JPH11286740A - Production of alloy cast iron with high toughness - Google Patents

Production of alloy cast iron with high toughness

Info

Publication number
JPH11286740A
JPH11286740A JP10707998A JP10707998A JPH11286740A JP H11286740 A JPH11286740 A JP H11286740A JP 10707998 A JP10707998 A JP 10707998A JP 10707998 A JP10707998 A JP 10707998A JP H11286740 A JPH11286740 A JP H11286740A
Authority
JP
Japan
Prior art keywords
content
hardness
cast iron
impact value
alloy cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10707998A
Other languages
Japanese (ja)
Other versions
JP2934226B1 (en
Inventor
Akira Tamura
朗 田村
Takatoshi Mitani
貴俊 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP10707998A priority Critical patent/JP2934226B1/en
Application granted granted Critical
Publication of JP2934226B1 publication Critical patent/JP2934226B1/en
Publication of JPH11286740A publication Critical patent/JPH11286740A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloy cast iron with high toughness, superior in impact value to high chromium cast iron and cast iron and also superior in hardness to high manganese cast steel and low alloy cast steel. SOLUTION: This alloy cast iron has a composition consisting of, by weight, 1.4-2.2% C, 0.5-1.5% Si, 0.5-1.5% Mn, 2.5-6.0% Cr, 1.5-8.0% Mo, 3.0-6.0% V, 0-5.5% Co, and the balance Fe with inevitable impurities and also has >=HRC62 hardness and >=5.0 J/cm<2> impact value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、破砕機用耐衝撃摩
耗材料や粉砕機用耐摩耗材料として使用される高靱性合
金鋳鉄及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high toughness alloy cast iron used as an impact-resistant material for a crusher and a wear-resistant material for a crusher, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、破砕機用耐衝撃摩耗材料や粉砕機
用耐摩耗材料としては、高クロム鋳鉄(A532(AS
TM))、ニハード鋳鉄、高マンガン鋳鋼(G5131
(JIS),A128(ASTM))又は低合金鋳鋼
(G5111(JIS))等が使用されている。
2. Description of the Related Art Conventionally, high-chromium cast iron (A532 (AS)
TM)), Ni-hard cast iron, high manganese cast steel (G5131)
(JIS), A128 (ASTM)) or low alloy cast steel (G5111 (JIS)) or the like is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、高クロム鋳鉄
やニハード鋳鉄では靱性が低く(高クロム鋳鉄:焼なら
し(空気焼入れ)、硬さHRC55〜65、衝撃値2〜
4J/cm2 (ノッチレス)、ニハード鋳鉄:硬さHR
C60〜63、衝撃値1〜3J/cm2 )、使用中に割
れることがある。一方、高マンガン鋳鋼や低合金鋳鋼で
は靱性が高いため(高マンガン鋳鋼:水靱処理(水焼入
れ)、硬さHRC20(加工硬化後HRC50〜5
5)、衝撃値50〜200J/cm2 (Vノッチ)、低
合金鋳鋼:油焼入れ、焼戻し、硬さHRC45〜55、
衝撃値7〜30J/cm2 (Uノッチ))、割れること
はないが耐用寿命が短い不具合がある。そこで、本発明
は、衝撃値が高クロム鋳鉄、ニハード鋳鉄より大きく、
硬さが高マンガン鋳鋼、低合金鋳鋼より高い高靱性合金
鋳鉄及びその製造方法を提供することを目的とする。
However, high chromium cast iron or nihard cast iron has low toughness (high chromium cast iron: normalizing (air quenching), hardness HRC 55 to 65, impact value 2 to 2).
4J / cm 2 (notchless), Ni-hard cast iron: Hardness HR
C60-63, impact value 1-3 J / cm 2 ), and may crack during use. On the other hand, since high manganese cast steel and low alloy cast steel have high toughness (high manganese cast steel: water toughness treatment (water quenching), hardness HRC 20 (HRC 50 to 5 after work hardening)
5), impact value 50 to 200 J / cm 2 (V notch), low alloy cast steel: oil quenching, tempering, hardness HRC 45 to 55,
The impact value is 7 to 30 J / cm 2 (U notch)). Therefore, the present invention, the impact value is higher than high chromium cast iron, nihard cast iron,
An object of the present invention is to provide a high-toughness alloy cast iron having a hardness higher than that of a high-manganese cast steel or a low-alloy cast steel, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の高靱性合金鋳鉄は、C1.4〜2.2wt
%、Si0.5〜1.5wt%、Mn0.5〜1.5w
t%、Cr2.5〜6.0wt%、Mo1.5〜8.0
wt%、V3.0〜6.0wt%、Co0〜5.5wt
%及び残部がFeと不可避不純物からなり、硬さHRC
62以上、衝撃値5.0J/cm2 以上であることを特
徴とする。一方、高靱性合金鋳鉄の製造方法は、C1.
4〜2.2wt%、Si0.5〜1.5wt%、Mn
0.5〜1.5wt%、Cr2.5〜6.0wt%、M
o1.5〜8.0wt%、V3.0〜6.0wt%、C
o0〜5.5wt%及び残部がFeと不可避不純物から
なる合金鋳鉄を900〜1100℃の温度で加熱した後
衝風冷却し、しかる後に450〜550℃の温度で焼戻
し処理することを特徴とする。前記焼戻し処理は、2回
以上行うことが好ましい。
In order to solve the above-mentioned problems, a high toughness alloy cast iron of the present invention has a C 1.4 to 2.2 wt.
%, Si 0.5-1.5 wt%, Mn 0.5-1.5 w
t%, Cr 2.5-6.0 wt%, Mo1.5-8.0
wt%, V3.0-6.0wt%, Co0-5.5wt
% And the balance consist of Fe and unavoidable impurities, and have a hardness of HRC.
It is characterized by having an impact value of at least 62 and an impact value of at least 5.0 J / cm 2 . On the other hand, the production method of the high toughness alloy cast iron is C1.
4-2.2 wt%, Si 0.5-1.5 wt%, Mn
0.5 to 1.5 wt%, Cr 2.5 to 6.0 wt%, M
o1.5-8.0 wt%, V3.0-6.0 wt%, C
It is characterized in that an alloy cast iron comprising 0 to 5.5 wt% and the balance of Fe and unavoidable impurities is heated at a temperature of 900 to 1100 ° C., then cooled by impingement, and then tempered at a temperature of 450 to 550 ° C. . It is preferable that the tempering process is performed twice or more.

【0005】C(カーボン)は、Cr(クロム)、Mo
(モリブデン)、V(バナジウム)と化合して各種の炭
化物を生成して硬さ(耐摩耗性)を高める。Cの含有量
が、1.4wt%未満であると、炭化物量が少なくなっ
て硬さが低下し、2.2wt%を超えると、靱性が低下
する。好ましい含有量は、1.7〜2.0wt%であ
る。
C (carbon) is composed of Cr (chromium), Mo
(Molybdenum) and V (vanadium) combine to form various carbides to increase hardness (wear resistance). If the content of C is less than 1.4 wt%, the amount of carbides will decrease and the hardness will decrease, and if it exceeds 2.2 wt%, the toughness will decrease. The preferred content is 1.7 to 2.0 wt%.

【0006】Si(シリコン)は、溶湯の脱酸に寄与す
ると共に、湯流れを良くして鋳造性を良好にする。Si
の含有量が、0.5wt%未満であると、上述した機能
が果たされず、1.5wt%を超えると、材質の脆化を
招く。好ましい含有量は、0.7〜1.3wt%であ
る。
[0006] Si (silicon) contributes to the deoxidation of the molten metal and improves the flow of the molten metal to improve the castability. Si
If the content of is less than 0.5 wt%, the above-mentioned functions cannot be performed, and if it exceeds 1.5 wt%, the material becomes brittle. The preferred content is 0.7 to 1.3 wt%.

【0007】Mn(マンガン)は、溶湯の脱酸と脱硫に
寄与し、又、焼入性と耐摩耗性に寄与する。Mnの含有
量が、0.5wt%未満であると、上述した機能が果た
されず、1.5wt%を超えると、焼割れを招く。好ま
しい含有量は、0.7〜1.2wt%である。
Mn (manganese) contributes to deoxidation and desulfurization of the molten metal, and also contributes to hardenability and wear resistance. If the content of Mn is less than 0.5 wt%, the above-mentioned function is not fulfilled, and if it exceeds 1.5 wt%, burning cracks are caused. The preferred content is 0.7 to 1.2 wt%.

【0008】Crは、Cと化合して有能な炭化物を生成
すると共に、高温での耐酸化性を強め耐硫化性を改良す
る。Crの含有量が、2.5wt%未満であると、炭化
物量が少なくなって硬さが低下し、6.0wt%を超え
ると、靱性が低下する。好ましい含有量は、3.0〜
5.0wt%である。
[0008] Cr combines with C to form a competent carbide, and at the same time, enhances oxidation resistance at high temperatures and improves sulfidation resistance. When the content of Cr is less than 2.5 wt%, the amount of carbide is reduced and the hardness is reduced, and when it exceeds 6.0 wt%, the toughness is reduced. The preferred content is 3.0 to
5.0 wt%.

【0009】Moは、Cと化合して有能な炭化物を生成
すると共に、焼入性を高め、かつ、焼戻し脆化を防止す
る。Moの含有量が、1.5wt%未満であると、上述
した機能が果たされず、8.0wt%を超えると、靱性
が低下する。好ましい含有量は、6.0〜8.0wt%
である。
Mo combines with C to form a competent carbide, enhances hardenability, and prevents tempering embrittlement. If the content of Mo is less than 1.5 wt%, the above-mentioned function is not fulfilled, and if it exceeds 8.0 wt%, the toughness is reduced. The preferred content is 6.0-8.0 wt%.
It is.

【0010】Vは、炭化物生成能が大きく微粒炭化物を
生じ、組織を微細化し、硬さを高める。Vの含有量が、
3.0wt%未満であると、上述した機能が果たされ
ず、6.0wt%を超えると、上述した機能の飽和を招
く。好ましい含有量は、3.0〜5.0wt%である。
[0010] V has a large carbide-forming ability to produce fine carbides, refine the structure, and increase the hardness. V content is
If the content is less than 3.0 wt%, the above-mentioned functions cannot be performed. If the content exceeds 6.0 wt%, the above-mentioned functions are saturated. The preferred content is 3.0 to 5.0 wt%.

【0011】Co(コバルト)は、高温強さを改良する
ために用いられる。Coの含有量が、5.5wt%を超
えると、上述した機能が飽和状態となる。好ましい含有
量は、0.5〜1.5w%である。
[0011] Co (cobalt) is used to improve high temperature strength. When the content of Co exceeds 5.5 wt%, the above-described functions are saturated. The preferred content is 0.5 to 1.5 w%.

【0012】硬さが、HRC62未満であると、硬さが
高マンガン鋳鋼や低合金鋳鋼のそれと同等以下になり、
又、衝撃値が、5.0J/cm2 未満であると、高クロ
ム鋳鉄やニハード鋳鉄のそれと同等以下になる。
When the hardness is less than HRC62, the hardness becomes equal to or lower than that of high manganese cast steel or low alloy cast steel,
When the impact value is less than 5.0 J / cm 2 , the impact value becomes equal to or less than that of high chromium cast iron or nihard cast iron.

【0013】合金鋳鉄の加熱温度が、900℃未満であ
ると、マトリックス中のC濃度の低下により硬さが低く
なり、1100℃を超えると、残留γ量の増加により硬
さが低くなる。好ましい加熱温度は、950〜1100
℃である。衝風冷却は、5〜300℃/minの冷却速
度で行うことが好ましい。
When the heating temperature of the alloy cast iron is lower than 900 ° C., the hardness becomes lower due to a decrease in the C concentration in the matrix, and when it exceeds 1100 ° C., the hardness becomes lower due to an increase in the amount of residual γ. Preferred heating temperatures are 950 to 1100
° C. The blast cooling is preferably performed at a cooling rate of 5 to 300 ° C./min.

【0014】焼戻し処理温度が、450℃未満である
と、合金炭化物析出による二次硬化が起こらず、550
℃を超えると、硬さが低下する。好ましい処理温度は、
480〜550℃である。
When the tempering temperature is lower than 450 ° C., secondary hardening due to precipitation of alloy carbide does not occur, and
If the temperature exceeds ℃, the hardness decreases. The preferred processing temperature is
480-550 ° C.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的な実施例と比較例を参照して説明する。 実施例1〜13、比較例1〜7 先ず、C、Si、Mn、Cr、Mo、V及びCo(比較
例6は、他に0.10wt%のTi(チタン)、比較例
7は、他に0.04wt%のTiを含有する)をそれぞ
れ表1に示す割合で含有し、残部がFe(鉄)と不可避
不純物からなる各種の合金鋳鉄のテストピースを得た。
次に、各テストピースを1000℃(比較例3は、11
00℃)の温度で2〜2.5時間保持して加熱処理して
から50〜150℃/minの冷却速度で衝風冷却する
空気焼入れ処理を施した後、510℃(比較例3は55
0℃)の温度での焼戻し処理を2回(比較例3は、1
回)施したところ、それぞれの硬さ及び衝撃値は、表1
に示すようになった。
Embodiments of the present invention will be described below with reference to specific examples and comparative examples. Examples 1 to 13 and Comparative Examples 1 to 7 First, C, Si, Mn, Cr, Mo, V and Co (Comparative Example 6 additionally includes 0.10 wt% of Ti (titanium), Comparative Example 7 includes other Containing 0.04 wt% of Ti) at the ratios shown in Table 1 and the balance being Fe (iron) and unavoidable impurities.
Next, each test piece was heated to 1000 ° C. (Comparative Example 3
(200 ° C.) for 2 to 2.5 hours, heat-treated, and then subjected to air quenching for blast cooling at a cooling rate of 50 to 150 ° C./min.
Tempering at a temperature of 0 ° C) twice (Comparative Example 3
Times), each hardness and impact value are shown in Table 1.
It became as shown in.

【0016】[0016]

【表1】 [Table 1]

【0017】又、Cの含有量と硬さの関係、Cの含有量
と衝撃値の関係、Crの含有量と硬さの関係、Crの含
有量と衝撃値の関係、Moの含有量と硬さの関係、Mo
の含有量と衝撃値の関係、Vの含有量と硬さの関係、V
の含有量と衝撃値の関係、Coの含有量と硬さの関係及
びCoの含有量と衝撃値の関係は、図1、図2、図3、
図4、図5、図6、図7、図8、図9及び図10に示す
ようになった。表1及び図1〜図10から、Cの含有量
を1.4〜2.2wt%、好ましくは1.7〜2.0w
t%、Siの含有量を0.5〜1.5wt%、Mnの含
有量を0.5〜1.5wt%、Crの含有量を2.5〜
6.0wt%、好ましくは3.0〜5.0wt%、Mo
の含有量を1.5〜8.0wt%、好ましくは6.0〜
8.0wt%、Vの含有量を3.0〜6.0wt%、好
ましくは3.0〜5.0wt%及びCoの含有量を0〜
5.5wt%、好ましくは0.5〜1.5wt%とする
ことにより、硬さをHRC62以上、衝撃値を5.0J
/cm2 以上とし得ることがわかる。
The relationship between the C content and hardness, the relationship between the C content and impact value, the relationship between Cr content and hardness, the relationship between Cr content and impact value, the Mo content and Relationship of hardness, Mo
Between V content and hardness, V content and hardness, V
, The impact value, the relationship between the Co content and the hardness, and the relationship between the Co content and the impact value are shown in FIGS.
The results are shown in FIGS. 4, 5, 6, 7, 8, 9 and 10. From Table 1 and FIGS. 1 to 10, the content of C is 1.4 to 2.2 wt%, preferably 1.7 to 2.0 w%.
t%, the content of Si is 0.5 to 1.5 wt%, the content of Mn is 0.5 to 1.5 wt%, and the content of Cr is 2.5 to 1.5 wt%.
6.0 wt%, preferably 3.0 to 5.0 wt%, Mo
Of 1.5 to 8.0 wt%, preferably 6.0 to 8.0 wt%.
8.0 wt%, the content of V is 3.0 to 6.0 wt%, preferably 3.0 to 5.0 wt%, and the content of Co is 0 to 0 wt%.
By setting the content to 5.5 wt%, preferably 0.5 to 1.5 wt%, the hardness is HRC 62 or more and the impact value is 5.0 J.
/ Cm 2 or more.

【0018】[0018]

【発明の効果】以上説明したように、本発明の高靱性合
金鋳鉄及びその製造方法によれば、硬さをHRC62以
上、衝撃値を5.0J/cm2 以上とし得るので、靱性
を高クロム鋳鉄やニハード鋳鉄より大きくでき、かつ硬
さを高マンガン鋳鋼や低合金鋳鋼より高くすることがで
き、ひいては使用中に割れることがなく、高寿命の耐衝
撃摩耗材料、耐摩耗材料に用いることができる。
As described above, according to the high toughness alloy cast iron of the present invention and the method for producing the same, the hardness can be made HRC 62 or more and the impact value can be made 5.0 J / cm 2 or more. Can be larger than cast iron or nihard cast iron, and can have higher hardness than high manganese cast steel or low alloy cast steel, and will not crack during use, and can be used for high life impact and wear resistant materials and wear resistant materials. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cの含有量と硬さの関係を表わした説明図であ
る。
FIG. 1 is an explanatory diagram showing the relationship between the content of C and hardness.

【図2】Cの含有量と衝撃値の関係を表わした説明図で
ある。
FIG. 2 is an explanatory diagram showing a relationship between a C content and an impact value.

【図3】Crの含有量と硬さの関係を表わした説明図で
ある。
FIG. 3 is an explanatory diagram showing a relationship between a Cr content and hardness.

【図4】Crの含有量と衝撃値の関係を表わした説明図
である。
FIG. 4 is an explanatory diagram showing a relationship between a Cr content and an impact value.

【図5】Moの含有量と硬さの関係を表わした説明図で
ある。
FIG. 5 is an explanatory diagram showing a relationship between Mo content and hardness.

【図6】Moの含有量と衝撃値の関係を表わした説明図
である。
FIG. 6 is an explanatory diagram showing a relationship between a Mo content and an impact value.

【図7】Vの含有量と硬さの関係を表わした説明図であ
る。
FIG. 7 is an explanatory diagram showing a relationship between a V content and hardness.

【図8】Vの含有量と衝撃値の関係を表わした説明図で
ある。
FIG. 8 is an explanatory diagram showing a relationship between a V content and an impact value.

【図9】Coの含有量と硬さの関係を表わした説明図で
ある。
FIG. 9 is an explanatory diagram showing a relationship between a Co content and hardness.

【図10】Coの含有量と衝撃値の関係を表わした説明
図である。
FIG. 10 is an explanatory diagram showing a relationship between a Co content and an impact value.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月27日[Submission date] January 27, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 高靱性合金鋳鉄の製造方法The method of manufacturing high-toughness alloy cast iron [Title of the Invention]

【特許請求の範囲】[Claims]

【請求項】 C1.4〜2.2wt%、Si0.5〜
1.5wt%、Mn0.5〜1.5wt%、Cr2.5
〜6.0wt%、Mo1.5〜8.0wt%、V3.0
〜6.0wt%、Co0〜5.5wt%及び残部がFe
と不可避不純物からなる合金鋳鉄を900〜1100℃
の温度で加熱した後衝風冷却し、しかる後に450〜5
50℃の温度で焼戻し処理することを特徴とする高靱性
合金鋳鉄の製造方法。
[Claim 1] C1.4~2.2wt%, Si0.5~
1.5 wt%, Mn 0.5-1.5 wt%, Cr2.5
-6.0 wt%, Mo1.5-8.0 wt%, V3.0
To 6.0 wt%, Co0 to 5.5 wt%, and the balance Fe
Alloy cast iron consisting of unavoidable impurities and 900-1100 ° C
After heating at a temperature of 500 ° C., cooling by impingement, and then 450 to 5
A method for producing a high toughness alloy cast iron, characterized by performing a tempering treatment at a temperature of 50 ° C.

【請求項】 前記焼戻し処理を2回以上行うことを特
徴とする請求項記載の高靱性合金鋳鉄の製造方法。
2. A process for producing a high toughness alloy cast iron according to claim 1, characterized in that the tempering twice or more.

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、破砕機用耐衝撃摩
耗材料や粉砕機用耐摩耗材料として使用される高靱性合
金鋳鉄の製造方法に関する。
The present invention relates to relates to a method of manufacturing a high-toughness alloy cast iron which is used as impact-wear material and crushing machine wear resistant material crusher.

【0002】[0002]

【従来の技術】従来、破砕機用耐衝撃摩耗材料や粉砕機
用耐摩耗材料としては、高クロム鋳鉄(A532(AS
TM))、ニハード鋳鉄、高マンガン鋳鋼(G5131
(JIS),A128(ASTM))又は低合金鋳鋼
(G5111(JIS))等が使用されている。
2. Description of the Related Art Conventionally, high-chromium cast iron (A532 (AS)
TM)), Ni-hard cast iron, high manganese cast steel (G5131)
(JIS), A128 (ASTM)) or low alloy cast steel (G5111 (JIS)) or the like is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、高クロム鋳鉄
やニハード鋳鉄では靱性が低く(高クロム鋳鉄:焼なら
し(空気焼入れ)、硬さHRC55〜65、衝撃値2〜
4J/cm2 (ノッチレス)、ニハード鋳鉄:硬さHR
C60〜63、衝撃値1〜3J/cm2 )、使用中に割
れることがある。一方、高マンガン鋳鋼や低合金鋳鋼で
は靱性が高いため(高マンガン鋳鋼:水靱処理(水焼入
れ)、硬さHRC20(加工硬化後HRC50〜5
5)、衝撃値50〜200J/cm2 (Vノッチ)、低
合金鋳鋼:油焼入れ、焼戻し、硬さHRC45〜55、
衝撃値7〜30J/cm2 (Uノッチ))、割れること
はないが耐用寿命が短い不具合がある。そこで、本発明
は、衝撃値が高クロム鋳鉄、ニハード鋳鉄より大きく、
硬さが高マンガン鋳鋼、低合金鋳鋼より高い高靱性合金
鉄の製造方法を提供することを目的とする。
However, high chromium cast iron or nihard cast iron has low toughness (high chromium cast iron: normalizing (air quenching), hardness HRC 55 to 65, impact value 2 to 2).
4J / cm 2 (notchless), Ni-hard cast iron: Hardness HR
C60-63, impact value 1-3 J / cm 2 ), and may crack during use. On the other hand, since high manganese cast steel and low alloy cast steel have high toughness (high manganese cast steel: water toughness treatment (water quenching), hardness HRC 20 (HRC 50 to 5 after work hardening)
5), impact value 50 to 200 J / cm 2 (V notch), low alloy cast steel: oil quenching, tempering, hardness HRC 45 to 55,
The impact value is 7 to 30 J / cm 2 (U notch)). Therefore, the present invention, the impact value is higher than high chromium cast iron, nihard cast iron,
Hardness high manganese cast steel, and to provide a process for producing a high toughness alloy <br/> Cast iron higher than the low alloy cast steel.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の高靱性合金鋳鉄の製造方法は、C1.4〜
2.2wt%、Si0.5〜1.5wt%、Mn0.5
〜1.5wt%、Cr2.5〜6.0wt%、Mo1.
5〜8.0wt%、V3.0〜6.0wt%、Co0〜
5.5wt%及び残部がFeと不可避不純物からなる合
金鋳鉄を900〜1100℃の温度で加熱した後衝風冷
却し、しかる後に450〜550℃の温度で焼戻し処理
することを特徴とする。前記焼戻し処理は、2回以上行
うことが好ましい。
In order to solve the above problems SUMMARY OF THE INVENTION The method for producing a high toughness alloy cast iron of the present invention, C1.4~
2.2 wt%, Si 0.5-1.5 wt%, Mn0.5
-1.5 wt%, Cr2.5-6.0 wt%, Mo1.
5 to 8.0 wt%, V3.0 to 6.0 wt%, Co0
It is characterized in that an alloy cast iron composed of 5.5 wt% and the balance of Fe and inevitable impurities is heated at a temperature of 900 to 1100 ° C., cooled by impingement, and then tempered at a temperature of 450 to 550 ° C. It is preferable that the tempering process is performed twice or more.

【0005】C(カーボン)は、Cr(クロム)、Mo
(モリブデン)、V(バナジウム)と化合して各種の炭
化物を生成して硬さ(耐摩耗性)を高める。Cの含有量
が、1.4wt%未満であると、炭化物量が少なくなっ
て硬さが低下し、2.2wt%を超えると、靱性が低下
する。好ましい含有量は、1.7〜2.0wt%であ
る。
C (carbon) is composed of Cr (chromium), Mo
(Molybdenum) and V (vanadium) combine to form various carbides to increase hardness (wear resistance). If the content of C is less than 1.4 wt%, the amount of carbides will decrease and the hardness will decrease, and if it exceeds 2.2 wt%, the toughness will decrease. The preferred content is 1.7 to 2.0 wt%.

【0006】Si(シリコン)は、溶湯の脱酸に寄与す
ると共に、湯流れを良くして鋳造性を良好にする。Si
の含有量が、0.5wt%未満であると、上述した機能
が果たされず、1.5wt%を超えると、材質の脆化を
招く。好ましい含有量は、0.7〜1.3wt%であ
る。
[0006] Si (silicon) contributes to the deoxidation of the molten metal and improves the flow of the molten metal to improve the castability. Si
If the content of is less than 0.5 wt%, the above-mentioned functions cannot be performed, and if it exceeds 1.5 wt%, the material becomes brittle. The preferred content is 0.7 to 1.3 wt%.

【0007】Mn(マンガン)は、溶湯の脱酸と脱硫に
寄与し、又、焼入性と耐摩耗性に寄与する。Mnの含有
量が、0.5wt%未満であると、上述した機能が果た
されず、1.5wt%を超えると、焼割れを招く。好ま
しい含有量は、0.7〜1.2wt%である。
Mn (manganese) contributes to deoxidation and desulfurization of the molten metal, and also contributes to hardenability and wear resistance. If the content of Mn is less than 0.5 wt%, the above-mentioned function is not fulfilled, and if it exceeds 1.5 wt%, burning cracks are caused. The preferred content is 0.7 to 1.2 wt%.

【0008】Crは、Cと化合して有能な炭化物を生成
すると共に、高温での耐酸化性を強め耐硫化性を改良す
る。Crの含有量が、2.5wt%未満であると、炭化
物量が少なくなって硬さが低下し、6.0wt%を超え
ると、靱性が低下する。好ましい含有量は、3.0〜
5.0wt%である。
[0008] Cr combines with C to form a competent carbide, and at the same time, enhances oxidation resistance at high temperatures and improves sulfidation resistance. When the content of Cr is less than 2.5 wt%, the amount of carbide is reduced and the hardness is reduced, and when it exceeds 6.0 wt%, the toughness is reduced. The preferred content is 3.0 to
5.0 wt%.

【0009】Moは、Cと化合して有能な炭化物を生成
すると共に、焼入性を高め、かつ、焼戻し脆化を防止す
る。Moの含有量が、1.5wt%未満であると、上述
した機能が果たされず、8.0wt%を超えると、靱性
が低下する。好ましい含有量は、6.0〜8.0wt%
である。
Mo combines with C to form a competent carbide, enhances hardenability, and prevents tempering embrittlement. If the content of Mo is less than 1.5 wt%, the above-mentioned function is not fulfilled, and if it exceeds 8.0 wt%, the toughness is reduced. The preferred content is 6.0-8.0 wt%.
It is.

【0010】Vは、炭化物生成能が大きく微粒炭化物を
生じ、組織を微細化し、硬さを高める。Vの含有量が、
3.0wt%未満であると、上述した機能が果たされ
ず、6.0wt%を超えると、上述した機能の飽和を招
く。好ましい含有量は、3.0〜5.0wt%である。
[0010] V has a large carbide-forming ability to produce fine carbides, refine the structure, and increase the hardness. V content is
If the content is less than 3.0 wt%, the above-mentioned functions cannot be performed. If the content exceeds 6.0 wt%, the above-mentioned functions are saturated. The preferred content is 3.0 to 5.0 wt%.

【0011】Co(コバルト)は、高温強さを改良する
ために用いられる。Coの含有量が、5.5wt%を超
えると、上述した機能が飽和状態となる。好ましい含有
量は、0.5〜1.5w%である。
[0011] Co (cobalt) is used to improve high temperature strength. When the content of Co exceeds 5.5 wt%, the above-described functions are saturated. The preferred content is 0.5 to 1.5 w%.

【0012】硬さが、HRC62未満であると、硬さが
高マンガン鋳鋼や低合金鋳鋼のそれと同等以下になり、
又、衝撃値が、5.0J/cm2 未満であると、高クロ
ム鋳鉄やニハード鋳鉄のそれと同等以下になる。
When the hardness is less than HRC62, the hardness becomes equal to or lower than that of high manganese cast steel or low alloy cast steel,
When the impact value is less than 5.0 J / cm 2 , the impact value becomes equal to or less than that of high chromium cast iron or nihard cast iron.

【0013】合金鋳鉄の加熱温度が、900℃未満であ
ると、マトリックス中のC濃度の低下により硬さが低く
なり、1100℃を超えると、残留γ量の増加により硬
さが低くなる。好ましい加熱温度は、950〜1100
℃である。衝風冷却は、5〜300℃/minの冷却速
度で行うことが好ましい。
When the heating temperature of the alloy cast iron is lower than 900 ° C., the hardness becomes lower due to a decrease in the C concentration in the matrix, and when it exceeds 1100 ° C., the hardness becomes lower due to an increase in the amount of residual γ. Preferred heating temperatures are 950 to 1100
° C. The blast cooling is preferably performed at a cooling rate of 5 to 300 ° C./min.

【0014】焼戻し処理温度が、450℃未満である
と、合金炭化物析出による二次硬化が起こらず、550
℃を超えると、硬さが低下する。好ましい処理温度は、
480〜550℃である。
When the tempering temperature is lower than 450 ° C., secondary hardening due to precipitation of alloy carbide does not occur, and
If the temperature exceeds ℃, the hardness decreases. The preferred processing temperature is
480-550 ° C.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的な実施例と比較例を参照して説明する。 実施例1〜13、比較例1〜7 先ず、C、Si、Mn、Cr、Mo、V及びCo(比較
例6は、他に0.10wt%のTi(チタン)、比較例
7は、他に0.04wt%のTiを含有する)をそれぞ
れ表1に示す割合で含有し、残部がFe(鉄)と不可避
不純物からなる各種の合金鋳鉄のテストピースを得た。
次に、各テストピースを1000℃(比較例3は、11
00℃)の温度で2〜2.5時間保持して加熱処理して
から50〜150℃/minの冷却速度で衝風冷却する
空気焼入れ処理を施した後、510℃(比較例3は55
0℃)の温度での焼戻し処理を2回(比較例3は、1
回)施したところ、それぞれの硬さ及び衝撃値は、表1
に示すようになった。
Embodiments of the present invention will be described below with reference to specific examples and comparative examples. Examples 1 to 13 and Comparative Examples 1 to 7 First, C, Si, Mn, Cr, Mo, V and Co (Comparative Example 6 additionally includes 0.10 wt% of Ti (titanium), Comparative Example 7 includes other Containing 0.04 wt% of Ti) at the ratios shown in Table 1 and the balance being Fe (iron) and unavoidable impurities.
Next, each test piece was heated to 1000 ° C. (Comparative Example 3
(200 ° C.) for 2 to 2.5 hours, heat-treated, and then subjected to air quenching for blast cooling at a cooling rate of 50 to 150 ° C./min.
Tempering at a temperature of 0 ° C) twice (Comparative Example 3
Times), each hardness and impact value are shown in Table 1.
It became as shown in.

【0016】[0016]

【表1】 [Table 1]

【0017】又、Cの含有量と硬さの関係、Cの含有量
と衝撃値の関係、Crの含有量と硬さの関係、Crの含
有量と衝撃値の関係、Moの含有量と硬さの関係、Mo
の含有量と衝撃値の関係、Vの含有量と硬さの関係、V
の含有量と衝撃値の関係、Coの含有量と硬さの関係及
びCoの含有量と衝撃値の関係は、図1、図2、図3、
図4、図5、図6、図7、図8、図9及び図10に示す
ようになった。表1及び図1〜図10から、Cの含有量
を1.4〜2.2wt%、好ましくは1.7〜2.0w
t%、Siの含有量を0.5〜1.5wt%、Mnの含
有量を0.5〜1.5wt%、Crの含有量を2.5〜
6.0wt%、好ましくは3.0〜5.0wt%、Mo
の含有量を1.5〜8.0wt%、好ましくは6.0〜
8.0wt%、Vの含有量を3.0〜6.0wt%、好
ましくは3.0〜5.0wt%及びCoの含有量を0〜
5.5wt%、好ましくは0.5〜1.5wt%とする
ことにより、硬さをHRC62以上、衝撃値を5.0J
/cm2 以上とし得ることがわかる。
The relationship between the C content and hardness, the relationship between the C content and impact value, the relationship between Cr content and hardness, the relationship between Cr content and impact value, the Mo content and Relationship of hardness, Mo
Between V content and hardness, V content and hardness, V
, The impact value, the relationship between the Co content and the hardness, and the relationship between the Co content and the impact value are shown in FIGS.
The results are shown in FIGS. 4, 5, 6, 7, 8, 9 and 10. From Table 1 and FIGS. 1 to 10, the content of C is 1.4 to 2.2 wt%, preferably 1.7 to 2.0 w%.
t%, the content of Si is 0.5 to 1.5 wt%, the content of Mn is 0.5 to 1.5 wt%, and the content of Cr is 2.5 to 1.5 wt%.
6.0 wt%, preferably 3.0 to 5.0 wt%, Mo
Of 1.5 to 8.0 wt%, preferably 6.0 to 8.0 wt%.
8.0 wt%, the content of V is 3.0 to 6.0 wt%, preferably 3.0 to 5.0 wt%, and the content of Co is 0 to 0 wt%.
By setting the content to 5.5 wt%, preferably 0.5 to 1.5 wt%, the hardness is HRC 62 or more and the impact value is 5.0 J.
/ Cm 2 or more.

【0018】[0018]

【発明の効果】以上説明したように、本発明の高靱性合
金鋳鉄の製造方法によれば、硬さをHRC62以上、衝
撃値を5.0J/cm2 以上とし得るので、靱性を高ク
ロム鋳鉄やニハード鋳鉄より大きくでき、かつ硬さを高
マンガン鋳鋼や低合金鋳鋼より高くすることができ、ひ
いては使用中に割れることがなく、高寿命の耐衝撃摩耗
材料、耐摩耗材料に用いることができる。
As described in the foregoing, according to the manufacturing method of the high toughness alloy cast iron of the present invention, the hardness HRC62 or more, since the impact value may be a 5.0J / cm 2 or more, the toughness high chromium Can be larger than cast iron or nihard cast iron, and can have higher hardness than high manganese cast steel or low alloy cast steel, and will not crack during use, and can be used for high life impact and wear resistant materials and wear resistant materials. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cの含有量と硬さの関係を表わした説明図であ
る。
FIG. 1 is an explanatory diagram showing the relationship between the content of C and hardness.

【図2】Cの含有量と衝撃値の関係を表わした説明図で
ある。
FIG. 2 is an explanatory diagram showing a relationship between a C content and an impact value.

【図3】Crの含有量と硬さの関係を表わした説明図で
ある。
FIG. 3 is an explanatory diagram showing a relationship between a Cr content and hardness.

【図4】Crの含有量と衝撃値の関係を表わした説明図
である。
FIG. 4 is an explanatory diagram showing a relationship between a Cr content and an impact value.

【図5】Moの含有量と硬さの関係を表わした説明図で
ある。
FIG. 5 is an explanatory diagram showing a relationship between Mo content and hardness.

【図6】Moの含有量と衝撃値の関係を表わした説明図
である。
FIG. 6 is an explanatory diagram showing a relationship between a Mo content and an impact value.

【図7】Vの含有量と硬さの関係を表わした説明図であ
る。
FIG. 7 is an explanatory diagram showing a relationship between a V content and hardness.

【図8】Vの含有量と衝撃値の関係を表わした説明図で
ある。
FIG. 8 is an explanatory diagram showing a relationship between a V content and an impact value.

【図9】Coの含有量と硬さの関係を表わした説明図で
ある。
FIG. 9 is an explanatory diagram showing a relationship between a Co content and hardness.

【図10】Coの含有量と衝撃値の関係を表わした説明
図である。
FIG. 10 is an explanatory diagram showing a relationship between a Co content and an impact value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C1.4〜2.2wt%、Si0.5〜
1.5wt%、Mn0.5〜1.5wt%、Cr2.5
〜6.0wt%、Mo1.5〜8.0wt%、V3.0
〜6.0wt%、Co0〜5.5wt%及び残部がFe
と不可避不純物からなり、硬さHRC62以上、衝撃値
5.0J/cm2 以上であることを特徴とする高靱性合
金鋳鉄。
1. C1.4 to 2.2 wt%, Si0.5 to
1.5 wt%, Mn 0.5-1.5 wt%, Cr2.5
-6.0 wt%, Mo1.5-8.0 wt%, V3.0
To 6.0 wt%, Co0 to 5.5 wt%, and the balance Fe
A high toughness alloy cast iron comprising a hardness of HRC 62 or more and an impact value of 5.0 J / cm 2 or more.
【請求項2】 C1.4〜2.2wt%、Si0.5〜
1.5wt%、Mn0.5〜1.5wt%、Cr2.5
〜6.0wt%、Mo1.5〜8.0wt%、V3.0
〜6.0wt%、Co0〜5.5wt%及び残部がFe
と不可避不純物からなる合金鋳鉄を900〜1100℃
の温度で加熱した後衝風冷却し、しかる後に450〜5
50℃の温度で焼戻し処理することを特徴とする高靱性
合金鋳鉄の製造方法。
2. C 1.4 to 2.2 wt%, Si 0.5 to
1.5 wt%, Mn 0.5-1.5 wt%, Cr2.5
-6.0 wt%, Mo1.5-8.0 wt%, V3.0
To 6.0 wt%, Co0 to 5.5 wt%, and the balance Fe
Alloy cast iron consisting of unavoidable impurities and 900-1100 ° C
After heating at a temperature of 500 ° C., cooling by impingement, and then 450 to 5
A method for producing a high toughness alloy cast iron, characterized by performing a tempering treatment at a temperature of 50 ° C.
【請求項3】 前記焼戻し処理を2回以上行うことを特
徴とする請求項2記載の高靱性合金鋳鉄の製造方法。
3. The method for producing a high toughness alloy cast iron according to claim 2, wherein said tempering treatment is performed twice or more.
JP10707998A 1998-04-02 1998-04-02 Manufacturing method of high toughness alloy cast iron Expired - Fee Related JP2934226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10707998A JP2934226B1 (en) 1998-04-02 1998-04-02 Manufacturing method of high toughness alloy cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10707998A JP2934226B1 (en) 1998-04-02 1998-04-02 Manufacturing method of high toughness alloy cast iron

Publications (2)

Publication Number Publication Date
JP2934226B1 JP2934226B1 (en) 1999-08-16
JPH11286740A true JPH11286740A (en) 1999-10-19

Family

ID=14449957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10707998A Expired - Fee Related JP2934226B1 (en) 1998-04-02 1998-04-02 Manufacturing method of high toughness alloy cast iron

Country Status (1)

Country Link
JP (1) JP2934226B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014481A (en) * 2012-12-10 2013-04-03 马鞍山市恒达耐磨材料有限责任公司 Multielement low alloy bainite spheroidal graphite cast iron grinding ball and manufacturing method thereof
CN104178688A (en) * 2014-08-29 2014-12-03 丹阳嘉伟耐磨材料科技有限公司 Boron-containing wear-resistant alloy with impact resistance and preparation method thereof
CN107604240A (en) * 2017-11-07 2018-01-19 德清雄峰铸造有限公司 Alloy cast iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935505B (en) * 2012-11-01 2015-03-18 中原利达铁路轨道技术发展有限公司 Casting method of low temperature resistant iron cushion plate for high speed railway buckling part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014481A (en) * 2012-12-10 2013-04-03 马鞍山市恒达耐磨材料有限责任公司 Multielement low alloy bainite spheroidal graphite cast iron grinding ball and manufacturing method thereof
CN104178688A (en) * 2014-08-29 2014-12-03 丹阳嘉伟耐磨材料科技有限公司 Boron-containing wear-resistant alloy with impact resistance and preparation method thereof
CN107604240A (en) * 2017-11-07 2018-01-19 德清雄峰铸造有限公司 Alloy cast iron

Also Published As

Publication number Publication date
JP2934226B1 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
CN101240402B (en) Cast high-boron high-speed steel for composite ring roller and heat treatment method thereof
US4564392A (en) Heat resistant martensitic stainless steel containing 12 percent chromium
CA2604428C (en) Low alloy steel
CN112522570A (en) Wear-resistant tough multi-element alloy cast ball and preparation method thereof
JP2004083924A (en) Sulfur-containing free-machining steel for machine structure
JP2008518103A (en) Martensitic hardenable tempered steel with creep resistance
JP5945935B2 (en) High chromium wear resistant cast iron and method for producing the same
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JP4266194B2 (en) Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature
JP2934226B1 (en) Manufacturing method of high toughness alloy cast iron
JP6096040B2 (en) Powdered high-speed tool steel with excellent high-temperature tempering hardness
JPWO2019035401A1 (en) Steel with high hardness and excellent toughness
JPH11209851A (en) Gas turbine disk material
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP3498289B2 (en) Manufacturing method of high chromium cast iron castings
JP4223414B2 (en) Powdered high-speed tool steel for rolling rolls with excellent wear resistance and toughness
JP2000328199A (en) Wear resistant material
JP2004091840A (en) Steel for metal mold with excellent machinability and polishability
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JPH05163551A (en) Powder high-speed tool steel
JP3115563B2 (en) Manufacturing method of wear-resistant cast steel
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JP2001192762A (en) High toughness non-heat treated steel for hot forging
JPS63121635A (en) High-toughness alloy cast iron

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees