JPH11289668A - Apparatus and method for controlling reactive power - Google Patents

Apparatus and method for controlling reactive power

Info

Publication number
JPH11289668A
JPH11289668A JP10091430A JP9143098A JPH11289668A JP H11289668 A JPH11289668 A JP H11289668A JP 10091430 A JP10091430 A JP 10091430A JP 9143098 A JP9143098 A JP 9143098A JP H11289668 A JPH11289668 A JP H11289668A
Authority
JP
Japan
Prior art keywords
power
reactive power
reactive
orthogonal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10091430A
Other languages
Japanese (ja)
Inventor
Tetsuhisa Kumano
哲久 熊野
Shunichi Koike
俊一 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP10091430A priority Critical patent/JPH11289668A/en
Publication of JPH11289668A publication Critical patent/JPH11289668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactive power controller which is capable of reducing capital investment and maintenance cost by omitting the reactive power controllers installed at the premises of consumers or power systems. SOLUTION: A reactive power controller, which controls the reactive power of a power system 1 interconnected with a power unit 20 is provided with a DC-AC converter having a reactive power control function, is provided with a voltage measuring means 50 which detects the system voltage or reactive voltage of the private power system of a consumer or a power system 1 for commercial power supply provided with the DC-AC inverter 23, an appropriate reactive power flow value calculating means 41, which receives the signal of the detecting means 50 and calculates the appropriate value of a reactive power flow, a reactive electric energy commanding means 43 which calculates and instructs an appropriate reactive power command value to the converter 23 upon receiving the calculated results of the calculating means 41, and an operation mode discriminating means 42 which discriminates the operation mode of the converter 23 and controls the reactive power of the converter 23 based on the command from the reactive electrical energy commanding means 43.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統に連系さ
れた電源装置を有する電力需要家構内の無効電力制御ま
たは商用電源電力系統の無効電力を調整する無効電力制
御装置または無効電力制御方法に関し、特に燃料電池発
電装置または太陽光発電装置または無停電電源装置など
の電源装置に設置された直交変換装置を用いた無効電力
制御装置または無効電力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive power control device or a reactive power control method for adjusting reactive power in a power customer premises or a commercial power supply system having a power supply device connected to a power system. In particular, the present invention relates to a reactive power control device or a reactive power control method using an orthogonal transform device installed in a power supply device such as a fuel cell power generation device, a solar power generation device, or an uninterruptible power supply device.

【0002】[0002]

【従来の技術】近年、分散型電源やコージェネレーショ
ン設備の設置、家庭用電源設備の導入あるいは無停電電
源装置の普及が進んでおり、このような各種の電源装置
を商用電力系統に連系して運転する傾向にある。一方、
商用電力系統では、無効電力潮流を調整することによっ
て、商用電力系統の電圧を適正な範囲に維持しており、
需要家構内や電力系統の無効電力の制御を電力消費状況
に応じて行う必要があることから、分散型電源などを設
置した需要家では、直交変換装置が設置されているか否
かに関わらず、無効電力を制御できる装置を別途設置す
る必要があった。
2. Description of the Related Art In recent years, the installation of distributed power supplies and cogeneration facilities, the introduction of home power supplies, and the spread of uninterruptible power supplies have been progressing, and such various power supplies have been connected to a commercial power system. Tend to drive. on the other hand,
In the commercial power system, the voltage of the commercial power system is maintained in an appropriate range by adjusting the reactive power flow,
Since it is necessary to control the reactive power of the customer premises and the power system according to the power consumption situation, regardless of whether or not the orthogonal transform device is installed, whether or not the customer has a distributed power supply installed, It was necessary to separately install a device capable of controlling the reactive power.

【0003】従来の電力系統の無効電力量の制御の態様
を図5を用いて説明する。商用電力系統と接続された電
力系統1には、燃料電池とインバータ(直交変換装置)
からなる燃料電池発電装置20A、太陽電池とインバー
タからなる太陽光発電装置20Bと、蓄電池とインバー
タからなる無停電電源装置30などが接続され、受電端
には、例えば静止型無効電力補償装置(SVC)70や
進相コンデンサなどからなる力率調整装置が設置されて
いる。これらの電源装置は、直交変換装置を介して電力
系統と連系するように構成されており、無効電力制御を
該直交変換装置の運転を制御して各機器毎に独立して一
定の無効電力出力を行うか、あるいは、全く無効電力制
御を考慮していない設計となっている。さらに、分散型
電源である燃料電池発電装置20Aや太陽光発電装置2
0Bでは、発電部が稼働しないときには、直交変換装置
の運転を停止していた。また、無停電電源装置において
も、電力系統が正常に運転しているときには、直交変換
装置の運転を停止する場合がある。したがって、このよ
うな電源装置が接続された電力系統においては、静止型
無効電力補償装置(SVC)70などの無効電力調整手
段を、需要家や電力系統の変電設備に設置して無効電力
を調整し力率を調整することが必要となっている。
A conventional mode of controlling the amount of reactive power in a power system will be described with reference to FIG. The power system 1 connected to the commercial power system includes a fuel cell and an inverter (orthogonal transformer).
A power generation device 20A including a solar cell and an inverter, a solar power generation device 20B including a solar cell and an inverter, an uninterruptible power supply 30 including a storage battery and an inverter, and the like are connected to the power receiving end, for example, a static var compensator (SVC). ) And a power factor adjusting device including a phase-advancing capacitor. These power supply devices are configured to be interconnected with a power system via a quadrature conversion device, and control the reactive power by controlling the operation of the quadrature conversion device so that a constant reactive power is independently set for each device. It is designed to output or not consider reactive power control at all. Furthermore, a fuel cell power generation device 20A or a solar power generation device 2
At 0B, when the power generation unit did not operate, the operation of the orthogonal transformation device was stopped. Also, in the uninterruptible power supply, when the power system is operating normally, the operation of the orthogonal transformer may be stopped. Therefore, in a power system to which such a power supply device is connected, a reactive power adjusting unit such as a static var compensator (SVC) 70 is installed in a substation facility of a customer or a power system to adjust the reactive power. It is necessary to adjust the power factor.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の背景
に鑑みなされた発明であり、原理的に無効電力調整を有
することができる直交変換装置の機能を活用して、電力
系統の無効電力を制御して、需要家構内あるいは電力系
統に設置されている無効電力制御装置を省略し、設備投
資や保守費用の低減を図ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned background, and utilizes the function of a quadrature transformation device which can have a reactive power adjustment in principle to obtain the reactive power of a power system. To eliminate the reactive power control device installed in the customer premises or in the electric power system, and to reduce capital investment and maintenance cost.

【0005】[0005]

【課題を解決するための手段】燃料電池発電装置などに
用いられる直交変換装置は、有効電力Pと無効電力Qを
互いに干渉することなく独立して制御するPQ非干渉制
御が行われており、有効電力Pと無効電力Qをまったく
無関係に独立して制御することが可能となっている。す
なわち、直交変換装置は図6に示すように、直列接続さ
れたスイッチング素子232−1,232−2と、該直
列接続体に並列に接続されたコンデンサ233とからな
る直交変換分枝を、例えばU相、V相、W相の各相を3
個並列に有して構成される。各コンデンサ233には、
並列に抵抗234が、直列に抵抗235が接続される。
各スイッチング素子232には、並列にダイオード23
6が、直列に抵抗237が接続される。各スイッチング
素子232は、インバータ駆動回路231によって、順
次導通制御され、発電装置21からの直流を交流に、電
力系統からの交流を直流に直交変換する。
The orthogonal transformer used in a fuel cell power generator or the like performs PQ non-interference control for independently controlling the active power P and the reactive power Q without interfering with each other. The active power P and the reactive power Q can be independently controlled independently of each other. That is, as shown in FIG. 6, the orthogonal transform device includes an orthogonal transform branch including switching elements 232-1 and 232-2 connected in series and a capacitor 233 connected in parallel to the series connected body, for example. U phase, V phase, W phase
It is configured to be provided in parallel. Each capacitor 233 has
The resistor 234 is connected in parallel and the resistor 235 is connected in series.
Each switching element 232 includes a diode 23 in parallel.
6, a resistor 237 is connected in series. Each of the switching elements 232 is sequentially controlled in conduction by the inverter drive circuit 231, and orthogonally converts DC from the power generator 21 into AC and AC from the power system into DC.

【0006】このような直交変換装置23においては、
発電装置21側から電力が出力されていない状態でも、
電力系統側からコンデンサ233に充電電流を流すよう
にスイッチング素子を動作させ、かつ系統電圧と直交変
換装置の電圧の振幅を制御して無効電力を制御すること
が可能となる。この原理は、静止型無効電力補償装置
(SVC)の動作原理と同じものである。本発明は、電
力系統に接続された電源装置の発電装置が停止している
ときには、電源装置の直交変換装置を静止型無効電力補
償装置と同様に運転して無効電力の制御に利用する。
In such an orthogonal transform device 23,
Even when no power is output from the power generation device 21 side,
The switching element is operated so that a charging current flows from the power system side to the capacitor 233, and the reactive power can be controlled by controlling the system voltage and the amplitude of the voltage of the orthogonal transformer. This principle is the same as the operation principle of the static var compensator (SVC). According to the present invention, when the power generator of the power supply device connected to the power system is stopped, the orthogonal transform device of the power supply device is operated in the same manner as the static var compensator and used for controlling the reactive power.

【0007】本発明は、燃料電池発電装置または太陽光
発電装置もしくは無停電電源装置に設置した直交変換装
置を有効に利用して、無効電力潮流を制御し、商用電源
電力系統の系統電圧あるいは需要家構内の系統電圧を制
御する。実際には、電圧あるいは無効電力潮流の制御の
必要がある電力系統に、系統電圧を検出する電圧測定手
段または無効電力を検出する無効電力測定手段を設置
し、この手段が検出した系統電圧または無効電力に基づ
いて、直交変換装置の無効電力潮流が目標値に到達する
ために必要な各直交変換装置の無効電力出力値を自動的
に計算し、各直交変換装置に無効電力出力指令値を出
す。指令を受け取った直交変換装置は、そのときの燃料
電池発電部や太陽光発電部あるいは無停電電源装置の運
転状態に応じて、適切な運転モードを自動的に選択し指
令された無効電力を出力する。
The present invention controls a reactive power flow by effectively utilizing a quadrature converter installed in a fuel cell power generator, a solar power generator, or an uninterruptible power supply, so as to control the system voltage or demand of a commercial power supply system. Control the system voltage in the premises. In practice, a voltage measuring means for detecting system voltage or a reactive power measuring means for detecting reactive power is installed in a power system that needs to control voltage or reactive power flow, and the system voltage or reactive power detected by this means is detected. Based on the power, the reactive power output value of each orthogonal transform device required for the reactive power flow of the orthogonal transform device to reach the target value is automatically calculated, and a reactive power output command value is issued to each orthogonal transform device. . Upon receiving the command, the orthogonal transformation device automatically selects an appropriate operation mode according to the operating state of the fuel cell power generation unit, solar power generation unit or uninterruptible power supply and outputs the commanded reactive power I do.

【0008】本発明は、無効電力制御機能を有する直交
変換装置が設置された電源装置が連系された電力系統の
無効電力を制御する無効電力制御装置において、直交変
換装置が設置されている需要家構内電力系統または直交
変換装置が設置されている商用電源電力系統の系統電圧
を検出する電圧測定手段と、該電圧測定手段からの信号
を受け構内での無効電力潮流の適正な値を計算する無効
電力潮流適正値計算手段と、該無効電力潮流適正値計算
手段の計測結果を受けて前記直交変換装置に対する適正
な無効電力指令値を計算し指示する無効電力量指令手段
と、前記直交変換装置の運転モードを判断する運転モー
ド判定手段とを設け、無効電力量指令手段からの指令に
基づいて直交変換装置の無効電力を制御するようにし
た。
According to the present invention, there is provided a reactive power control apparatus for controlling reactive power of a power system in which a power supply apparatus having an orthogonal power conversion function having a reactive power control function is connected, wherein the orthogonal power conversion apparatus is installed. Voltage measuring means for detecting a system voltage of a house power system or a commercial power system in which an orthogonal transformation device is installed, and a signal from the voltage measuring means is used to calculate an appropriate value of a reactive power flow in the premises. Reactive power flow appropriate value calculating means, reactive power amount command means for receiving a measurement result of the reactive power flow appropriate value calculating means, calculating and instructing an appropriate reactive power command value for the orthogonal transform device, and the orthogonal transform device And an operation mode determining means for determining the operation mode of the orthogonal transformation device, and controlling the reactive power of the orthogonal transform apparatus based on a command from the reactive power amount command means.

【0009】本発明は、無効電力制御機能を有する直交
変換装置が設置された電源装置が連系された電力系統の
無効電力を制御する無効電力制御装置において、直交変
換装置が設置されている需要家構内電力系統または直交
変換装置が設置されている商用電源電力系統の無効電力
を検出する無効電力測定手段と、該無効電力測定手段か
らの信号を受け構内での無効電力潮流の適正な値を計算
する無効電力潮流適正値計算手段と、該無効電力潮流適
正値計算手段の計測結果を受けて前記直交変換装置に対
する適正な無効電力指令値を計算し指示する無効電力量
指令手段と、前記直交変換装置の運転モードを判断する
運転モード判定手段とを設け、無効電力量指令手段から
の指令に基づいて直交変換装置の無効電力を制御するよ
うにした。
According to the present invention, there is provided a reactive power control apparatus for controlling reactive power of a power system in which a power supply apparatus provided with an orthogonal transform apparatus having a reactive power control function is connected, wherein the orthogonal transform apparatus is installed. A reactive power measuring means for detecting reactive power of a home power system or a commercial power supply system in which an orthogonal transformation device is installed, and receiving a signal from the reactive power measuring means to determine an appropriate value of a reactive power flow in the premises. A reactive power flow appropriate value calculating means for calculating; a reactive power amount command means for calculating and instructing an appropriate reactive power command value for the orthogonal transform device in response to a measurement result of the reactive power flow appropriate value calculating means; An operation mode determining means for determining an operation mode of the conversion device is provided, and the reactive power of the orthogonal transform device is controlled based on a command from the reactive power amount command means.

【0010】本発明は、上記無効電力制御装置におい
て、直交変換装置を、直流電力を交流電力に変換する機
能と交流電力を直流電力に変換する機能とを有するとと
もに、無効電力を独立して制御することができる直交変
換装置とした。また、本発明は、上記無効電力制御装置
において、直交変換装置を、直流電力を交流電力に変換
する機能と交流電力を直流電力に変換する機能とを有す
るとともに、有効電力と無効電力を独立して制御するこ
とができる直交変換装置とした。
According to the present invention, in the above reactive power control device, the quadrature converter has a function of converting DC power to AC power and a function of converting AC power to DC power, and independently controls the reactive power. And an orthogonal transformation device that can perform the operation. Further, the present invention provides the above-mentioned reactive power control device, wherein the quadrature conversion device has a function of converting DC power to AC power and a function of converting AC power to DC power, and separates active power and reactive power independently. And an orthogonal transform device that can be controlled.

【0011】さらに、本発明は、上記した各無効電力制
御装置において、電力系統に連系される電源装置を、燃
料電池発電装置または太陽光発電装置もしくは無停電電
源装置のいずれか、または、これらの任意の組み合わせ
とした。
Further, according to the present invention, in each of the above-described reactive power control devices, the power supply device connected to the power system may be any one of a fuel cell power generation device, a photovoltaic power generation device, and an uninterruptible power supply device. And any combination.

【0012】さらに、本発明は、無効電力制御機能を有
する直交変換装置が設置された電源装置が連系された電
力系統の無効電力を制御する無効電力制御方法におい
て、電源装置が運転されていないときにも直交変換装置
の無効電力制御機能を用いて無効電力潮流を制御し、電
力系統の無効電力を制御するようにした。
Further, the present invention relates to a reactive power control method for controlling the reactive power of a power system in which a power supply device provided with an orthogonal transformation device having a reactive power control function is connected, wherein the power supply device is not operated. Sometimes, the reactive power flow is controlled by using the reactive power control function of the orthogonal transform apparatus, and the reactive power of the power system is controlled.

【0013】本発明は、直交変換装置の無効電力潮流の
制御を、電力系統の系統電圧または電力系統の無効電力
に基づいて行うようにした。
According to the present invention, the control of the reactive power flow of the orthogonal transform apparatus is performed based on the system voltage of the power system or the reactive power of the power system.

【0014】[0014]

【発明の実施の形態】以下、本発明にかかる電力系統の
無効電力調整方法の実施の形態を図1〜図3を用いて説
明する。図1は、本発明が適用された電力系統の系統電
圧制御の概略構成を示すブロック図である。図2は、本
発明にかかる無効電力制御装置の構成の概要を示すブロ
ック図である。図3は、本発明にかかる無効電力調整の
態様を説明する波形図である。本発明が適用される電力
系統1は、需要家10と、燃料電池発電装置20Aと、
太陽光発電装置20Bと、無停電電源装置30と、無効
電力制御装置40と、電圧測定手段50と、電力負荷平
準化装置60が接続されて構成される。ここでは説明の
便宜上、燃料電池発電装置、太陽光発電装置、無停電電
源装置、電力負荷平準化装置は、各一台、電圧測定手段
は2ヵ所、電力系統は1フィーダとしたが、本発明を実
施するには、直交変換装置を具備した燃料電池発電装
置、太陽光発電装置、無停電電源装置、電力負荷平準化
装置のいずれかを少なくとも1台有していればよく、電
圧測定手段は少なくとも1ヶ所以上、電力系統は1フィ
ーダないし複数フィーダとし、これらを任意に組み合わ
せることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for adjusting reactive power of a power system according to the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing a schematic configuration of system voltage control of a power system to which the present invention is applied. FIG. 2 is a block diagram showing an outline of the configuration of the reactive power control device according to the present invention. FIG. 3 is a waveform chart for explaining a mode of the reactive power adjustment according to the present invention. The power system 1 to which the present invention is applied includes a customer 10, a fuel cell power generation device 20A,
The photovoltaic power generation device 20B, the uninterruptible power supply device 30, the reactive power control device 40, the voltage measuring means 50, and the power load leveling device 60 are connected to each other. Here, for convenience of explanation, one fuel cell power generation device, one photovoltaic power generation device, one uninterruptible power supply device, and one power load leveling device, two voltage measurement means, and one power system are used. In order to implement, it is only necessary to have at least one of a fuel cell power generation device equipped with an orthogonal transformation device, a solar power generation device, an uninterruptible power supply device, and a power load leveling device. In at least one location, the power system is a single feeder or a plurality of feeders, and these can be arbitrarily combined.

【0015】この実施の形態では、燃料電池発電装置2
0Aと無停電電源装置30は、需要家構内系統に設置さ
れた形態を示している。したがって、燃料電池発電装置
20Aと無停電電源装置30は、需要家受電点の電圧ま
たは無効電力を電圧測定手段50Bで検出して需要家構
内系統の無効電力制御を行っている。燃料電池発電装置
20Aは、直流電圧を発生する燃料電池からなる発電部
21と、該燃料電池が電力を出力しているか否かを識別
して燃料電池の運転状態を示す運転状態信号を出力する
発電部運転状態識別装置22と、燃料電池の直流出力を
系統の交流電圧に整合した交流電圧に変換する直交変換
装置23とを有して構成されている。直交変換装置23
は、装置を構成するインバータの駆動を制御するインバ
ータ駆動回路231を有している。
In this embodiment, the fuel cell power generator 2
0A and the uninterruptible power supply 30 are installed in a customer premises system. Therefore, the fuel cell power generator 20A and the uninterruptible power supply 30 detect the voltage or the reactive power at the customer receiving point by the voltage measuring means 50B and perform the reactive power control of the customer premises system. The fuel cell power generation device 20A outputs a power generation unit 21 including a fuel cell that generates a DC voltage and an operation state signal indicating the operation state of the fuel cell by identifying whether the fuel cell outputs power. The system includes a power generation unit operating state identification device 22 and a quadrature conversion device 23 that converts the DC output of the fuel cell into an AC voltage that matches the AC voltage of the system. Orthogonal transformer 23
Has an inverter drive circuit 231 for controlling the drive of the inverters constituting the device.

【0016】無停電電源装置30は、例えば電力系統1
からの電力によって充電される蓄電池31と、蓄電池か
ら電力が出力されているかもしくは蓄電池へ電力が供給
されているかなどの運転状態を識別して運転状態識別信
号を出力する運転状態識別装置32と、蓄電池の直流出
力を系統の交流電圧に整合した交流電圧に変換するとと
もに系統からの交流電圧を直流に変換して蓄電池を充電
する直交変換装置33Aと、蓄電池の直流出力を交流電
圧に変換して負荷へ供給する直交変換装置33Bから構
成されている。直交変換装置33は、装置を構成するイ
ンバータの駆動を制御するインバータ駆動回路(図示を
省略)を有している。
The uninterruptible power supply 30 is, for example, a power system 1
A storage battery 31 charged with power from the storage battery, an operation state identification device 32 that identifies an operation state such as whether power is being output from the storage battery or power is being supplied to the storage battery, and outputs an operation state identification signal, A quadrature converter 33A that converts the DC output of the storage battery to an AC voltage matched to the AC voltage of the system and converts the AC voltage from the system to DC to charge the storage battery, and converts the DC output of the storage battery to an AC voltage. It is composed of an orthogonal transformation device 33B for supplying to a load. The orthogonal transformation device 33 has an inverter drive circuit (not shown) for controlling the drive of the inverters constituting the device.

【0017】この実施の形態では、太陽光発電装置20
Bと電力負荷平準化装置60は、電力系統に接続された
形態を示している。したがって、太陽光発電装置20B
と電力負荷平準化装置60は、電力系統の電圧または無
効電力を電圧測定手段50Aで検出して系統の無効電力
制御を行っている。太陽光発電装置20Bは、直流電圧
を発生する太陽電池からなる発電部21と、該太陽電池
が電力を出力しているか否かを識別して太陽電池の運転
状態を示す運転状態信号を出力する発電部運転状態識別
装置22と、太陽電池の直流出力を系統の交流電圧に整
合した交流電圧に変換する直交変換装置23とを有して
構成されている。直交変換装置23は、装置を構成する
インバータの駆動を制御するインバータ駆動回路231
を有している。
In this embodiment, the solar power generator 20
B and the power load leveling device 60 are connected to a power system. Therefore, the solar power generation device 20B
The power load leveling device 60 detects the voltage or the reactive power of the power system by the voltage measuring unit 50A and performs the reactive power control of the system. The photovoltaic power generation device 20B outputs a power generation unit 21 including a solar cell that generates a DC voltage, and an operation state signal indicating an operation state of the solar cell by identifying whether the solar cell outputs power. The power generation unit includes an operation state identification device 22 and a quadrature conversion device 23 that converts a DC output of a solar cell into an AC voltage matched to a system AC voltage. The orthogonal transformation device 23 includes an inverter driving circuit 231 that controls the driving of an inverter that constitutes the device.
have.

【0018】電力負荷平準化装置60は、蓄電池61
と、該蓄電池が電力を出力しているか否かを識別して蓄
電池の運転状態を示す運転状態信号を出力する発電部運
転状態識別装置62と、蓄電池の直流出力を系統の交流
電圧に整合した交流電圧に変換する直交変換装置63と
を有して構成されている。直交変換装置63は、装置を
構成するインバータの駆動を制御するインバータ駆動回
路を有している。
The power load leveling device 60 includes a storage battery 61
And a power generation unit operating state identification device 62 that identifies whether or not the storage battery is outputting power and outputs an operation state signal indicating the operation state of the storage battery, and matched the DC output of the storage battery to the AC voltage of the system. And an orthogonal transformer 63 for converting the voltage into an AC voltage. The orthogonal transform device 63 has an inverter drive circuit that controls the drive of the inverters that make up the device.

【0019】無効電力制御装置40は、無効電力目標値
と系統電圧と発電部運転状態識別信号から導き出された
運転モード信号に基づいて無効電力潮流の適正値を計算
する無効電力潮流適正値計算手段41と、燃料電池発電
装置20Aや太陽光発電装置20Bからの運転状態識別
信号もしくは無停電電源装置からの運転状態識別信号に
基づいて、運転モード信号を出力する運転モード判定手
段42と、無効電力潮流適正値計算結果に基づいて直交
変換装置からの無効電力量を指令する無効電力量指令信
号を出力する無効電力量指令手段43とを有している。
The reactive power control device 40 calculates a reactive power flow appropriate value calculating means for calculating a reactive power flow appropriate value based on a reactive power target value, a system voltage, and an operation mode signal derived from the power generation unit operation state identification signal. 41; an operation mode determination unit 42 that outputs an operation mode signal based on an operation state identification signal from the fuel cell power generation device 20A or the solar power generation device 20B or an operation state identification signal from the uninterruptible power supply device; And a reactive power command means 43 for outputting a reactive power command signal for commanding the reactive power from the orthogonal transform device based on the calculation result of the power flow appropriate value.

【0020】各発電装置20の発電部運転状態識別装置
22および無停電電源装置30の運転状態識別装置32
ならびに電力負荷平準化装置60の運転状態識別装置6
2は、常に装置全体の運転状況を監視し、直交変換装置
23,33,63が無効電力を出力するために最も適し
た運転モードを選択し、各直交変換装置23,33,6
3に運転モードを指示する。
The operation state identification device 22 of the power generation unit of each power generation device 20 and the operation state identification device 32 of the uninterruptible power supply 30
And operation state identification device 6 of power load leveling device 60
2 always monitors the operation status of the entire device, selects the most suitable operation mode for the orthogonal transform devices 23, 33, 63 to output reactive power, and selects each of the orthogonal transform devices 23, 33, 6;
3 is instructed in the operation mode.

【0021】なお、各直交変換装置23,33,63
は、複数の運転モードを有している。すなわち、燃料電
池発電装置20Aの直交変換装置23および太陽光発電
装置20Bの直交変換装置23は、発電部が発電中の場
合の有効電力Pおよび無効電力Qを同時に制御するPQ
制御運転モードと、発電部の運転が停止しているときの
無効電力Qのみを制御するQ制御運転モードを有する。
The orthogonal transform units 23, 33, 63
Has a plurality of operation modes. That is, the orthogonal transformation device 23 of the fuel cell power generation device 20A and the orthogonal transformation device 23 of the solar power generation device 20B provide a PQ that simultaneously controls the active power P and the reactive power Q when the power generation unit is generating power.
It has a control operation mode and a Q control operation mode for controlling only the reactive power Q when the operation of the power generation unit is stopped.

【0022】電圧制御を実施する1ヶ所あるいは複数箇
所に取り付けた電圧測定手段50から系統電圧信号を無
効電力制御装置40へ送出する。無効電力制御装置40
では、無効電力潮流適正値計算手段41において、受信
した系統電圧信号および運転モード信号ならびに無効電
力目標値信号の各データを元に必要な無効電力潮流適正
値を計算し、無効電力量指令手段43において、前記計
算値に基づいて無効電力量指令信号を生成して、各発電
装置20の各直交変換装置23および無停電電源装置3
0の直交変換装置33へ送信する。
A system voltage signal is sent to a reactive power control device 40 from voltage measuring means 50 attached at one or more places where voltage control is performed. Reactive power control device 40
In the reactive power flow appropriate value calculating means 41, a necessary reactive power flow appropriate value is calculated based on each data of the received system voltage signal, operation mode signal, and reactive power target value signal. , A reactive power amount command signal is generated based on the calculated value, and each of the orthogonal transforming devices 23 and the uninterruptible power supply 3
0 to the orthogonal transform unit 33.

【0023】無効電力制御装置40からの指令値を受け
とった各直交変換装置23,33,63は、運転状態識
別装置22,32,62により指示された運転モードで
運転され、無効電力が指令値になるように常に制御す
る。
Each of the orthogonal transformers 23, 33, 63 which has received the command value from the reactive power control device 40 is operated in the operation mode instructed by the operation state discriminating devices 22, 32, 62, and the reactive power is reduced to the command value. Always control to become.

【0024】無効電力の制御の態様を図3を用いて説明
する。図3において、曲線Aは系統電圧を、曲線Bは系
統電圧が低下したときまたは系統の無効電力が遅相であ
るときにインバータを進相制御したときのインバータ電
流を、曲線Cは系統電圧が上昇したときまたは系統の無
効電力が進相であるときにインバータを遅相制御したと
きのインバータ電流を示している。このように、電力系
統に連系された発電装置などの直交変換装置を実質的に
静止型無効電力制御装置と同様に運転することによっ
て、電力系統または需要家内系統の無効電力が遅相とな
って系統の電圧が低下したときには、インバータを進相
制御し、電力系統または需要家内系統の無効電力が進相
となって系統の電圧が上昇したときには、インバータを
遅相制御して適正な無効電力とし、無効電力を制御して
系統の電圧を適正な値とすることができる。
The manner of controlling the reactive power will be described with reference to FIG. In FIG. 3, a curve A represents a system voltage, a curve B represents an inverter current when the system voltage is reduced or the inverter is advanced in phase when the reactive power of the system is late, and a curve C represents a system voltage. It shows the inverter current when the inverter is retarded when it rises or when the reactive power of the system is leading the phase. In this way, by operating an orthogonal transforming device such as a power generation device connected to the power system substantially in the same manner as the static reactive power control device, the reactive power of the power system or the system in the customer is delayed. When the system voltage drops, the inverter controls the phase advance, and when the reactive power of the power system or the customer's system becomes advanced and the system voltage rises, the inverter controls the phase to control the appropriate reactive power. By controlling the reactive power, the voltage of the system can be set to an appropriate value.

【0025】以下、図4を用いて、無効電力制御装置4
0における無効電力制御処理を説明する。電力系統また
は需要家内系統における無効電力制御が開始されると、
電圧測定手段50を用いて系統電圧を検出する(S
1)。検出した系統電圧が目標値と同じか否かを判断し
(S2)、系統電圧が目標値と同じであるとき(No)
には、現在の系統の運転状態を維持する(S8)。系統
電圧が目標値と異なるときには、発電装置(無停電電源
装置)が運転中であるか否かを判断する(S3)。発電
装置(無停電電源装置)が運転中でない(No)ときに
は、系統電圧が目標値となる無効電力量を算出し(S
4)、算出結果に基づいてインバータ制御装置に対して
無効電力量を指令する(S5)。インバータ駆動制御回
路231は、インバータが静止型無効電力補償装置とし
て運転する指令を出し(S6)、スイッチ手段の点弧順
序と点弧角を制御して所定の無効電力となるよう直交変
換装置を運転する(S7)
Hereinafter, the reactive power control device 4 will be described with reference to FIG.
The reactive power control process at 0 will be described. When the reactive power control in the power system or the customer system is started,
The system voltage is detected using the voltage measuring means 50 (S
1). It is determined whether the detected system voltage is the same as the target value (S2). When the system voltage is the same as the target value (No)
, The current operation state of the system is maintained (S8). When the system voltage is different from the target value, it is determined whether or not the power generator (uninterruptible power supply) is operating (S3). When the power generator (uninterruptible power supply) is not operating (No), the reactive power amount at which the system voltage becomes the target value is calculated (S
4) A command is issued to the inverter control device for the amount of reactive power based on the calculation result (S5). The inverter drive control circuit 231 issues a command to operate the inverter as a static type reactive power compensator (S6), and controls the firing order and the firing angle of the switch means to control the orthogonal transform device so as to obtain a predetermined reactive power. Driving (S7)

【0026】ステップ3における発電装置の運転状態の
判定で運転中の場合(Yes)は、系統電圧が目標値と
なる有効電力量および無効電力量を計算し(S9)、算
出結果に基づいてインバータ制御装置に対して有効電力
量および無効電力量を指令する(S10)。インバータ
駆動制御回路231は、インバータが直交変換装置とし
て運転する指令を出し(S11)、スイッチ手段の点弧
順序と点弧角を制御して所定の有効電力量および無効電
力となるよう直交変換装置を運転する(S7)。このよ
うにして、発電装置(無停電電源装置)の運転状態によ
って、直交変換装置を、直交変換装置として運転して有
効電力および無効電力を制御したり、静止型無効電力補
償装置として運転して無効電力のみを制御することがで
きる。
If it is determined in step 3 that the generator is operating (Yes), the active power and the reactive power at which the system voltage reaches the target value are calculated (S9), and the inverter is operated based on the calculation results. The control device is instructed on the active power and the reactive power (S10). The inverter drive control circuit 231 issues a command to operate the inverter as an orthogonal transforming device (S11), and controls the firing order and the firing angle of the switch means so that the active power and the reactive power become predetermined. Is driven (S7). In this way, depending on the operation state of the power generator (uninterruptible power supply), the quadrature converter is operated as a quadrature converter to control active power and reactive power, or is operated as a static var compensator. Only reactive power can be controlled.

【0027】以上のように運転することによって、別途
無効電力調整装置を設けることなく、無効電力を調整す
ることができ、設備投資や保守費用を低減することがで
きる。
By operating as described above, the reactive power can be adjusted without providing a separate reactive power adjusting device, and equipment investment and maintenance costs can be reduced.

【0028】上記の実施の態様では、無効電力潮流を系
統電圧を検出して制御する態様を説明したが、無効電力
潮流を直接制御する場合には、電圧測定手段50を無効
電力測定手段に置き換えることによって容易に実施する
ことができる。
In the above-described embodiment, the mode in which the reactive power flow is controlled by detecting the system voltage has been described. However, when the reactive power flow is directly controlled, the voltage measuring means 50 is replaced with the reactive power measuring means. This can be easily implemented.

【0029】[0029]

【発明の効果】本発明によれば、以下に述べる効果を得
ることができる。直交変換装置の無効電力供給能力に応
じて、今まで必要であった進相コンデンサなどの無効電
力調整装置が不要となり、設備投資および保守費用を低
減することができる。
According to the present invention, the following effects can be obtained. In accordance with the reactive power supply capability of the orthogonal transform device, a reactive power adjusting device such as a phase-advanced capacitor, which has been required so far, becomes unnecessary, so that capital investment and maintenance cost can be reduced.

【0030】直交変換装置を無効電力調整手段として用
いることで、無効電力の制御性は、進相コンデンサによ
る制御と比較すると、進相および遅相とも制御すること
が可能となるとともに、無効電力調整手段に半導体を利
用していることから高速で安定した無効電力潮流制御が
可能となる。
By using the quadrature conversion device as the reactive power adjusting means, the controllability of the reactive power can be controlled in both the leading and lagging phases, as compared with the control by the leading capacitor. Since a semiconductor is used for the means, high-speed and stable reactive power flow control can be performed.

【0031】燃料電池発電装置または太陽光発電装置も
しくは無停電電源装置は、家庭用としても今後導入が進
み電力系統と連系されるようになると考えられるが、各
直交変換装置に無効電力調整機能を持たせることで、無
効電力調整用の新たな設備を導入することなく系統電圧
維持制御を行うことができる。
It is considered that fuel cell power generators, photovoltaic power generators, or uninterruptible power supplies will be introduced for home use in the future and will be connected to the power system. , System voltage maintenance control can be performed without introducing new equipment for adjusting reactive power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる無効電力制御方式を適用した電
力系統の概略構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a power system to which a reactive power control method according to the present invention is applied.

【図2】本発明にかかる無効電力制御方式に用いる無効
電力制御装置の構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of a reactive power control device used in a reactive power control method according to the present invention.

【図3】本発明にかかる無効電力制御方式の無効電力の
制御態様を説明する波形図。
FIG. 3 is a waveform chart illustrating a reactive power control mode of the reactive power control method according to the present invention.

【図4】本発明にかかる無効電力制御装置の動作態様を
説明するフローチャート。
FIG. 4 is a flowchart illustrating an operation mode of the reactive power control device according to the present invention.

【図5】従来の電力系統の無効電力制御方式を説明する
ブロック図。
FIG. 5 is a block diagram illustrating a conventional reactive power control method for a power system.

【図6】直交変換装置の回路構成を示す回路図。FIG. 6 is a circuit diagram showing a circuit configuration of an orthogonal transform device.

【符号の説明】[Explanation of symbols]

1 電力系統 10 需要家 20 発電装置 21 発電部 22 発電部運転状態識別装置 23 直交変換装置 30 無停電電源装置 31 蓄電池 32 運転状態識別装置 33 直交変換装置 35 負荷 40 無効電力制御装置 41 無効電力潮流適正値計算装置 50 電圧測定手段 60 電力負荷平準化装置 61 蓄電池 62 発電部運転状態識別装置 63 直交変換装置 70 静止型無効電力補償装置 REFERENCE SIGNS LIST 1 power system 10 customer 20 power generation device 21 power generation unit 22 power generation unit operation state identification device 23 orthogonal transformation device 30 uninterruptible power supply 31 storage battery 32 operation state identification device 33 orthogonal transformation device 35 load 40 reactive power control device 41 reactive power flow Appropriate value calculation device 50 Voltage measurement means 60 Power load leveling device 61 Storage battery 62 Power generation unit operation state identification device 63 Quadrature transformation device 70 Static var compensator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 無効電力制御機能を有する直交変換装置
が設置された電源装置が連系された電力系統の無効電力
を制御する無効電力制御装置において、直交変換装置が
設置されている需要家構内電力系統または直交変換装置
が設置されている商用電源電力系統の系統電圧を検出す
る電圧測定手段と、該電圧測定手段からの信号を受け無
効電力潮流の適正な値を計算する無効電力潮流適正値計
算手段と、該無効電力潮流適正値計算手段の計測結果を
受けて前記直交変換装置に対する適正な無効電力指令値
を計算し指示する無効電力量指令手段と、前記直交変換
装置の運転モードを判断する運転モード判定手段とを有
し、無効電力量指令手段からの指令に基づいて直交変換
装置の無効電力を制御するようにしたことを特徴とする
無効電力制御装置。
1. A reactive power control device for controlling the reactive power of a power system in which a power supply device having an orthogonal power conversion function having a reactive power control function is connected, in a customer premises where the orthogonal power conversion device is installed. Voltage measuring means for detecting a system voltage of a power system or a commercial power supply system in which an orthogonal conversion device is installed, and a reactive power flow appropriate value for receiving a signal from the voltage measuring means and calculating an appropriate value of the reactive power flow Calculating means; reactive power amount command means for receiving a measurement result of the reactive power flow appropriate value calculating means to calculate and instruct an appropriate reactive power command value for the orthogonal transform device; and determining an operation mode of the orthogonal transform device. A reactive mode control unit for controlling the reactive power of the orthogonal transform apparatus based on a command from the reactive power amount command unit.
【請求項2】 無効電力制御機能を有する直交変換装置
が設置された電源装置が連系された電力系統の無効電力
を制御する無効電力制御装置において、直交変換装置が
設置されている需要家構内電力系統または直交変換装置
が設置されている商用電源電力系統の無効電力を検出す
る無効電力測定手段と、該無効電力測定手段からの信号
を受け無効電力潮流の適正な値を計算する無効電力潮流
適正値計算手段と、該無効電力潮流適正値計算手段の計
測結果を受けて前記直交変換装置に対する適正な無効電
力指令値を計算し指示する無効電力量指令手段と、前記
直交変換装置の運転モードを判断する運転モード判定手
段とを有し、無効電力量指令手段からの指令に基づいて
直交変換装置の無効電力を制御するようにしたことを特
徴とする無効電力制御装置。
2. A reactive power control device for controlling the reactive power of a power system in which a power supply device having an orthogonal power conversion device having a reactive power control function is installed, wherein the power supply device is installed in a customer premises where the orthogonal power conversion device is installed. Reactive power measuring means for detecting reactive power in a power system or a commercial power supply system in which a quadrature converter is installed; and reactive power flow for receiving a signal from the reactive power measuring means and calculating an appropriate value of the reactive power flow. An appropriate value calculating means, a reactive power amount command means for receiving a measurement result of the reactive power flow appropriate value calculating means, calculating and instructing an appropriate reactive power command value for the orthogonal transform device, and an operation mode of the orthogonal transform device Operating mode determining means for determining the reactive power of the orthogonal transform device based on a command from the reactive power command means. Control device.
【請求項3】 直交変換装置が、直流電力を交流電力に
変換する機能と交流電力を直流電力に変換する機能とを
有しており、さらに、無効電力を独立して制御すること
ができる直交変換装置である請求項1または請求項2に
記載の無効電力制御装置。
3. The orthogonal transformer has a function of converting DC power to AC power and a function of converting AC power to DC power, and further has a function of independently controlling reactive power. The reactive power control device according to claim 1 or 2, which is a conversion device.
【請求項4】 直交変換装置が、直流電力を交流電力に
変換する機能と交流電力を直流電力に変換する機能とを
有しており、さらに、有効電力と無効電力を独立して制
御することができる直交変換装置である請求項1または
請求項2に記載の無効電力制御装置。
4. The quadrature converter has a function of converting DC power into AC power and a function of converting AC power into DC power, and further independently controls active power and reactive power. The reactive power control device according to claim 1, wherein the reactive power control device is an orthogonal transform device capable of performing the following.
【請求項5】 電力系統に連系される電源装置が、燃料
電池発電装置または太陽光発電装置もしくは無停電電源
装置のいずれか、または、これらの任意の組み合わせで
ある請求項1から請求項4のいずれかに記載の無効電力
制御装置。
5. The power supply device connected to the power system is a fuel cell power generation device, a solar power generation device, or an uninterruptible power supply device, or any combination thereof. The reactive power control device according to any one of the above.
【請求項6】 無効電力制御機能を有する直交変換装置
が設置された電源装置が連系された電力系統の無効電力
を制御する無効電力制御方法において、電源装置が運転
されていないときにも直交変換装置の無効電力制御機能
を用いて無効電力潮流を制御し、電力系統の無効電力を
制御することを特徴とする無効電力制御方法。
6. A reactive power control method for controlling the reactive power of a power system in which a power supply device having an orthogonal power conversion device having a reactive power control function is connected to a power supply device, wherein the orthogonality is controlled even when the power supply device is not operating. A reactive power control method, comprising: controlling a reactive power flow using a reactive power control function of a converter to control reactive power of a power system.
【請求項7】 直交変換装置の無効電力潮流の制御が、
電力系統の系統電圧または電力系統の無効電力に基づい
てなされることを特徴とする請求項6に記載の無効電力
制御方法。
7. The control of the reactive power flow of the orthogonal transform device,
7. The reactive power control method according to claim 6, wherein the method is performed based on a system voltage of a power system or a reactive power of the power system.
JP10091430A 1998-04-03 1998-04-03 Apparatus and method for controlling reactive power Pending JPH11289668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10091430A JPH11289668A (en) 1998-04-03 1998-04-03 Apparatus and method for controlling reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10091430A JPH11289668A (en) 1998-04-03 1998-04-03 Apparatus and method for controlling reactive power

Publications (1)

Publication Number Publication Date
JPH11289668A true JPH11289668A (en) 1999-10-19

Family

ID=14026163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10091430A Pending JPH11289668A (en) 1998-04-03 1998-04-03 Apparatus and method for controlling reactive power

Country Status (1)

Country Link
JP (1) JPH11289668A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261965A (en) * 1999-03-09 2000-09-22 Mitsubishi Electric Corp Apparatus and method for controlling power system
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2003087976A (en) * 2001-09-13 2003-03-20 Meidensha Corp Uninterruptible power supply
JP2005287125A (en) * 2004-03-29 2005-10-13 Nissin Electric Co Ltd Uninterruptible power supply apparatus and power interruption compensating system
JP2006509489A (en) * 2002-12-06 2006-03-16 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Non-stop power supply and power generation system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
CN101803139A (en) * 2007-09-14 2010-08-11 Abb技术有限公司 STACOM system for providing reactive and/or active power to a power network
JP2011055705A (en) * 2004-10-29 2011-03-17 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
CN102570483A (en) * 2012-02-14 2012-07-11 华南理工大学 Reactive voltage regulation de-mismatching method of 220kV power transformer substation
CN102738786A (en) * 2011-04-07 2012-10-17 湖南大学 Micro-grid control method capable of significantly improving electric energy quality of micro-grid
CN102856914A (en) * 2011-06-30 2013-01-02 上海市电力公司 Reactive compensation control system
CN103023039A (en) * 2011-09-26 2013-04-03 广西麦莎电气集团有限公司 Secondary low-pressure dynamic energy-saving compensation device for remote wireless monitoring of submerged arc furnace
JP2013531961A (en) * 2010-05-25 2013-08-08 リアクティブ テクノロジーズ オーワイ Reactive power management
CN103346583A (en) * 2013-04-15 2013-10-09 湖南大学 Fixed-frequency direct-power PWM converter controlling method having rapid power response capability
CN103414214A (en) * 2013-08-30 2013-11-27 国家电网公司 Low-voltage ride through and reactive power control system and method for asynchronous wind turbine generator
CN103606942A (en) * 2013-10-29 2014-02-26 国家电网公司 Mixed-liquid-flow energy-storage system with reactive compensation function
WO2014041390A1 (en) * 2012-09-12 2014-03-20 American Power Conversion Corporation A system and method for voltage regulation in a voltage supply
JP2014517663A (en) * 2011-03-14 2014-07-17 サンパワー コーポレイション Automatic voltage regulation for photovoltaic systems
CN104143832A (en) * 2013-05-07 2014-11-12 通用电气公司 System and method for detecting and controlling voltage collapse condition
JP2015043681A (en) * 2013-08-26 2015-03-05 株式会社東芝 Power conditioner
CN106786679A (en) * 2016-12-16 2017-05-31 湖南世优电力科技股份有限公司 Agriculture net platform region electric energy voltage balancing control system and method based on Real-time Power Flow
CN107749641A (en) * 2017-11-07 2018-03-02 国网重庆市电力公司电力科学研究院 Consider that the combining inverter grid-connected current of control delay improves repetitive control
CN108599181A (en) * 2018-04-09 2018-09-28 华南理工大学 It is a kind of based on the power distribution network DG inverter powerless control methods locally measured
WO2019003407A1 (en) * 2017-06-30 2019-01-03 株式会社日立製作所 Power generation system, energy management device, and power generation control method
US10447073B2 (en) 2013-01-07 2019-10-15 Schneider Electric It Corporation Power supply control
US10491034B2 (en) 2013-12-31 2019-11-26 Schneider Electric It Corporation System and methods of grid stabilization
JP2024027713A (en) * 2022-08-18 2024-03-01 富士電機株式会社 power system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261965A (en) * 1999-03-09 2000-09-22 Mitsubishi Electric Corp Apparatus and method for controlling power system
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2003087976A (en) * 2001-09-13 2003-03-20 Meidensha Corp Uninterruptible power supply
JP2006509489A (en) * 2002-12-06 2006-03-16 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Non-stop power supply and power generation system
JP2008237018A (en) * 2002-12-06 2008-10-02 Electric Power Res Inst Inc Uninterruptible power supply and electric power generating system
US7701087B2 (en) 2002-12-06 2010-04-20 Electric Power Research Institute, Inc. Integrated closed loop control method and apparatus for combined uninterruptible power supply and generator system
JP2005287125A (en) * 2004-03-29 2005-10-13 Nissin Electric Co Ltd Uninterruptible power supply apparatus and power interruption compensating system
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2011055705A (en) * 2004-10-29 2011-03-17 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
CN101803139A (en) * 2007-09-14 2010-08-11 Abb技术有限公司 STACOM system for providing reactive and/or active power to a power network
US9385588B2 (en) 2010-05-25 2016-07-05 Reactive Technologies Finland Oy Reactive power management
JP2013531961A (en) * 2010-05-25 2013-08-08 リアクティブ テクノロジーズ オーワイ Reactive power management
JP2014517663A (en) * 2011-03-14 2014-07-17 サンパワー コーポレイション Automatic voltage regulation for photovoltaic systems
CN102738786A (en) * 2011-04-07 2012-10-17 湖南大学 Micro-grid control method capable of significantly improving electric energy quality of micro-grid
CN102856914A (en) * 2011-06-30 2013-01-02 上海市电力公司 Reactive compensation control system
CN103023039A (en) * 2011-09-26 2013-04-03 广西麦莎电气集团有限公司 Secondary low-pressure dynamic energy-saving compensation device for remote wireless monitoring of submerged arc furnace
CN102570483A (en) * 2012-02-14 2012-07-11 华南理工大学 Reactive voltage regulation de-mismatching method of 220kV power transformer substation
WO2014041390A1 (en) * 2012-09-12 2014-03-20 American Power Conversion Corporation A system and method for voltage regulation in a voltage supply
US10447073B2 (en) 2013-01-07 2019-10-15 Schneider Electric It Corporation Power supply control
CN103346583A (en) * 2013-04-15 2013-10-09 湖南大学 Fixed-frequency direct-power PWM converter controlling method having rapid power response capability
CN104143832A (en) * 2013-05-07 2014-11-12 通用电气公司 System and method for detecting and controlling voltage collapse condition
CN104143832B (en) * 2013-05-07 2016-08-24 通用电气公司 For collapse of voltage condition detection and the system and method for control
JP2015043681A (en) * 2013-08-26 2015-03-05 株式会社東芝 Power conditioner
CN103414214A (en) * 2013-08-30 2013-11-27 国家电网公司 Low-voltage ride through and reactive power control system and method for asynchronous wind turbine generator
CN103606942B (en) * 2013-10-29 2015-09-23 国家电网公司 A kind of mixed liquor stream energy-storage system with no-power compensation function
CN103606942A (en) * 2013-10-29 2014-02-26 国家电网公司 Mixed-liquid-flow energy-storage system with reactive compensation function
US10491034B2 (en) 2013-12-31 2019-11-26 Schneider Electric It Corporation System and methods of grid stabilization
CN106786679A (en) * 2016-12-16 2017-05-31 湖南世优电力科技股份有限公司 Agriculture net platform region electric energy voltage balancing control system and method based on Real-time Power Flow
WO2019003407A1 (en) * 2017-06-30 2019-01-03 株式会社日立製作所 Power generation system, energy management device, and power generation control method
JPWO2019003407A1 (en) * 2017-06-30 2019-12-19 株式会社日立製作所 Power generation system, energy management device, and power generation control method
CN107749641A (en) * 2017-11-07 2018-03-02 国网重庆市电力公司电力科学研究院 Consider that the combining inverter grid-connected current of control delay improves repetitive control
CN108599181A (en) * 2018-04-09 2018-09-28 华南理工大学 It is a kind of based on the power distribution network DG inverter powerless control methods locally measured
CN108599181B (en) * 2018-04-09 2021-09-21 华南理工大学 Power distribution network DG inverter reactive power control method based on local measurement
JP2024027713A (en) * 2022-08-18 2024-03-01 富士電機株式会社 power system

Similar Documents

Publication Publication Date Title
JPH11289668A (en) Apparatus and method for controlling reactive power
US11031785B1 (en) Device and method for intelligent control of power supply source connection
US10270255B2 (en) Dual use photovoltaic system
KR101884621B1 (en) Independent operation of multiple grid-connected power converters
EP2793345B1 (en) Electric power supply system
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
US9780564B2 (en) Dual-input inverter and method of controlling same
US20070145952A1 (en) Efficient power system
CN110034589B (en) Induction energy-taking type AC/DC combined power supply system and control method
KR20150003796A (en) Bi-directional energy converter with multiple dc sources
WO1996018937A1 (en) Grid connected bi-directional converter including a pwm, dc-dc chopper, and energy storage/supply device
JPH1169893A (en) Hybrid power generation system
JP5542578B2 (en) DC power supply system
US20230016562A1 (en) Controlling on-time of energy modules of an energy storage
JPH1189096A (en) Operation control method of distributed power supply equipment
US20150260161A1 (en) Control device for voltage source converter and operating method thereof
KR101644522B1 (en) Power supply system of ac microgrid three phase
JP4616579B2 (en) Power supply system
JPH08251827A (en) Combined cycle power generation system
KR20150111638A (en) High efficiency battery charge/discharge system and method in grid-tied system
JPH10248180A (en) Power converting apparatus
JP2002315231A (en) Uninterruptible power source equipment
JPH10133753A (en) Dc power supply circuit device of intermittent opening and closing adjustment type
CN110601256B (en) Power flow control method
JPH1080061A (en) Generated output controller for nonutility power generation facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329