JPH1128477A - Phosphorus removing method - Google Patents

Phosphorus removing method

Info

Publication number
JPH1128477A
JPH1128477A JP20088797A JP20088797A JPH1128477A JP H1128477 A JPH1128477 A JP H1128477A JP 20088797 A JP20088797 A JP 20088797A JP 20088797 A JP20088797 A JP 20088797A JP H1128477 A JPH1128477 A JP H1128477A
Authority
JP
Japan
Prior art keywords
phosphorus
water
concentration
treated
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20088797A
Other languages
Japanese (ja)
Other versions
JP3341639B2 (en
Inventor
Tetsuro Fukase
哲朗 深瀬
Masahide Shibata
雅秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16431908&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1128477(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20088797A priority Critical patent/JP3341639B2/en
Publication of JPH1128477A publication Critical patent/JPH1128477A/en
Application granted granted Critical
Publication of JP3341639B2 publication Critical patent/JP3341639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove phosphorus in water to be treated containing high concn. phosphorus by adjusting the difference in concentration of orthophosphoric acid type phosphorus concn. between the bottom of a reactor and the upper outlet to less than a specified value at the time of removing the phosphorus in the water to be treated. SOLUTION: The phosphorus is removed by precipitating a crystal of magnesium ammonium phosphate(MAP) by introducing the water to be treated containing the phosphorus from the bottom of a column type reactor and allowing to flow by upward stream, and also supplying a magnesium compd. and an ammonia based compd. and/or an alkali agent depending on the situation at the bottom of the reactor. Then the concn. difference of orthophosphoric acid type phosphorus at the lower outlet and upper outlet of the reactor is adjusted to >=20 mg/l. When the difference in concentration rises above <=20 mg/l, a finely divided crystal is formed by a plug flow type operation, and a separation from the treated water becomes worse and a removing efficiency is deteriorated. And when the difference in concentration is too low, a size of the reactor is enlarged and it is not practical.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリンの除去方法の改
良に関し、さらに詳しくは、し尿や浄化槽汚泥の消化脱
離液、汚泥の消化液、化学工場排水などの高濃度のリン
を含有する汚水中のリンを、粒子の大きなリン酸マグネ
シウムアンモニウム結晶として効率よく除去する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a method for removing phosphorus, and more particularly, to a wastewater containing a high concentration of phosphorus such as a digestion / desorption solution of human waste or a septic tank sludge, a digestion solution of sludge, and a chemical plant wastewater. The present invention relates to a method for efficiently removing phosphorus therein as magnesium ammonium phosphate crystals having large particles.

【0002】[0002]

【従来の技術】一般に、下水、し尿、排水などの嫌気、
好気処理工程では、余剰活性汚泥のリン含有量が高くな
るため、この汚泥を消化処理した場合、消化脱離液中の
リン濃度が高くなり、その結果、脱離液移送管にリン酸
塩系のスケールによる詰まりを生じたり、返流水のリン
濃度が高くなり、水処理系でのリン除去性能に悪影響を
及ぼす。したがって、このような高濃度のリンを含有す
る消化脱離液などの汚水中のリンを、効率よく除去する
脱リン装置が提案されている(特開平4−141293
号公報)。この装置は、塔下部に消化脱離液の導入口、
塔上部に処理水の取出口を有する反応塔と、該反応塔内
に設けられた散気手段と、該反応塔の処理水を塔下部に
循環する循環手段とを備えたものである。この装置にお
いては、消化脱離液にマグネシウムイオンを添加して、
その中に含まれている多量のアンモニア及びリンとマグ
ネシウムイオンとを反応させ、リン酸マグネシウムアン
モニウム(以下、MAPと略称する)結晶を析出させる
ことにより、リンが除去される。この際、粒子の大きな
MAP結晶が析出し、高いリンの除去率が達成できるよ
うな処置が構ぜられる。ところで、MAPは、種晶(M
AP結晶)が存在しなくても結晶が生成するが、微細な
結晶であるため処理水からの分離が困難である。前記脱
リン装置のように、種晶を存在させて反応させるカラム
式反応槽を採用する場合、MAP結晶は種晶上に生成
し、成長していくので、微細な結晶が抑制でき、好まし
い。しかしながら、このような種晶上にMAP結晶を成
長させるカラム式反応槽であっても、高濃度のリン含有
水を処理する場合は、MAP析出条件にすると、MAP
の過飽和度が高くなり、MAPは微細結晶として自己析
出する。このため、前記特開平4−141293号公報
には、カラム式反応槽に流入するリン濃度を100mg/
リットル以下に調整することが開示されている。ところ
が、単にリンの初濃度を調整するのみでは、微細結晶の
生成を抑制できない場合が発生する。特にプラグフロー
式晶析カラムを用いるときには、微細結晶が生成する場
合がある。カラム方式でも、カラム内に空気を吹き込む
場合には、カラムは完全混合に近い状態となり、カラム
内のどの場所もほぼ同じ晶析条件となるので、晶析条件
を所望の好ましい条件に設定できれば、微細結晶の生成
を抑制することができる。これに対し、プラグフロー式
の場合は、カラムの入口側(カラムの供給被処理水)と
カラム出口側(処理水)にリン濃度の差が生じ、場所に
よって晶析条件が異なり、リン濃度の差が大きくなる
と、種晶表面への晶析と共に微細な結晶が独立して生成
する。このような現象は、例えば、目安として、リン濃
度が50mg/リットル程度以上の高濃度のリン含有水
を、できるだけ処理水中のリン濃度が低くなるように処
理するような場合に起こる。これは、入口と出口側の濃
度差が大きいと、すなわち、リン晶析量を多くしようと
すると、入口側で過飽和度の大きい運転条件となり、微
細結晶が生じやすくなるものと思われる。
BACKGROUND OF THE INVENTION Generally, anaerobic sewage, human waste, drainage, etc.
In the aerobic treatment step, the phosphorus content of the excess activated sludge becomes high. Therefore, when this sludge is digested, the phosphorus concentration in the digested and desorbed liquid becomes high. Clogging occurs due to the scale of the system, and the phosphorus concentration in the return water increases, adversely affecting the phosphorus removal performance in the water treatment system. Therefore, a phosphorus removal device has been proposed which efficiently removes phosphorus in wastewater such as a digestion / desorption solution containing such a high concentration of phosphorus (JP-A-4-141293).
No.). This device has a digestion / desorption liquid inlet at the bottom of the tower,
The reactor comprises a reaction tower having an outlet for treated water at the top of the tower, an aeration unit provided in the reaction tower, and a circulating means for circulating the treated water of the reaction tower to the lower part of the tower. In this device, magnesium ions are added to the digestion desorbate,
Phosphorus is removed by reacting a large amount of ammonia and phosphorus contained therein with magnesium ions to precipitate magnesium ammonium phosphate (hereinafter abbreviated as MAP) crystals. At this time, a measure is taken such that MAP crystals with large particles are precipitated and a high phosphorus removal rate can be achieved. By the way, MAP is a seed crystal (M
Crystals are formed even without the presence of (AP crystals), but are difficult to separate from treated water because they are fine crystals. In the case of employing a column type reaction vessel in which a seed crystal is present and reacted as in the above-mentioned phosphorus removal device, the MAP crystal is formed on the seed crystal and grows, so that fine crystals can be suppressed, which is preferable. However, even in the case of a column-type reaction vessel for growing MAP crystals on such seed crystals, when treating high-concentration phosphorus-containing water, MAP precipitation conditions are used.
Has a high degree of supersaturation, and MAP self-precipitates as fine crystals. For this reason, Japanese Patent Application Laid-Open No. 4-141293 discloses that the concentration of phosphorus flowing into a column type reaction vessel is 100 mg /
It is disclosed to adjust to less than a liter. However, simply adjusting the initial concentration of phosphorus may not be able to suppress the generation of fine crystals. Particularly when a plug flow crystallization column is used, fine crystals may be generated. Even in the column method, when air is blown into the column, the column is in a state close to complete mixing, and almost every place in the column has almost the same crystallization conditions, so if the crystallization conditions can be set to desired preferable conditions, Generation of fine crystals can be suppressed. On the other hand, in the case of the plug flow type, a difference in phosphorus concentration occurs between the inlet side of the column (water to be supplied to the column) and the outlet side of the column (treated water). When the difference is large, fine crystals are independently generated together with crystallization on the seed crystal surface. Such a phenomenon occurs, for example, when a high-concentration phosphorus-containing water having a phosphorus concentration of about 50 mg / liter or more is treated so that the phosphorus concentration in the treated water is as low as possible. This is presumably because when the concentration difference between the inlet and the outlet is large, that is, when an attempt is made to increase the amount of phosphorus crystallized, the operating conditions are such that the degree of supersaturation is high at the inlet and fine crystals are likely to be generated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、高濃度のリンを含有する被処理水中のリ
ンを、プラグフロー方式であっても、MAPの微細結晶
の生成を抑制して、粒状のMAP結晶を析出させること
により、効率よく除去する方法を提供することを目的と
してなされたものである。
SUMMARY OF THE INVENTION Under the above circumstances, the present invention provides a method for producing fine crystals of MAP by removing phosphorus in water to be treated containing high concentration of phosphorus, even in a plug flow method. The purpose of the present invention is to provide a method for removing particles efficiently by precipitating granular MAP crystals.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、鋭意研究を重ねた結果、プラグフロ
ー方式の場合、単に、反応槽入口のリン濃度を調整する
のみでは、微細結晶の生成を抑制できず、これは、前記
した理由によることに着目し、被処理水中のリンをMA
P結晶として除去するに際し、反応槽下部と上部出口の
正リン酸態リン濃度差を特定の値以下に調整することに
より、その目的を達成しうることを見い出し、この知見
に基づいて本発明を完成するに至った。すなわち、本発
明は、(1)カラム式反応槽の下部からリン含有被処理
水を導入して上向流で流し、かつ、反応槽下部にマグネ
シウム化合物と場合によりアンモニア系化合物及び/又
はアルカリ剤を供給して、MAPを析出させることによ
り、被処理水中のリンを除去するに当たり、反応槽下部
と上部出口の正リン酸態リン濃度差が20mg/リットル
以下になるように調整することを特徴とするリンの除去
方法、を提供するものである。また、本発明を実施する
ための好ましい態様は、(2)カラム式反応槽におい
て、プラグフロー形式により、MAP結晶の展開層を形
成させる第(1)項記載のリンの除去方法、(3)反応槽
出口水を反応槽下部に循環することにより、反応槽下部
と上部出口の正リン酸態リン濃度差が20mg/リットル
以下になるように調整する第(1)、(2)項記載のリンの
除去方法、(4)pH8〜10に調整してMAPを析出さ
せる第(1)、(2)、(3)項記載のリンの除去方法、及び
(5)被処理水が、正リン酸態リン濃度50mg/リット
ル以上のものである第(1)〜(4)項記載のリンの除去方
法、を提供するものである。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in the case of the plug flow system, simply adjusting the phosphorus concentration at the inlet of the reaction tank is not enough. The formation of fine crystals could not be suppressed.
It has been found that the purpose can be achieved by adjusting the difference in the concentration of orthophosphoric phosphorus between the lower and upper outlets of the reaction tank to a specific value or less when removing the P crystal as a P crystal. It was completed. That is, the present invention provides (1) a process for introducing phosphorus-containing water to be introduced from the lower part of a column-type reaction tank and flowing it upward, and a magnesium compound and optionally an ammonia compound and / or an alkali agent at the lower part of the reaction tank. To remove phosphorus in the water to be treated by precipitating MAP to adjust the difference between the concentration of orthophosphorous phosphorus at the lower and upper outlets of the reaction tank to 20 mg / liter or less. And a method for removing phosphorus. In a preferred embodiment for carrying out the present invention, (2) the method for removing phosphorus according to (1), wherein a developing layer of MAP crystals is formed by a plug flow method in a column type reaction vessel, (3) The method according to (1) or (2), wherein the water at the outlet of the reaction tank is circulated to the lower part of the reaction tank so that the difference in the concentration of orthophosphoric phosphorus between the lower and upper outlets of the reaction tank is adjusted to 20 mg / liter or less. (4) The method for removing phosphorus according to (1), (2), or (3), wherein MAP is precipitated by adjusting the pH to 8 to 10, and (5) the water to be treated is normal phosphorus. (1) The method for removing phosphorus according to the above (1) to (4), wherein the phosphorus concentration is 50 mg / liter or more.

【0005】[0005]

【発明の実施の形態】本発明方法において用いられるリ
ン含有被処理水としては、例えば、し尿や浄化槽汚泥の
消化脱離液、汚泥の消化液、化学工場排水などの汚水が
挙げられる。これらの汚水には、正リン酸態リンが50
mg/リットル以上含まれていることがある。本発明方法
は、このような高濃度の正リン酸態リンを含む汚水から
該リンを除去する場合に、好適に適用される。本発明方
法においては、カラム式反応槽の下部から、上記のリン
含有被処理水を導入して上向流で流し、かつ反応槽下部
にマグネシウム化合物と場合によりアンモニア系化合物
及び/又はアルカリ剤を供給して、MAPの結晶を析出
させることにより、被処理水中のリンを除去する。リン
酸マグネシウムアンモニウム(MAP)結晶は、分子式
MgNH4PO4・6H2Oで示される化合物であって、
正リン酸イオン、マグネシウムイオン及びアンモニウム
イオンの反応によって生成する。通常、汚水中にはアン
モニア態窒素が含まれていることが多く、その量が十分
にあればアンモニア系化合物を添加する必要がない。被
処理水中のアンモニウムイオンの量が不足している場合
は、アンモニウムイオンの量が、正リン酸態リン1モル
に対して、通常1〜3モル、好ましくは1.2〜1.5モ
ルになるように、アンモニウム系化合物を添加する。こ
のアンモニア系化合物としては、例えばアンモニアを始
め、塩化アンモニウム、硫酸アンモニウム、硝酸アンモ
ニウムなどの水溶性アンモニウム塩が挙げられる。これ
らは単独で用いてもよいし、2種以上を組み合わせて用
いてもよい。一方、マグネシウム化合物は、正リン酸態
リン1モルに対して、通常1〜3モル、好ましくは1.
2〜2モルになるように添加される。このマグネシウム
化合物としては、例えば塩化マグネシウム、硫酸マグネ
シウム、硝酸マグネシウムなどの水溶性マグネシウム塩
や、水酸化マグネシウム、海水などが挙げられる。これ
らは単独で用いてもよいし、2種以上を組み合わせて用
いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the phosphorus-containing water to be used in the method of the present invention include effluents such as night soil and digestion / desorption solution of septic tank sludge, digestion solution of sludge, and wastewater of chemical factories. These wastewaters contain 50% of orthophosphoric phosphorus.
May contain more than mg / liter. The method of the present invention is suitably applied when removing phosphorus from wastewater containing such a high concentration of orthophosphate phosphorus. In the method of the present invention, the above-mentioned phosphorus-containing water to be treated is introduced from the lower part of the column-type reaction tank and flows upward, and a magnesium compound and optionally an ammonia compound and / or an alkali agent are supplied to the lower part of the reaction tank. The phosphorus is supplied to precipitate MAP crystals, thereby removing phosphorus in the water to be treated. The magnesium ammonium phosphate (MAP) crystal is a compound represented by the molecular formula MgNH 4 PO 4 .6H 2 O,
It is formed by the reaction of orthophosphate ions, magnesium ions and ammonium ions. Usually, sewage often contains ammonia nitrogen, and if the amount is sufficient, it is not necessary to add an ammonia compound. When the amount of ammonium ion in the water to be treated is insufficient, the amount of ammonium ion is usually from 1 to 3 mol, preferably from 1.2 to 1.5 mol, per mol of orthophosphoric phosphorus. An ammonium-based compound is added so as to be as follows. Examples of the ammonia-based compound include ammonia and water-soluble ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium nitrate. These may be used alone or in combination of two or more. On the other hand, the magnesium compound is usually 1 to 3 mol, preferably 1.
It is added to be 2 to 2 mol. Examples of the magnesium compound include water-soluble magnesium salts such as magnesium chloride, magnesium sulfate and magnesium nitrate, magnesium hydroxide and seawater. These may be used alone or in combination of two or more.

【0006】アンモニウムイオンやマグネシウムイオン
は、正リン酸態リンに対して等モル存在すればよいが、
これらの量が律速とならないように、上記で示す如く、
化学量論量より若干過剰に存在させるのが有利である。
また、MAPの生成反応においては、pH8〜10の範囲
が好ましいので、被処理水のpHがこの範囲にあれば特に
pH調整を行う必要がないが、pHがこの範囲を逸脱する場
合には、pH調整するのが望ましい。通常、被処理水は中
性付近のものが多く、アルカリ剤を添加することによ
り、pH調整される。この際、使用されるアルカリ剤とし
ては、例えば水酸化ナトリウム、水酸化カリウム、炭酸
ナトリウム、炭酸カリウム、水酸化マグネシウムなどが
挙げられる。これらのアルカリ剤は単独で用いてよい
し、2種以上を組み合わせて用いてもよい。もちろん、
被処理水のpHが10より高い場合は、酸を用いてpH調整
すればよい。本発明方法においては、カラム式反応槽下
部と上部出口の正リン酸態リン濃度差が20mg/リット
ル以下になるように調整することが必要である。この濃
度差が20mg/リットルを超えるとプラグフロー方式の
運転において、MAPの微細結晶が生成し、処理水との
分離が悪くなり、リンの除去率が低下する。また、この
リン濃度差があまり低すぎると反応槽が大型化し、実用
的でなくなる。リンの除去率及び実用的な面を考慮する
と、この正リン酸態リン濃度差は、10〜15mg/リッ
トルの範囲が好ましい。この正リン酸態リン濃度差を2
0mg/リットル以下にするには、反応槽入口に供給する
リンの濃度を下げるのが簡便であり、好ましい。反応槽
入口のリン濃度を下げるには、被処理水を任意の希釈水
で希釈すればよい。この希釈水としては、リン除去処理
水を使用してもよく、この場合、反応槽出口水を、所定
量反応槽下部入口に循環するのが、装置面で有利であ
る。また、マグネシウム化合物やアンモニア系化合物を
供給する際、希釈度を加味して、それらの化合物の水溶
液を供給し、希釈してもよい。例えば、マグネシウム源
として海水を使用すれば、希釈水として働く。また、該
リン濃度差を20mg/リットル以下にする方法として
は、リン晶析量を調整し、反応槽出口リン濃度を高める
ことも可能である。この場合、マグネシウム化合物の添
加量及びアンモニア系化合物の添加量を制限するような
晶析条件を調整することが行われるが、このような晶析
条件の調整は、種々の要素が関係するので難しくて、実
用的でなく、前記の希釈による方法が望ましい。
The ammonium ion and the magnesium ion may be present in an equimolar amount with respect to the orthophosphoric phosphorus,
To ensure that these quantities are not rate limiting, as shown above,
It is advantageous to have a slight excess over the stoichiometric amount.
In addition, in the MAP generation reaction, the pH is preferably in the range of 8 to 10. Therefore, if the pH of the water to be treated is within this range,
It is not necessary to adjust the pH, but when the pH is out of this range, it is desirable to adjust the pH. Usually, the water to be treated is mostly neutral, and its pH is adjusted by adding an alkaline agent. At this time, examples of the alkaline agent used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and magnesium hydroxide. These alkali agents may be used alone or in combination of two or more. of course,
When the pH of the water to be treated is higher than 10, the pH may be adjusted using an acid. In the method of the present invention, it is necessary to adjust the difference in the concentration of orthophosphate phosphorus between the lower and upper outlets of the column-type reaction tank to be 20 mg / liter or less. If this concentration difference exceeds 20 mg / liter, in the operation of the plug flow method, MAP fine crystals are generated, the separation from the treated water is deteriorated, and the phosphorus removal rate is reduced. On the other hand, if the phosphorus concentration difference is too low, the size of the reaction tank becomes large, and it becomes impractical. Considering the phosphorus removal rate and practical aspects, the difference in the concentration of orthophosphate phosphorus is preferably in the range of 10 to 15 mg / liter. This difference in orthophosphoric phosphorus concentration is 2
In order to reduce the concentration to 0 mg / liter or less, it is convenient and preferable to lower the concentration of phosphorus supplied to the reaction tank inlet. In order to reduce the phosphorus concentration at the inlet of the reaction tank, the water to be treated may be diluted with any dilution water. As the dilution water, treated water for removing phosphorus may be used. In this case, it is advantageous in terms of the apparatus to circulate a predetermined amount of outlet water of the reaction tank to the lower inlet of the reaction tank. When supplying the magnesium compound or the ammonia-based compound, the aqueous solution of those compounds may be supplied and diluted in consideration of the degree of dilution. For example, if seawater is used as a magnesium source, it works as dilution water. In addition, as a method for reducing the phosphorus concentration difference to 20 mg / liter or less, it is possible to adjust the amount of phosphorus crystallized to increase the phosphorus concentration at the outlet of the reaction tank. In this case, crystallization conditions are adjusted so as to limit the addition amount of the magnesium compound and the addition amount of the ammonia-based compound. However, such crystallization condition adjustment is difficult because various factors are involved. Therefore, it is not practical, and the above-mentioned method by dilution is desirable.

【0007】被処理水のリン濃度が変動する場合には、
反応槽の入口及び出口のリン濃度を常時計測してリン濃
度差を制御するようにしてもよいし、間欠的に計測し
て、時々リン濃度差を調整してもよい。また、被処理水
のリン濃度の変動が所定の範囲内にあるような場合に
は、運転初期に正リン酸態リン濃度差が20mg/リット
ル以下となるような運転条件を設定し、通常は濃度管理
を省略してもよい。本発明方法においては、通常MAP
の種晶が使用され、かつプラグフロー形式で運転され
る。反応槽内においては、粒径0.1〜5mm程度のMA
P結晶が種晶として作用する。投入する種晶は粒径0.
1〜0.3mm程度のものが用いられるが、運転により成
長し、反応槽内に保持されているMAPも反応系におい
て種晶として働き、成長する。所定の大きさになったM
AP結晶は、連続的に又は間欠的に反応槽下部から引き
抜き、この引き抜き量に応じて、外部から粒径0.1〜
0.3mm程度の小粒子のMAP結晶を、種晶として連続
的又は間欠的に補給することができる。本発明方法にお
いては、カラム式反応槽内のMAP結晶は、被処理水の
上向流通水によって展開層を形成する。この展開層は、
30〜100%程度の展開率となるのがよく、展開率が
低いと結晶が塊状となるおそれがあり、展開率が大きす
ぎると反応槽が大型化したり、プラグフローが維持でき
なくなったりする。なお、この展開率とは、 (展開時層高−静止時層高)/静止時層高 のことである。また、本発明においては、反応槽内の水
の滞留時間は、0.5〜30分間程度で晶析反応には十
分である。本発明方法で生成し、取り出されたMAP粒
状物は、肥料などとして利用することができるが、プラ
グフロー形式で生成する場合は、反応槽内における上向
流速の調整により、取り出すMAP粒状物の大きさを任
意に調整でき、肥料形態に応じた粒径のものが得られる
ので、好ましい。
When the phosphorus concentration of the water to be treated fluctuates,
The phosphorus concentration at the inlet and outlet of the reaction tank may be constantly measured to control the phosphorus concentration difference, or may be measured intermittently to adjust the phosphorus concentration difference occasionally. In addition, when the fluctuation of the phosphorus concentration of the water to be treated is within a predetermined range, operating conditions are set such that the difference in the concentration of orthophosphoric phosphorus at the beginning of the operation is 20 mg / liter or less. Density management may be omitted. In the method of the present invention, the normal MAP
Are used and operated in plug flow mode. In the reaction tank, MA having a particle size of about 0.1 to 5 mm
The P crystal acts as a seed crystal. The seed crystal to be injected has a particle size of 0,0.
A material having a size of about 1 to 0.3 mm is used, and grows by operation, and MAP held in the reaction tank also functions as a seed crystal in the reaction system and grows. M of a given size
The AP crystals are continuously or intermittently drawn from the lower portion of the reaction tank, and the particle size is externally 0.1 to 0.1 depending on the amount of the drawn.
MAP crystals of small particles of about 0.3 mm can be supplied continuously or intermittently as seed crystals. In the method of the present invention, the MAP crystals in the column-type reaction tank form a developing layer by the upward flowing water of the water to be treated. This deployment layer
The expansion rate is preferably about 30 to 100%, and if the expansion rate is low, the crystals may be agglomerated. If the expansion rate is too high, the reaction tank becomes large or the plug flow cannot be maintained. The deployment rate is (development height at rest-height at rest) / height at rest. In the present invention, the residence time of water in the reaction tank is about 0.5 to 30 minutes, which is sufficient for the crystallization reaction. The MAP granules produced and taken out by the method of the present invention can be used as fertilizers, etc., but when produced in a plug flow format, the MAP granules taken out are adjusted by adjusting the upward flow rate in the reaction tank. The size can be arbitrarily adjusted, and a particle having a particle size according to the form of the fertilizer can be obtained.

【0008】[0008]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。 比較例1 直径3cm、高さ2mのポリ塩化ビニル製カラムに、粒子
径200μm程度のMAP粒子700ミリリットルを充
填した。これに、リン酸二水素アンモニウムをリンとし
て100mg/リットル濃度で含有する合成廃水を200
ミリリットル/分の流速で、カラム下部へ通水した。一
方、カラム最下部から、2重量%水酸化ナトリウム水溶
液を供給し、処理水のpHが8.5になるように調整する
とともに、5重量%塩化マグネシウム水溶液を、MgC
2/Pモル比が1.5になるように供給した。その結
果、充填したMAP粒子は流動し、約30%展開した
が、処理水は白濁していた。処理水中のリン濃度を測定
した結果、溶解性の正リン酸態リン濃度は7.4〜7.6
mg/リットルであり、安定していたが、全リン濃度は5
0〜90mg/リットルの範囲で変動した。また、上記条
件で、3日間連続して通水した結果、カラム下部にはM
APの結晶が析出し、カラム内側及びアルカリ剤の添加
ノズルに付着した。 比較例2 比較例1において、原水の流速を低下させ、かつ処理水
を循環させて、処理水量と循環水量を1:2となるよう
にした以外は、比較例1と同様にして実施した。なお、
処理水の循環に当たっては微細MAPが混入しないよう
に、処理水をいったんバケツに受け、微細MAPを沈殿
分離した。その結果、処理水中の正リン酸態リン濃度
は、比較例1に近似した7.3〜7.8mg/リットルであ
ったが、全リン濃度は19〜36mg/リットルであっ
た。また、合成廃水と循環水との混合水(原水)中の正
リン酸態リン濃度を測定した結果、37mg/リットルで
あった。 比較例3 比較例2において、処理水の循環量を増加させ、処理水
量と循環水量との比を1:3とした以外は、比較例2と
同様にして実施した。その結果、合成廃水と循環水との
混合水(原水)中の正リン酸態リン濃度は32〜35mg
/リットルであり、処理水中のそれは7.2〜7.6mg/
リットルとなった。また、処理水中の全リン濃度は13
〜27mg/リットルであった。 実施例1 直径3cm、高さ2mのポリ塩化ビニル製カラムに、粒子
径200μm程度のMAP粒子700ミリリットルを充
填した。一方、リン酸二水素アンモニウムをリンとして
50mg/リットル濃度で含有する合成廃水を100ミリ
リットル/分の流速で、また塩化マグネシウムをマグネ
シウムとして63mg/リットル濃度で含有する塩化マグ
ネシウム水溶液を100ミリリットル/分の流速で流し
て合流させ(Mg/Pモル比1.6)、カラム下部へ通
水した。また、カラム最下部から、2重量%水酸化ナト
リウム水溶液を供給し、処理水のpHが8.8になるよう
に調整した。その結果、処理水の正リン酸態リン濃度は
6.9〜7.2mg/リットル、全リン濃度は7.0〜7.7
mg/リットルであった。この状態で1ケ月間連続通水し
たが、処理水は安定しており、かつスケールの付着は全
くみられなかった。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Comparative Example 1 A polyvinyl chloride column having a diameter of 3 cm and a height of 2 m was packed with 700 ml of MAP particles having a particle diameter of about 200 μm. To this, synthetic wastewater containing ammonium dihydrogen phosphate at a concentration of 100 mg / liter as phosphorus was added.
Water was passed down the column at a flow rate of milliliter / min. On the other hand, a 2% by weight aqueous solution of sodium hydroxide was supplied from the bottom of the column, and the pH of the treated water was adjusted to 8.5.
The mixture was supplied so that the molar ratio of l 2 / P became 1.5. As a result, the filled MAP particles flowed and developed about 30%, but the treated water was cloudy. As a result of measuring the phosphorus concentration in the treated water, the soluble orthophosphoric phosphorus concentration was 7.4 to 7.6.
mg / liter and stable, but the total phosphorus concentration was 5
It varied in the range of 0-90 mg / liter. In addition, as a result of passing water for three consecutive days under the above conditions, M
AP crystals were deposited and attached to the inside of the column and to the nozzle for adding the alkali agent. Comparative Example 2 Comparative Example 1 was carried out in the same manner as in Comparative Example 1 except that the flow rate of the raw water was reduced and the treated water was circulated so that the treated water amount and the circulating water amount were 1: 2. In addition,
During the circulation of the treated water, the treated water was once received in a bucket to precipitate and separate the fine MAP so that the fine MAP was not mixed. As a result, the concentration of orthophosphoric phosphorus in the treated water was 7.3 to 7.8 mg / L, which was similar to that of Comparative Example 1, but the total phosphorus concentration was 19 to 36 mg / L. The concentration of orthophosphate phosphorus in the mixed water (raw water) of the synthetic wastewater and the circulating water was measured to be 37 mg / liter. Comparative Example 3 Comparative Example 2 was carried out in the same manner as in Comparative Example 2, except that the circulating amount of the treated water was increased and the ratio between the treated water amount and the circulating water amount was set to 1: 3. As a result, the concentration of orthophosphate phosphorus in the mixed water (raw water) of the synthetic wastewater and the circulating water is 32 to 35 mg.
/ Liter, and that in the treated water is 7.2-7.6 mg /
Liters. The total phosphorus concentration in the treated water is 13
2727 mg / liter. Example 1 A column made of polyvinyl chloride having a diameter of 3 cm and a height of 2 m was packed with 700 ml of MAP particles having a particle diameter of about 200 μm. On the other hand, a synthetic wastewater containing ammonium dihydrogen phosphate at a concentration of 50 mg / liter as phosphorus at a flow rate of 100 ml / min, and a magnesium chloride aqueous solution containing magnesium chloride at a concentration of 63 mg / liter as magnesium at 100 ml / min. They were combined at a flow rate (Mg / P molar ratio 1.6) and water was passed to the lower part of the column. A 2% by weight aqueous solution of sodium hydroxide was supplied from the bottom of the column, and the pH of the treated water was adjusted to 8.8. As a result, the concentration of orthophosphoric phosphorus in the treated water was 6.9 to 7.2 mg / liter, and the total phosphorus concentration was 7.0 to 7.7.
mg / liter. In this state, water was continuously passed for one month, but the treated water was stable and no scale adhesion was observed.

【0009】[0009]

【発明の効果】本発明方法によれば、し尿や浄化槽汚泥
の消化脱離液、汚泥の消化液、化学工場排水などの高濃
度のリンを含有する汚水などの被処理水中のリンを、プ
ラグフロー方式であっても、MAPの微細結晶の生成を
抑制して、粒状のMAP結晶を析出させることにより、
効率よく除去することができる。
According to the method of the present invention, phosphorus in the water to be treated such as wastewater containing a high concentration of phosphorus, such as digestion and desorption solution of night soil and septic tank sludge, digestion solution of sludge, and wastewater of a chemical plant, is plugged. Even in the flow method, by suppressing the generation of MAP fine crystals and precipitating granular MAP crystals,
It can be removed efficiently.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カラム式反応槽の下部からリン含有被処理
水を導入して上向流で流し、かつ、反応槽下部にマグネ
シウム化合物と場合によりアンモニア系化合物及び/又
はアルカリ剤を供給して、リン酸マグネシウムアンモニ
ウムの結晶を析出させることにより、被処理水中のリン
を除去するに当たり、反応槽下部と上部出口の正リン酸
態リン濃度差が20mg/リットル以下になるように調整
することを特徴とするリンの除去方法。
1. A process for introducing phosphorus-containing water to be treated which is introduced upward from a lower part of a column type reaction vessel, and a magnesium compound and optionally an ammonia compound and / or an alkali agent are supplied to a lower part of the reaction vessel. In order to remove phosphorus in the water to be treated by precipitating crystals of magnesium ammonium phosphate, it is necessary to adjust the difference in the concentration of orthophosphorous phosphorus between the lower and upper outlets of the reaction tank to 20 mg / liter or less. A featured phosphorus removal method.
【請求項2】カラム式反応槽において、プラグフロー形
式により、リン酸マグネシウムアンモニウム結晶の展開
層を形成させる請求項1記載のリンの除去方法。
2. The method for removing phosphorus according to claim 1, wherein a developing layer of magnesium ammonium phosphate crystals is formed in a column type reaction tank by a plug flow method.
【請求項3】反応槽出口水を反応槽下部に循環すること
により、反応槽下部と上部出口の正リン酸態リン濃度差
が20mg/リットル以下になるように調整する請求項1
又は2記載のリンの除去方法。
3. The method according to claim 1, wherein the difference in the concentration of orthophosphorous phosphorus between the lower part and the upper part of the reaction vessel is adjusted to 20 mg / l or less by circulating the reaction vessel outlet water to the lower part of the reaction vessel.
Or the method for removing phosphorus according to 2.
JP20088797A 1997-07-10 1997-07-10 How to remove phosphorus Expired - Fee Related JP3341639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20088797A JP3341639B2 (en) 1997-07-10 1997-07-10 How to remove phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20088797A JP3341639B2 (en) 1997-07-10 1997-07-10 How to remove phosphorus

Publications (2)

Publication Number Publication Date
JPH1128477A true JPH1128477A (en) 1999-02-02
JP3341639B2 JP3341639B2 (en) 2002-11-05

Family

ID=16431908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20088797A Expired - Fee Related JP3341639B2 (en) 1997-07-10 1997-07-10 How to remove phosphorus

Country Status (1)

Country Link
JP (1) JP3341639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286701A (en) * 2000-04-11 2001-10-16 Mitsubishi Kakoki Kaisha Ltd Crystallization reaction apparatus and crystallization/ dephosphorization method using the same
CN102229454A (en) * 2011-04-29 2011-11-02 诸暨市助剂厂 Technology for preparing phosphate product with phosphorus-containing wastewater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286701A (en) * 2000-04-11 2001-10-16 Mitsubishi Kakoki Kaisha Ltd Crystallization reaction apparatus and crystallization/ dephosphorization method using the same
JP4519986B2 (en) * 2000-04-11 2010-08-04 三菱化工機株式会社 Crystallization reactor and crystallization dephosphorization method using the same
CN102229454A (en) * 2011-04-29 2011-11-02 诸暨市助剂厂 Technology for preparing phosphate product with phosphorus-containing wastewater

Also Published As

Publication number Publication date
JP3341639B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP4748584B2 (en) Method and apparatus for removing ions in liquid by crystallization method
KR20020005521A (en) Process and system for wastewater treatment using struvite(MAP)
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JP3341639B2 (en) How to remove phosphorus
JPS63200888A (en) Removal of phosphorus contained in water
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
CN215209008U (en) High ammonia-nitrogen wastewater resource recovery device
JPH09220593A (en) Treatment of ammonia nitrogen-containing organic waste liquid
JP4368159B2 (en) Method for treating wastewater containing phosphate
JPH0416238B2 (en)
JPH07124571A (en) Treatment process for organic drainage
JP2000334474A (en) Method for removing phosphorus from waste water
JPS6345275B2 (en)
WO1994000391A1 (en) Process for the removal of phosphorous
JPH10235374A (en) Wastewater treatment by map method using sea water
JPH08318293A (en) Treatment of waste water
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
Hiroyuki et al. Phosphorus recovery by crystallization
JP3271556B2 (en) Dephosphorization device
JP4211265B2 (en) Dephosphorization material
JP3341631B2 (en) Dephosphorization method
JPH11277071A (en) Removal of phosphorus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140823

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees