解・再析出反応が定常状態に達し、これ
に対応する細孔構造を得るために要する、加熱処理時間
は、巨大空孔の大きさや試料の体積によって変化するの
で、それぞれの処理条件において実質的に細孔構造が変
化しなくなる、最短処理時間を決定することが必要であ
る。
The heat treatment time required for the dissolution / reprecipitation reaction to reach a steady state and to obtain the corresponding pore structure varies depending on the size of the huge pores and the volume of the sample. It is necessary to determine the shortest processing time at which the pore structure does not substantially change.

【0022】加熱処理を終えたゲルは、溶媒を気化させ
ることによって、間隙1ミリメートル以下の部材内にお
いて、管壁に密着した乾燥ゲルとなる。この乾燥ゲル中
には、出発溶液中の共存物質が残存する可能性があるの
で、適当な温度で熱処理を行い、有機物等を熱分解する
ことによって、目的の無機系多孔質体を得ることができ
る。なお、乾燥は、30〜80℃で数時間〜数十時間放
置して行い、熱処理は、200〜800℃程度で加熱す
る。
The gel after the heat treatment turns into a dry gel in close contact with the tube wall in a member having a gap of 1 mm or less by evaporating the solvent. Since there is a possibility that coexisting substances in the starting solution may remain in the dried gel, it is possible to obtain a target inorganic porous material by performing a heat treatment at an appropriate temperature and thermally decomposing organic substances. it can. In addition, drying is performed at 30 to 80 ° C. for several hours to several tens of hours, and heat treatment is performed at about 200 to 800 ° C.

【0023】[0023]

【実施例】−実施例1− まず水溶性高分子であるポリエチレンオキシド(アルド
リッチ製 商品番号85,645-2)0.90gおよび尿素0.90gを
0.01規定酢酸水溶液10gに溶解し、この溶液にテトラメ
トキシシラン4mlをかくはん下で加えて、加水分解反応
を行った。数分かくはんしたのち、得られた透明溶液を
内径0.1ミリメートル(100μm)の毛細管中に密
閉し、40℃の恒温漕中に保持したところ約30分後に
固化した。
EXAMPLES Example 1 First, 0.90 g of polyethylene oxide (product number 85,645-2, manufactured by Aldrich) and 0.90 g of urea, which are water-soluble polymers, were added.
It was dissolved in 10 g of a 0.01 N acetic acid aqueous solution, and 4 ml of tetramethoxysilane was added to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained clear solution was sealed in a capillary tube having an inner diameter of 0.1 millimeter (100 μm) and kept in a constant temperature bath at 40 ° C., whereupon it solidified after about 30 minutes.

【0024】固化した試料をさらに数時間熟成させ、密
閉条件下で120℃に1時間保った。このとき、ゲルと
共存する溶媒のpH値は約10.7であった。この処理
の後、ゲルを40℃で3日間乾燥し、100℃/hの昇
温速度で400℃まで加熱した。これによって、内径
0.1ミリメートルの毛細管中において、非晶質シリカ
よりなる多孔質体を得た。
The solidified sample was aged for several more hours and kept at 120 ° C. for 1 hour under closed conditions. At this time, the pH value of the solvent coexisting with the gel was about 10.7. After this treatment, the gel was dried at 40 ° C. for 3 days and heated to 400 ° C. at a rate of 100 ° C./h. Thus, a porous body made of amorphous silica was obtained in a capillary having an inner diameter of 0.1 mm.

【0025】得られた多孔質体中には中心孔径2μm
(=2000nm)程度の揃った貫通孔が3次元網目状
に絡み合った構造で存在していることが、毛細管カラム
の断面の電子顕微鏡観察によって確かめられた。そし
て、その貫通孔の内壁に直径25nm程度の細孔が多数
存在していることが、窒素吸着測定によって確かめられ
た。細孔径分布曲線を図1に示す。
The obtained porous body has a center pore diameter of 2 μm.
It was confirmed by electron microscopic observation of the cross section of the capillary column that through holes having a uniform size (= 2000 nm) were present in a structure in which they were intertwined in a three-dimensional network. Then, it was confirmed by nitrogen adsorption measurement that many pores having a diameter of about 25 nm were present on the inner wall of the through hole. The pore size distribution curve is shown in FIG.

【0026】なお、密閉条件下での保持温度を80℃あ
るいは200℃に変化させた以外は上記と同一条件で多
孔質体を製造したところ、貫通孔の空孔分布は変わらな
いが、窒素吸着法によって計られる中心細孔径はそれぞ
れ、約15nmあるいは50nmに変化した。このこと
から、ゲルの加熱温度が高いほど大きい中心細孔径が得
られることが分かった。
When the porous body was manufactured under the same conditions as above except that the holding temperature under the closed condition was changed to 80 ° C. or 200 ° C., the pore distribution of the through-holes was not changed, but the nitrogen adsorption was not changed. The center pore diameter measured by the method was changed to about 15 nm or 50 nm, respectively. From this, it was found that a larger central pore diameter was obtained as the heating temperature of the gel was higher.

【0027】上述の方法によって得られた有効長25c
mの毛細管カラムを、電気クロマトグラフィー装置に取
り付け、アセトニトリル:トリス緩衝液塩酸50mM=
80:20、pH=8の移動相を用いて、20℃におい
て印加電圧20kVでチオ尿素の検出を行った。
The effective length 25c obtained by the above method
m capillary tube was attached to an electrochromatography apparatus, and acetonitrile: tris buffer hydrochloric acid 50 mM =
Thiourea was detected at 20 ° C. and an applied voltage of 20 kV using a mobile phase of 80:20, pH = 8.

【0028】上述の条件下で生じた電気浸透流の線速度
は1.19mm/sとなり、従来用いられている良好に
粒子充填された毛細管カラムとほぼ同等の値となった。
この条件下でのチオ尿素の溶出ピークおよび電流と電圧
の値を、図2に示す。ピーク幅から計算される理論段数
は25cmに対して約48000段であり、これは良好
に充填された毛細管カラムの約20万段/mと同等の値
であった。
The linear velocity of the electroosmotic flow generated under the above-mentioned conditions was 1.19 mm / s, which was almost the same value as that of a conventionally used well-filled capillary column.
FIG. 2 shows the elution peak of thiourea and the values of current and voltage under these conditions. The theoretical plate number calculated from the peak width was about 48,000 plates for 25 cm, which was equivalent to about 200,000 plates / m of a well-packed capillary column.

【0029】−実施例2− 共存させる尿素の量を0.45gとし、pH値を9とした以
外は実施例1と同一条件で多孔質体を製造した。する
と、ゲルの加熱温度80℃、120℃および200℃に
おいて、中心細孔径はそれぞれ15nm、25nmおよ
び50nmとなり、実施例1の場合と実験誤差範囲内で
一致し、尿素の濃度にはほとんど依存しなかったが、微
分分布曲線によって測られる細孔径分布の広さはどの場
合にも広くなった。このことから、共存させる尿素の濃
度を上げるほど、得られる多孔質体の細孔径分布は狭く
なり、細孔容積は大きくなることが分かった。また、上
述の方法によって得られた毛細管カラムによっても、実
施例1と同等な電気クロマトグラフィー分析を行うこと
が可能であった。
Example 2 A porous body was produced under the same conditions as in Example 1 except that the amount of coexisting urea was 0.45 g and the pH value was 9. Then, at the heating temperatures of the gel of 80 ° C., 120 ° C. and 200 ° C., the central pore diameters became 15 nm, 25 nm and 50 nm, respectively, which coincided with the case of Example 1 within the experimental error range, and almost depended on the concentration of urea. Nonetheless, the breadth of the pore size distribution, as measured by the differential distribution curve, increased in each case. From this, it was found that as the concentration of urea coexisting was increased, the pore size distribution of the obtained porous body was narrowed, and the pore volume was increased. In addition, it was possible to perform electrochromatographic analysis equivalent to that of Example 1 by using the capillary column obtained by the above-described method.

【0030】−実施例3− まず水溶性高分子であるポリエチレンオキシド(アルド
リッチ製 商品番号85,645-2)0.90gおよび尿素0.90gを
0.01規定酢酸水溶液10gに溶解し、この溶液にテトラメ
トキシシラン4mlをかくはん下で加えて、加水分解反応
を行った。数分かくはんしたのち、得られた透明溶液を
間隔0.1ミリメートル(100μm)で向かい合わせ
た2枚のスライドガラスの間隙に密閉し、40℃の恒温
漕中に保持したところ約30分後に固化した。固化した
試料をさらに数時間熟成させ、密閉条件下で120℃に
1時間保った。このとき、ゲルと共存する溶媒のpH値
は約10.7であった。この処理の後、ゲルを40℃で
3日間乾燥し、100℃/hの昇温速度で400℃まで
加熱した。これによって、間隙0.1ミリメートルの2
枚のスライドガラスに密着した、非晶質シリカよりなる
薄板状多孔質体を得た。
Example 3 First, 0.90 g of polyethylene oxide (product number 85,645-2 manufactured by Aldrich) and 0.90 g of urea, which are water-soluble polymers, were used.
It was dissolved in 10 g of a 0.01 N acetic acid aqueous solution, and 4 ml of tetramethoxysilane was added to this solution under stirring to carry out a hydrolysis reaction. After stirring for several minutes, the obtained clear solution was sealed in the gap between two slide glasses facing each other at an interval of 0.1 mm (100 μm), and was solidified after about 30 minutes when kept in a constant temperature bath at 40 ° C. did. The solidified sample was aged for several more hours and kept at 120 ° C. for 1 hour under closed conditions. At this time, the pH value of the solvent coexisting with the gel was about 10.7. After this treatment, the gel was dried at 40 ° C. for 3 days and heated to 400 ° C. at a rate of 100 ° C./h. This gives a gap of 0.1 mm 2
A thin plate-like porous body made of amorphous silica adhered to one slide glass was obtained.

【0031】得られた多孔質体中には中心孔径2μm
(=2000nm)程度の揃った貫通孔が3次元網目状
に絡み合った構造で存在していることが、薄板状試料の
断面の電子顕微鏡観察によって確かめられた。そして、
その貫通孔の内壁に直径25nm程度の細孔が多数存在
していることが、窒素吸着測定によって確かめられた。
細孔径分布曲線は図1と同様であった。
The obtained porous body has a center pore diameter of 2 μm.
It was confirmed by electron microscope observation of a cross section of the thin plate sample that through holes having a uniform size (= 2000 nm) were present in a structure in which they were entangled in a three-dimensional network. And
It was confirmed by nitrogen adsorption measurement that a large number of pores having a diameter of about 25 nm were present on the inner wall of the through hole.
The pore size distribution curve was similar to FIG.

【0032】なお、密閉条件下での保持温度を80℃あ
るいは200℃に変化させた以外は上記と同一条件で多
孔質体を製造したところ、貫通孔の空孔分布は変わらな
いが、窒素吸着法によって測られる中心細孔径はそれぞ
れ、約15nmあるいは50nmに変化した。このこと
から、ゲルの加熱温度が高いほど大きい中心細孔径が得
られることが分かった。
When the porous body was manufactured under the same conditions as above except that the holding temperature under the closed condition was changed to 80 ° C. or 200 ° C., the pore distribution of the through holes was not changed, but the nitrogen adsorption was not changed. The center pore diameter measured by the method changed to about 15 nm or 50 nm, respectively. From this, it was found that a larger central pore diameter was obtained as the heating temperature of the gel was higher.

【0033】上述の方法によって得られた有効長25c
mの薄板状カラムを、電気泳動装置に取り付け、アセト
ニトリル:トリス緩衝液塩酸50mM=80:20、p
H=8の移動相を用いて、20℃において印加電圧20
kVでチオ尿素の泳動を行った。上述の条件下で生じた
電気浸透流の線速度は0.6mm/sとなり、従来用い
られている高分子ゲルよりなる電気泳動ゲルとほぼ同等
の値となった。
The effective length 25c obtained by the above method
m was attached to an electrophoresis apparatus, and acetonitrile: tris buffer, hydrochloric acid 50 mM = 80: 20, p
Using a mobile phase of H = 8, an applied voltage of 20
The thiourea was run at kV. The linear velocity of the electroosmotic flow generated under the above-mentioned conditions was 0.6 mm / s, which was almost the same value as that of an electrophoresis gel composed of a conventionally used polymer gel.

【0034】−実施例4− 共存させる尿素の量を0.45gとし、pH値を9とした以
外は実施例3と同一条件で多孔質体を製造した。する
と、ゲルの加熱温度80℃、120℃および200℃に
おいて、中心細孔径はそれぞれ15nm、25nmおよ
び50nmとなり、実施例3の場合と実験誤差範囲内で
一致し、尿素の濃度にはほとんど依存しなかったが、微
分分布曲線によって測られる細孔径分布の広さはどの場
合にも広くなった。このことから、共存させる尿素の濃
度を上げるほど、得られる多孔質体の細孔径分布は狭く
なり、細孔容積は大きくなることが分かった。また、上
述の方法によって得られた薄板状カラムによっても、実
施例3と同等な電気泳動分析を行うことが可能であっ
た。
Example 4 A porous body was produced under the same conditions as in Example 3 except that the amount of coexisting urea was 0.45 g and the pH value was 9. Then, at gel heating temperatures of 80 ° C., 120 ° C., and 200 ° C., the central pore diameters became 15 nm, 25 nm, and 50 nm, respectively, which were within the experimental error range as in Example 3, and almost depended on the urea concentration. Nonetheless, the breadth of the pore size distribution, as measured by the differential distribution curve, increased in each case. From this, it was found that as the concentration of urea coexisting was increased, the pore size distribution of the obtained porous body was narrowed, and the pore volume was increased. In addition, it was possible to perform electrophoretic analysis equivalent to that of Example 3 using the thin plate column obtained by the above method.

【0035】[0035]

【発明の効果】以上のように本発明によれば、間隙1ミ
リメートル以下の部材内において、所望の細孔分布に制
御された多孔質体を製造することができる。しかも巨大
空孔と細孔との二重気孔構造の多孔質体であることか
ら、充填操作を必要としない一体型毛細管カラム、薄板
状カラムなどとして、電気クロマトグラフィーに適用可
能である。
As described above, according to the present invention, it is possible to manufacture a porous body having a controlled pore distribution within a member having a gap of 1 mm or less. Moreover, since it is a porous body having a double pore structure of huge pores and pores, it can be applied to electrochromatography as an integrated capillary column or a thin plate column that does not require a filling operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】細孔径分布曲線FIG. 1 Pore size distribution curve

【図2】クロマトグラム、電流および電圧の時間変化FIG. 2 Chromatogram, time change of current and voltage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C12N 11/14 G01N 27/26 311E (72)発明者 中西 和樹 京都市左京区下鴨蓼倉町64−10 (72)発明者 水口 博義 京都市北区大宮釈迦谷3番地59 有限会社 エム・アール・シー内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C12N 11/14 G01N 27/26 311E (72) Inventor Kazuki Nakanishi 64-10 Shimogamo Tatekuracho, Sakyo-ku, Kyoto-shi (72) Inventor Hiroyoshi Mizuguchi 3-59 Omiya Shakadani, Kita-ku, Kyoto 59 M.R.C.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応溶液にあらかじめ熱分解する化合物
を溶解させ、ゾル−ゲル法により間隙1ミリメートル以
下の部材内において、平均直径100ナノメートル以上
の3次元網目状に連続した溶媒に富む溶媒リッチ相と無
機物質に富み表面に細孔を有する骨格相とからなるゲル
を調製し、続いて湿潤状態のゲルを加熱することによ
り、あらかじめ反応溶液に溶解させておいた化合物を熱
分解させてゲルの微細構造を改変させた後、ゲルを乾燥
し、加熱することを特徴とする無機系多孔質体の製造方
法。
A solvent rich in a reaction solution in which a compound which is thermally decomposed is dissolved in advance and which is enriched in a three-dimensional network-like solvent having an average diameter of 100 nm or more in a member having a gap of 1 mm or less by a sol-gel method. A gel consisting of a phase and a skeletal phase rich in inorganic substances and having pores on the surface is prepared, and then the wet gel is heated to thermally decompose the compound previously dissolved in the reaction solution. A method for producing an inorganic porous material, which comprises drying the gel and heating after altering the microstructure of the above.
【請求項2】 水溶性高分子、熱分解する化合物を酸性
水溶液に溶かし、それに加水分解性の官能基を有する金
属化合物を添加して加水分解反応を行い、間隙1ミリメ
ートル以下の部材内において生成物が固化した後、あら
かじめ反応溶液に溶解させておいた化合物を熱分解させ
てゲルの微細構造を改変させ、次いで乾燥し加熱するこ
とを特徴とする無機系多孔質体の製造方法。
2. A water-soluble polymer and a compound which is thermally decomposed are dissolved in an acidic aqueous solution, and a metal compound having a hydrolyzable functional group is added thereto to carry out a hydrolysis reaction. A method for producing an inorganic porous material, comprising: after solidification, thermally decomposing a compound previously dissolved in a reaction solution to modify the fine structure of the gel, followed by drying and heating.
【請求項3】 間隙1ミリメートル以下の部材が毛細管
又は2枚以上の平板を向かい合わせたもの、ハニカムで
ある請求項1又は2記載の無機系多孔質体の製造方法。
3. The method for producing an inorganic porous body according to claim 1, wherein the member having a gap of 1 mm or less is a honeycomb formed by facing a capillary tube or two or more flat plates.
JP11010125A 1998-01-23 1999-01-19 Production of inorganic porous material Pending JPH11292528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010125A JPH11292528A (en) 1998-01-23 1999-01-19 Production of inorganic porous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1137798 1998-01-23
JP10-11377 1998-01-23
JP11010125A JPH11292528A (en) 1998-01-23 1999-01-19 Production of inorganic porous material

Publications (1)

Publication Number Publication Date
JPH11292528A true JPH11292528A (en) 1999-10-26

Family

ID=26345333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010125A Pending JPH11292528A (en) 1998-01-23 1999-01-19 Production of inorganic porous material

Country Status (1)

Country Link
JP (1) JPH11292528A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071281A (en) * 2001-09-06 2003-03-11 Fukui Prefecture Porous photocatalyst and method for manufacturing the same
WO2005031338A1 (en) * 2003-09-25 2005-04-07 Ngk Insulators, Ltd. Composite member
WO2005042402A1 (en) * 2003-10-31 2005-05-12 Ngk Insulators, Ltd. Inorganic porous material containing dispersed particles
WO2005051864A1 (en) * 2003-11-28 2005-06-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
JP2006240982A (en) * 2005-02-02 2006-09-14 Chiba Univ Cylindrical porous silica and method of manufacturing the same
JP2007302739A (en) * 2006-05-09 2007-11-22 Kobe Steel Ltd Method for producing porous material
JP2008068241A (en) * 2006-09-15 2008-03-27 Tokuyama Corp Micro-reactor and its manufacturing method
JP4830046B1 (en) * 2010-11-24 2011-12-07 株式会社Reiメディカル Monolith porous body manufacturing method
JP4842395B1 (en) * 2010-11-02 2011-12-21 株式会社Reiメディカル Monolith porous body manufacturing method
JP2013003065A (en) * 2011-06-20 2013-01-07 Gl Sciences Inc Porous body and manufacturing method thereof
JP2014522363A (en) * 2011-05-13 2014-09-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing inorganic particulate matter
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
WO2017026388A1 (en) * 2015-08-11 2017-02-16 株式会社エスエヌジー Transparent porous sustained-release body, method for manufacturing same, sustained-release body kit, sustained-release device, and sustained-release method
US10577250B2 (en) 2011-05-13 2020-03-03 Merck Patent Gmbh Process for producing of inorganic particulate material
WO2021220507A1 (en) * 2020-05-01 2021-11-04 昭和電工マテリアルズ株式会社 Coating solution for forming porous body, porous body, and method for manufacturing porous body

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071281A (en) * 2001-09-06 2003-03-11 Fukui Prefecture Porous photocatalyst and method for manufacturing the same
WO2005031338A1 (en) * 2003-09-25 2005-04-07 Ngk Insulators, Ltd. Composite member
WO2005042402A1 (en) * 2003-10-31 2005-05-12 Ngk Insulators, Ltd. Inorganic porous material containing dispersed particles
JP4683554B2 (en) * 2003-11-28 2011-05-18 日本碍子株式会社 Method for producing porous titania molded body
JPWO2005051864A1 (en) * 2003-11-28 2007-06-21 日本碍子株式会社 Porous molded body, porous sintered body, manufacturing method thereof, and composite member thereof
WO2005051864A1 (en) * 2003-11-28 2005-06-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
US8883001B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
JP2006240982A (en) * 2005-02-02 2006-09-14 Chiba Univ Cylindrical porous silica and method of manufacturing the same
JP4743415B2 (en) * 2005-02-02 2011-08-10 国立大学法人 千葉大学 Cylindrical porous silica and method for producing the same
JP2007302739A (en) * 2006-05-09 2007-11-22 Kobe Steel Ltd Method for producing porous material
JP2008068241A (en) * 2006-09-15 2008-03-27 Tokuyama Corp Micro-reactor and its manufacturing method
JP4641993B2 (en) * 2006-09-15 2011-03-02 株式会社トクヤマ Microreactor and manufacturing method thereof
JP4842395B1 (en) * 2010-11-02 2011-12-21 株式会社Reiメディカル Monolith porous body manufacturing method
WO2012070333A1 (en) * 2010-11-24 2012-05-31 株式会社ルネッサンス・エナジー・インベストメント Method for producing porous monolith
JP4830046B1 (en) * 2010-11-24 2011-12-07 株式会社Reiメディカル Monolith porous body manufacturing method
JP2014522363A (en) * 2011-05-13 2014-09-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing inorganic particulate matter
US9517268B2 (en) 2011-05-13 2016-12-13 Merck Patent Gmbh Process for producing inorganic particulate material
US10577250B2 (en) 2011-05-13 2020-03-03 Merck Patent Gmbh Process for producing of inorganic particulate material
JP2013003065A (en) * 2011-06-20 2013-01-07 Gl Sciences Inc Porous body and manufacturing method thereof
WO2017026388A1 (en) * 2015-08-11 2017-02-16 株式会社エスエヌジー Transparent porous sustained-release body, method for manufacturing same, sustained-release body kit, sustained-release device, and sustained-release method
JP6323928B2 (en) * 2015-08-11 2018-05-16 株式会社エスエヌジー Transparent porous sustained-release body and method for producing the same, sustained-release body kit, sustained-release apparatus, and sustained-release method
JPWO2017026388A1 (en) * 2015-08-11 2018-06-21 株式会社エスエヌジー Transparent porous sustained-release body and method for producing the same, sustained-release body kit, sustained-release apparatus, and sustained-release method
US10499629B2 (en) 2015-08-11 2019-12-10 Sng Inc. Transparent porous sustained-release body and method for producing the same, and kit of sustained-release body, sustained-release apparatus, and sustained-release method
WO2021220507A1 (en) * 2020-05-01 2021-11-04 昭和電工マテリアルズ株式会社 Coating solution for forming porous body, porous body, and method for manufacturing porous body

Similar Documents

Publication Publication Date Title
JPH11292528A (en) Production of inorganic porous material
US6562744B1 (en) Process for producing inorganic porous material in a capillary
EP1066513B1 (en) Capillary columns
US6207098B1 (en) Method for producing porous inorganic materials
EP0710219B1 (en) Inorganic porous material and process for making same
Randon et al. Synthesis of zirconia monoliths for chromatographic separations
JP3397255B2 (en) Method for producing inorganic porous body
JP3317749B2 (en) Inorganic porous column
Ishizuka et al. Chromatographic characterization of macroporous monolithic silica prepared via sol-gel process
JP2007145636A (en) Porous continuum, column using the same, and method of manufacturing porous continuum
JP2893104B2 (en) Method for producing inorganic porous body having organic functional groups bonded thereto
Pan et al. Aligned macroporous monoliths by ice-templating
JP3985171B2 (en) Method for producing inorganic porous body
JP4362752B2 (en) Manufacturing method of integrated porous material
JPH10182260A (en) Production of inorganic porous body
CN1199854C (en) Method for preparing organic aerogel and carbon aerogel by using normal pressure exsiccation
JP2002362918A (en) Method for producing inorganic porous body
JP3149787U (en) Antibody purification chip
JPWO2004018099A1 (en) Method for producing monolithic reactive porous carrier
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
US7955534B1 (en) Monolithic substrate of materials containing multiple opened channels of one dimensional macropore having a mesoporous inner surface extending through the substrate and a method of making the same
JP2005194155A (en) Surface modifying method for monolithic silica
JP3393224B2 (en) Humidity control material and method for producing the same
JP3876433B2 (en) Porous silica membrane for membrane emulsification
JP2013242229A (en) Inorganic porous continuum column