JPH11284213A - Photovoltaic device and its manufacture - Google Patents

Photovoltaic device and its manufacture

Info

Publication number
JPH11284213A
JPH11284213A JP10100573A JP10057398A JPH11284213A JP H11284213 A JPH11284213 A JP H11284213A JP 10100573 A JP10100573 A JP 10100573A JP 10057398 A JP10057398 A JP 10057398A JP H11284213 A JPH11284213 A JP H11284213A
Authority
JP
Japan
Prior art keywords
layer
type
photovoltaic device
layers
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10100573A
Other languages
Japanese (ja)
Other versions
JP3664875B2 (en
Inventor
Eiji Maruyama
英治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10057398A priority Critical patent/JP3664875B2/en
Publication of JPH11284213A publication Critical patent/JPH11284213A/en
Application granted granted Critical
Publication of JP3664875B2 publication Critical patent/JP3664875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic device constituted of a laminated solar battery structure in which the characteristics of reverse junction areas between solar batteries are improved and the cost of which can be reduced highly effectively. SOLUTION: In the reverse junction area (a) of a laminated photovoltaic device in which at least two or more pin-type solar batteries are laminated in series, a high-concentration dopant interposed layer 31a containing both p-and n-type dopants at higher concentrations than the dopants respectively contained in a p-type semiconductor layer 13 and an n-type semiconductor layer 12 in the reverse junction area (a) in which the semiconductor layers having different conductivities are formed adjacently to each other is interposed between the semiconductor layers 13 and 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、pin型太陽電池
を少なくとも2個以上直列に積層した積層型太陽電池構
造の光起電力装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device having a stacked solar cell structure in which at least two or more pin type solar cells are stacked in series, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、pin型太陽電池(非晶質太陽電
池)を製造する際は、プラズマCVD法により各導電型
半導体層を形成するときに他の異なる導電型半導体層の
ドーパントが混入しないようにすることが、太陽電池特
性の向上を図る上で重要であるとされ、一般に、連続分
離形成装置を用いて各導電型半導体層をそれぞれの反応
室により分離形成することが行われている。
2. Description of the Related Art Conventionally, when manufacturing a pin type solar cell (amorphous solar cell), when forming each conductive type semiconductor layer by a plasma CVD method, a dopant of another conductive type semiconductor layer is not mixed. It is considered important to improve the solar cell characteristics, and it is generally practiced to separate and form each conductive type semiconductor layer in each reaction chamber using a continuous separation forming apparatus. .

【0003】そして、pin型太陽電池を少なくとも2
個以上直列に積層した積層型太陽電池構造の光起電力装
置の製造に際しては、従来、前記連続分離形成装置とし
て、図14,図15に示すようなインライン型プラズマ
CVD装置1a,1b又は図16,図17に示すような
枚葉型プラズマCVD装置2a,2bが多用される。
[0003] At least two types of pin type solar cells are used.
In manufacturing a photovoltaic device having a stacked solar cell structure in which a plurality of photovoltaic devices are stacked in series, conventionally, the in-line type plasma CVD device 1a, 1b or FIG. A single-wafer plasma CVD apparatus 2a, 2b as shown in FIG.

【0004】プラズマCVD装置1a,2aは2層積層
用であり、プラズマCVD装置1b,2bは3層積層用
である。
The plasma CVD apparatuses 1a and 2a are for two-layer lamination, and the plasma CVD apparatuses 1b and 2b are for three-layer lamination.

【0005】そして、プラズマ装置1aは仕込室3と取
出室4との間にp,i,n,p,i,nの各導電型の計
6個の反応室5を直列に設けて構成され、仕込室3に搬
送された基板が各反応室5を通りながら基板上にp,
i,n,p,i,nの非晶質の各導電型半導体層が順次
に分離形成され、取出室4に2層積層型太陽電池が得ら
れる。
[0005] The plasma apparatus 1a is constructed by providing a total of six reaction chambers 5 of p, i, n, p, i, and n conductivity between the charging chamber 3 and the unloading chamber 4, respectively. The substrate conveyed to the preparation chamber 3 passes through each reaction chamber 5 while p,
The amorphous semiconductor layers of i, n, p, i, and n are sequentially formed separately, and a two-layered solar cell is obtained in the extraction chamber 4.

【0006】また、プラズマCVD装置1bは仕込室3
と取出室4との間にp,i,n,p,i,n,p,i,
nの各導電型の計9個の反応室5が直列に設けられ、基
板上にp,i,n,p,i,n,p,i,nの各導電型
半導体層が順次に分離形成され、取出室4に3層積層型
太陽電池が得られる。
Further, the plasma CVD apparatus 1b is
, P, i, n, p, i, n, p, i,
A total of nine reaction chambers 5 of each conductivity type of n are provided in series, and semiconductor layers of each conductivity type of p, i, n, p, i, n, p, i, n are sequentially formed on the substrate. Thus, a three-layer stacked solar cell is obtained in the extraction chamber 4.

【0007】つぎに、プラズマCVD装置2aは前記の
仕込室3,取出室4として仕込・取出室6が設けられ、
この仕込・取出室6とp,i,n,p,i,n(時計回
転方向)の各導電型の計6個の反応室5とを環状に配置
して構成され、仕込・取出室6に搬送された基板が各反
応室5を通って仕込・取出室6に戻ることにより、プラ
ズマCVD装置1aの場合と同様、基板上にp,i,
n,p,i,nの各導電型半導体層が順次に形成されて
2層積層型太陽電池が得られる。
Next, in the plasma CVD apparatus 2a, a loading / unloading chamber 6 is provided as the loading chamber 3 and the unloading chamber 4 described above.
The charging / discharging chamber 6 and six reaction chambers 5 of each conductivity type of p, i, n, p, i, n (clockwise rotation) are arranged in a ring shape. Is returned to the loading / unloading chamber 6 through the respective reaction chambers 5 so that p, i, and p are placed on the substrate as in the case of the plasma CVD apparatus 1a.
Each of n, p, i, and n conductive semiconductor layers is sequentially formed to obtain a two-layer stacked solar cell.

【0008】同様に、プラズマCVD装置2bは、仕込
・取出室6とp,i,n,p,i,n,p,i,n(時
計回転方向)の各導電型の計9個の反応室5とを環状に
配置して形成され、3層積層型太陽電池が得られる。
Similarly, the plasma CVD apparatus 2b comprises a charging / unloading chamber 6 and a total of nine reactions of each conductivity type of p, i, n, p, i, n, p, i, n (clockwise). The chamber 5 is formed by arranging it in a ring shape, and a three-layer stacked solar cell is obtained.

【0009】ところで、各プラズマCVD装置1a,1
b,2a,2bを用いて製造される光起電力装置は、図
18,図19の基板側から光が入射する順タイプのもの
である。
Incidentally, each of the plasma CVD apparatuses 1a, 1
The photovoltaic device manufactured using b, 2a, and 2b is of the forward type in which light is incident from the substrate side in FIGS.

【0010】そして、図18の光起電力装置7は2層積
層型太陽電池構造であり、ガラス基板8上にテクスチャ
状凹凸を有するSnO2 の透明導電膜(TCO膜)9を
介して光入射側(フロント側)の太陽電池のp,i,n
の各導電型半導体層(以下p層,i層,n層という)1
0,11,12,裏面側(ボトム側)の太陽電池のp層
13,i層14,n層15を積層し、その上に裏面電極
としての金属膜16を設けて形成される。
The photovoltaic device 7 shown in FIG. 18 has a two-layered solar cell structure, in which light enters through a transparent conductive film (TCO film) 9 of SnO 2 having textured irregularities on a glass substrate 8. P, i, n of the solar cell on the side (front side)
Semiconductor layers (hereinafter referred to as p-, i-, and n-layers) 1
The p-layer 13, the i-layer 14, and the n-layer 15 of the solar cell on the back side (bottom side) are stacked on top of each other, and a metal film 16 as a back side electrode is provided thereon.

【0011】また、図19の光起電力装置17は3層積
層型太陽電池構造であり、ガラス基板8上に透明導電膜
9を介して光入射側の太陽電池のp層18,i層19,
n層20,中間層の太陽電池のp層21,i層22,n
層23,裏面側の太陽電池のp層24,i層25,n層
26と積層し、その上に金属膜16を設けて形成され
る。
The photovoltaic device 17 shown in FIG. 19 has a three-layered solar cell structure, in which a p-layer 18 and an i-layer 19 of the solar cell on the light incident side are placed on a glass substrate 8 via a transparent conductive film 9. ,
n-layer 20, intermediate-layer p-layer 21, i-layer 22, n of solar cell
It is formed by laminating the layer 23, the p-layer 24, the i-layer 25, and the n-layer 26 of the solar cell on the back side, and providing the metal film 16 thereon.

【0012】つぎに、プラズマCVD装置1a,1b,
2a,2bを用いて図20,図21に示す基板の反射側
から光が入射する逆タイプの光起電力装置27,28を
製造することも可能であり、この場合は、例えば、図1
4〜図17の各p型の反応室5と各n型の反応室5とを
交換して製造される。
Next, the plasma CVD apparatuses 1a, 1b,
It is also possible to manufacture reverse type photovoltaic devices 27 and 28 in which light is incident from the reflection side of the substrate shown in FIGS. 20 and 21 using 2a and 2b. In this case, for example, FIG.
It is manufactured by exchanging each p-type reaction chamber 5 and each n-type reaction chamber 5 in FIGS.

【0013】そして、図20の2層積層型太陽電池構造
の光起電力装置27は、基板29a上にテクスチャ状凹
凸を有する基板29bを介して金属膜16を設け、この
金属膜16上に図18の裏面側の太陽電池のn層15,
i層14,p層13,光入射側の太陽電池のn層12,
i層11,p層10を積層し、その上に透明導電膜9を
設けて形成される。
In the photovoltaic device 27 having a two-layer stacked solar cell structure shown in FIG. 20, a metal film 16 is provided on a substrate 29a via a substrate 29b having textured irregularities. The n-layer 15 of the solar cell on the back side of 18,
i layer 14, p layer 13, n layer 12 of the solar cell on the light incident side,
It is formed by laminating an i-layer 11 and a p-layer 10 and providing a transparent conductive film 9 thereon.

【0014】また、図21の3層積層型太陽電池構造の
光起電力装置28は、基板29a上に基板29bを介し
て金属膜16を設け、この金属膜16上に図19の裏面
側の太陽電池のn層26,i層25,p層24,中間層
の太陽電池のn層23,i層22,p層21,光入射側
の太陽電池のn層20,i層19,p層18を積層し、
その上に透明導電膜9を設けて形成される。
In the photovoltaic device 28 having a three-layer solar cell structure shown in FIG. 21, a metal film 16 is provided on a substrate 29a via a substrate 29b. N layer 26, i layer 25, p layer 24 of the solar cell, n layer 23, i layer 22, p layer 21 of the intermediate solar cell, n layer 20, i layer 19, p layer of the solar cell on the light incident side 18 is laminated,
It is formed by providing a transparent conductive film 9 thereon.

【0015】[0015]

【発明が解決しようとする課題】前記従来のように太陽
電池の各導電型半導体層を全てそれぞれの反応室5によ
り分離形成してこの種積層型太陽電池構造の光起電力装
置を製造する場合、異なる導電型半導体層が隣接する図
18〜図21の太陽電池間の逆接合領域a,b,c,
d,e,fのp層13,21,24とn層12,20,
23との界面部分において、光起電力装置内の整流方向
とは逆向きの整流作用が生じるため、光起電力装置の特
性が低下する。
In the case of manufacturing a photovoltaic device having this type of stacked solar cell structure by forming all the conductive semiconductor layers of the solar cell separately by the respective reaction chambers 5 as in the prior art. , Reverse junction regions a, b, c, between the solar cells of FIGS.
d, e, f p layers 13, 21, 24 and n layers 12, 20,
Since a rectifying action in the direction opposite to the rectifying direction in the photovoltaic device occurs at the interface with the photovoltaic device 23, the characteristics of the photovoltaic device deteriorate.

【0016】そこで、従来は逆接合領域のp層或いはn
層のうちのいずれか一方、或いは両方に微結晶半導体層
を用いることで、界面部分を整流作用を生じないオーミ
ック接触性とし、特性を向上させることが検討されてい
る。
Therefore, conventionally, the p-layer or n-layer in the reverse junction region is used.
The use of a microcrystalline semiconductor layer for one or both of the layers has been studied to improve the characteristics by making the interface portion have ohmic contact without rectifying action.

【0017】しかしながら、良好なオーミック接触性を
得るためには微結晶半導体層中のc−Si成分の体積分
率或いは膜厚等に制限があり、このため形成条件を精度
良くかつ再現性良く制御する必要があり、製造コストが
高くなるという問題点がある。
However, in order to obtain good ohmic contact, the volume fraction or the film thickness of the c-Si component in the microcrystalline semiconductor layer is limited, so that the formation conditions are controlled with high accuracy and high reproducibility. Therefore, there is a problem that the manufacturing cost is increased.

【0018】また、半導体層毎に反応室5を要するた
め、製造設備が大規模になり、設備コスト,プロセスコ
トスが高く、この点からもこの種光起電力装置のコスト
ダウンを図ることができない問題点がある。
Further, since a reaction chamber 5 is required for each semiconductor layer, the production equipment becomes large-scale, the equipment cost and the process cost are high, and from this point of view, the cost of this type of photovoltaic device cannot be reduced. There is a problem.

【0019】なお、前記の連続分離形成装置の代わり
に、全ての導電型半導体層を同一の反応室にて連続して
形成する,いわゆる単室形成装置を用いると、大幅なコ
ストダウンを図ることが可能になるが、各導電型半導体
層に他の導電型のドーパントが混入して光起電力装置の
特性が大幅に低下するため、実際には、そのような単室
形成装置を用いて実用的な特性を有するこの種光起電力
装置を製造することはできない。
By using a so-called single-chamber forming apparatus in which all the conductive semiconductor layers are continuously formed in the same reaction chamber instead of the above-mentioned continuous separation and forming apparatus, the cost can be greatly reduced. However, since the dopant of another conductivity type is mixed into each conductivity type semiconductor layer and the characteristics of the photovoltaic device are greatly reduced, in practice, such a single-chamber forming device is used for practical use. This kind of photovoltaic device having a characteristic cannot be manufactured.

【0020】本発明は、前記の諸点に留意してなされた
ものであり、太陽電池間の逆接合領域の特性を改善し、
特性の優れた安価な積層型太陽電池構造の光起電力装置
を提供することを課題とし、また、その製造に必要な反
応室数を従来より少なくして設備コスト及びプロセスコ
ストの低減を図ることも課題とする。
The present invention has been made in consideration of the above-mentioned points, and has improved characteristics of a reverse junction region between solar cells.
An object of the present invention is to provide an inexpensive photovoltaic device having a stacked solar cell structure having excellent characteristics, and to reduce the number of reaction chambers required for the production thereof to reduce equipment costs and process costs. Is also an issue.

【0021】[0021]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の光起電力装置は、pin型太陽電池を少
なくとも2個以上直列に積層した積層型の光起電力装置
であって、異なる導電型半導体層が隣接する逆接合領域
のp型半導体層(p層)とn型半導体層(n層)との界
面部分に、p型,n型両者のドーパントを、共に逆接合
領域のp型半導体層,n型半導体層のドーパント濃度よ
りも高濃度に含んだ層が介在していることを特徴とする
ものである。
In order to solve the above problems, a photovoltaic device of the present invention is a stacked photovoltaic device in which at least two or more pin type solar cells are stacked in series. The p-type and n-type dopants are applied to the interface portion between the p-type semiconductor layer (p-layer) and the n-type semiconductor layer (n-layer) in the reverse junction region where the different conductive semiconductor layers are adjacent to each other. And a layer containing a higher concentration than the dopant concentration of the p-type semiconductor layer and the n-type semiconductor layer.

【0022】したがって、太陽電池間の逆接合領域のオ
ーミック接触性が大幅に改善され、各導電型半導体層を
薄くして材料コスト,プロセスコストを低減し、特性の
優れた安価な光起電力装置を提供することができる。
Therefore, the ohmic contact of the reverse junction region between the solar cells is greatly improved, the material cost and the process cost are reduced by thinning each conductive semiconductor layer, and an inexpensive photovoltaic device having excellent characteristics is provided. Can be provided.

【0023】つぎに、本発明の光起電力装置の製造方法
は、pin型太陽電池を少なくとも2個以上直列に積層
した積層型の光起電力装置を製造する方法であって、プ
ラズマCVD法により、異なる導電型半導体層が隣接す
る逆接合領域のp型半導体層(p層)とn型半導体層
(n層)とを同一反応室にて連続して形成し、残りの各
導電型半導体層はそれぞれの反応室にて分離形成するこ
とを特徴とするものである。
Next, a method of manufacturing a photovoltaic device according to the present invention is a method of manufacturing a stacked photovoltaic device in which at least two or more pin type solar cells are stacked in series, and is manufactured by a plasma CVD method. Forming a p-type semiconductor layer (p-layer) and an n-type semiconductor layer (n-layer) in a reverse junction region where different conductive semiconductor layers are adjacent to each other in the same reaction chamber, and forming each of the remaining conductive semiconductor layers Are characterized by being formed separately in each reaction chamber.

【0024】したがって、太陽電池の逆接合領域のp層
とn層とが1つの反応室で形成され、必要な反応室の数
が全ての半導体層をそれぞれの反応室で分離形成する場
合より少なくなり、製造設備の小規模化を図って設備コ
スト,プロセスコストを低減することができる。
Therefore, the p-layer and the n-layer in the reverse junction region of the solar cell are formed in one reaction chamber, and the number of required reaction chambers is smaller than when all the semiconductor layers are separately formed in each reaction chamber. Thus, the production cost can be reduced and the equipment cost and the process cost can be reduced.

【0025】さらに、プラズマCVD法により、異なる
導電型半導体層が隣接する逆接合領域のp型半導体層
(p層)とn型半導体層(n層)とは同一反応室にて放
電を維持したまま反応ガスの変更のみで連続して形成
し、残りの各導電型半導体層はそれぞれの反応室にて分
離形成すれば、逆接合領域のオーミック接触性が一層向
上する。
Further, by the plasma CVD method, the p-type semiconductor layer (p-layer) and the n-type semiconductor layer (n-layer) in the reverse junction region where different conductive type semiconductor layers are adjacent maintain discharge in the same reaction chamber. If the conductive semiconductor layers are continuously formed only by changing the reaction gas, and the remaining conductive semiconductor layers are separately formed in the respective reaction chambers, the ohmic contact of the reverse junction region is further improved.

【0026】[0026]

【発明の実施の形態】本発明の実施の形態につき、図1
ないし図13を参照して説明する。 (第1の形態)まず、本発明の実施の第1の形態につ
き、図1ないし図8を参照して説明する。図1は基板側
から光が入射するタイプの2層積層型太陽電池構造の光
起電力装置30を示し、図18の従来装置7と異なる点
は、p層10,i層11,n層12が形成する光入射側
の太陽電池と,p層13,i層14,n層15が形成す
る裏面側の太陽電池との間の異なる導電型半導体層が隣
接する逆接合領域aにおいて、p層13とn層12との
界面部分に、p型,n型のドーパントの高濃度の層とし
て、p層13,n層12のドーパント濃度よりも高濃度
にドーパントを含んだ高濃度ドーパント介在層31aが
存在している点である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described with reference to FIG. (First Embodiment) First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a photovoltaic device 30 having a two-layer stacked solar cell structure in which light is incident from the substrate side. The difference from the conventional device 7 in FIG. 18 is that the p-layer 10, the i-layer 11, and the n-layer 12 Are formed in the reverse junction region a where different conductive semiconductor layers between the solar cell on the light incident side formed by the semiconductor layer and the solar cell on the back side formed by the p-layer 13, the i-layer 14, and the n-layer 15 are adjacent to each other. At the interface between the n-type layer 13 and the n-type layer 12, a high-concentration dopant intervening layer 31 a containing a high-concentration dopant than the p-type and n-type layers 12 is formed as a high-concentration layer of p-type and n-type dopants. Is a point that exists.

【0027】図2,図3は光起電力装置30の製造に用
いられるインライン型プラズマCVD装置32a,枚葉
型プラズマCVD装置33aを示し、両CVD装置32
a,33aが図14,図16の従来装置1a,2aと異
なる点は、前記の逆接合領域aのn層12とp層13と
を、1個の反応室34aにより連続して形成する点であ
る。
FIGS. 2 and 3 show an in-line type plasma CVD device 32a and a single wafer type plasma CVD device 33a used for manufacturing the photovoltaic device 30.
14 and 16 is that the n-layer 12 and the p-layer 13 in the reverse junction region a are formed continuously by one reaction chamber 34a. It is.

【0028】この場合、図2と図14,図3と図16の
比較からも明らかなように、2層積層型太陽電池の形成
に必要な反応室数が6から5に減少して全体では必要な
室数が8から7或いは7から6に減少し、製造設備の小
規模化を図り、そのコストを従来より約1.3〜1.5
割低減することができる。
In this case, as is clear from the comparison between FIGS. 2 and 14, and FIGS. 3 and 16, the number of reaction chambers required for forming a two-layer stacked solar cell is reduced from six to five, and the overall number is reduced. The number of required rooms is reduced from 8 to 7 or 7 to 6, miniaturizing the manufacturing equipment, and reducing the cost by about 1.3 to 1.5
It can be reduced relatively.

【0029】つぎに、光起電力装置30の具体的な製造
方法について説明する。まず、図1のガラス基板8の表
面上にテクスチャ状凹凸を有する透明導電膜9を約20
00Åの厚さに形成していわゆるTCO基板を形成し、
このTCO基板を図2の仕込室3又は図3の仕込・取出
室6に導入する。
Next, a specific method of manufacturing the photovoltaic device 30 will be described. First, a transparent conductive film 9 having textured irregularities on the surface of the glass substrate 8 of FIG.
Forming a so-called TCO substrate with a thickness of
The TCO substrate is introduced into the charging chamber 3 in FIG. 2 or the charging / unloading chamber 6 in FIG.

【0030】そして、TCO基板を仕込室3又は仕込・
取出室6からp型,i型の反応室5に順に移動して透明
導電膜9上に光入射側の太陽電池のp層10,i層11
を順に分離形成して積層した後、反応室34aにより、
i層11の上に逆接合領域aのn層12とp層13とを
連続して形成する。
Then, the TCO substrate is loaded into the loading chamber 3 or
The p-type layer 10 and the i-type layer 11 of the solar cell on the light incident side are sequentially moved from the extraction chamber 6 to the p-type and i-type reaction chambers 5 on the transparent conductive film 9.
Are sequentially formed separately and stacked, and then the reaction chamber 34a
On the i-layer 11, the n-layer 12 and the p-layer 13 in the reverse junction region a are continuously formed.

【0031】このn層12、p層13の連続形成は、n
層12の形成後、放電を一旦停止して反応ガス(原料ガ
ス)をn型のガスからp型のガスに変え、その後放電を
再開してp層13を形成する放電不連続方式で行っても
よいが、その際に形成される両層12,13の界面部分
の高濃度ドーパント介在層31aをより効果的に一層高
濃度にするため、放電を維持したまま反応ガスをn型か
らp型に変えるのみで両層12,13を順次に形成する
放電連続方式で行うことが好ましい。
The continuous formation of the n-layer 12 and the p-layer 13
After the formation of the layer 12, the discharge is temporarily stopped, the reaction gas (raw material gas) is changed from an n-type gas to a p-type gas, and then the discharge is restarted to form a p-layer 13 by a discontinuous discharge method. However, in order to more effectively increase the concentration of the high-concentration dopant intervening layer 31a at the interface between the layers 12 and 13 formed at that time, the reaction gas is changed from n-type to p-type while maintaining discharge. It is preferable to perform the discharge by a continuous discharge method in which both layers 12 and 13 are sequentially formed only by changing to.

【0032】そして、n層12及びp層13を形成した
後、基板を反応室34aからi型,n型の反応室5に順
に移動し、p層13上に裏面側の太陽電池のi層14,
n層15を順次に分離形成して積層する。
After the formation of the n-layer 12 and the p-layer 13, the substrate is moved from the reaction chamber 34 a to the i-type and n-type reaction chambers 5 in order, and the i-layer of the solar cell on the back side is placed on the p-layer 13. 14,
The n-layers 15 are sequentially formed separately and stacked.

【0033】その後、取出室4又は仕込・取出室6から
基板を取出して次の工程に移り、n層15の上に金属膜
16を形成する。
After that, the substrate is taken out from the unloading chamber 4 or the loading / unloading chamber 6 and the process proceeds to the next step, where the metal film 16 is formed on the n-layer 15.

【0034】ところで、反応室34aの成膜条件は、他
の反応室5と同じであってよく、例えば、13.56M
HzのRFプラズマCVDであって、形成温度100〜3
00℃,反応圧力5〜100Pa,RFパワー1〜5m
W/cm2 である。
Incidentally, the film forming conditions of the reaction chamber 34a may be the same as those of the other reaction chambers 5, for example, 13.56M.
Hz RF plasma CVD at a formation temperature of 100 to 3
00 ° C, reaction pressure 5-100Pa, RF power 1-5m
W / cm 2 .

【0035】この条件下、光入射側の太陽電池の発電層
(i層11)は光学ギャップ(Eopt)=1.6e
V,膜厚約1500Åの非晶質半導体とし、裏面側の太
陽電池の発電層(i層14)は光学ギャップ(Eop
t)=1.32eV,膜厚約1500Åの非晶質半導体
とした。
Under these conditions, the power generation layer (i-layer 11) of the solar cell on the light incident side has an optical gap (Eopt) = 1.6e.
V, an amorphous semiconductor having a film thickness of about 1500 °, and the power generation layer (i-layer 14) of the solar cell on the rear surface side has an optical gap (Eop).
t) = 1.32 eV and an amorphous semiconductor having a film thickness of about 1500 °.

【0036】また、p層10,13,n層12,15に
ついては、ボロン原子(p型),リン原子(n型)をド
ーピングして形成し、ドーピングの際のガス流量比(p
型:B26/SiH4 ,n型:PH3/SiH4)は1%
とし、p層10,13の膜厚は約100Åの一定厚さと
し、n層12,15の膜厚は50〜500Åとした。
The p layers 10, 13 and the n layers 12, 15 are formed by doping boron atoms (p-type) and phosphorus atoms (n-type), and a gas flow ratio (p
Type: B 2 H 6 / SiH 4 , n-type: PH 3 / SiH 4 ) is 1%
The thicknesses of the p layers 10 and 13 were set to a constant thickness of about 100 °, and the thicknesses of the n layers 12 and 15 were set to 50 to 500 °.

【0037】つぎに、このようにして製造した光起電力
装置30の特性について、従来装置7と比較して説明す
る。まず、光起電力装置30の太陽電池の電流I−電圧
V特性を表す開放電圧Voc,短絡電流Isc,曲線因
子F.F.,変換効率Effを、従来装置7のそれらの
値で規格化したところ、つぎの表1の結果が得られた。
Next, the characteristics of the photovoltaic device 30 thus manufactured will be described in comparison with the conventional device 7. First, the open-circuit voltage Voc, the short-circuit current Isc, and the fill factor F. representing the current I-voltage V characteristics of the solar cell of the photovoltaic device 30 are shown. F. , And the conversion efficiency Eff were normalized by those values of the conventional device 7, and the results in the following Table 1 were obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】なお、この規格化に際しては、光起電力装
置30として、反応室34aにより放電不連続方式でn
層12,p層13を形成したものを用いた。
At the time of this standardization, the photovoltaic device 30 uses the reaction chamber 34a to perform n
The layer having the layer 12 and the p layer 13 was used.

【0040】そして、表1からも明らかなように、光起
電力装置30においては、逆接合領域aのオーミック接
触性と良い相関がある開放電圧Voc及び曲線因子F.
F.が、いずれも従来装置7に比して約5%以上改善さ
れ、逆接合領域aのオーミック接触性が大幅に向上す
る。
As is apparent from Table 1, in the photovoltaic device 30, the open circuit voltage Voc and the fill factor F. which have a good correlation with the ohmic contact property of the reverse junction region a.
F. However, each is improved by about 5% or more compared to the conventional device 7, and the ohmic contact property of the reverse junction region a is greatly improved.

【0041】この原因を検討するため、装置7,30に
つき、逆接合領域aのボロン原子濃度、リン原子濃度を
2次イオン質量分析法により測定したところ、従来装置
7につき図4の(a)の結果が得られ、本発明の装置3
0につき、同図の(b)の結果が得られた。
In order to examine the cause, the boron atom concentration and the phosphorus atom concentration in the reverse junction region a were measured by the secondary ion mass spectrometry with respect to the devices 7 and 30. As shown in FIG. Is obtained, and the device 3 of the present invention is obtained.
For 0, the result of (b) of the same figure was obtained.

【0042】図4の(a),(b)において、破線はボ
ロン原子濃度の変化を示し、実線はリン原子濃度の変化
を示す。
In FIGS. 4A and 4B, broken lines indicate changes in the concentration of boron atoms, and solid lines indicate changes in the concentration of phosphorus atoms.

【0043】そして、図4の(a),(b)の比較から
も明らかなように、n層12を形成した後、別の反応室
5でp層13を分離形成した従来装置7の場合は、p層
13の形成初期のプラズマダメージの影響,搬送中の熱
によるリン原子の脱離(蒸発)の影響により、逆接合界
面近傍でリン原子の濃度が低下して十分な高濃度になら
ないが、n層12とp層13とを同一の反応室34aに
より連続して形成した光起電力装置30の場合は、逆接
合界面付近で、リン原子の濃度は低下せず、むしろ上昇
して十分な高濃度になり、この結果、n層12,p層1
3の界面部分に両層12,13それぞれのいわゆるバル
ク部分より十分に高濃度(1019cm-3以上)の高濃度ド
ーパント介在層31aが形成され、この介在層31aに
よりキャリアの効果的な再結合が促進され、従来装置7
より優れたオーミック接触性が得られる。
As is clear from the comparison between FIGS. 4A and 4B, in the case of the conventional device 7 in which the n-layer 12 is formed and then the p-layer 13 is formed separately in another reaction chamber 5. Is that the concentration of phosphorus atoms decreases near the reverse junction interface and does not become sufficiently high due to the influence of plasma damage at the initial stage of formation of the p-layer 13 and the influence of desorption (evaporation) of phosphorus atoms due to heat during transportation. However, in the case of the photovoltaic device 30 in which the n-layer 12 and the p-layer 13 are continuously formed in the same reaction chamber 34a, the concentration of the phosphorus atoms does not decrease but rises near the reverse junction interface. The concentration becomes sufficiently high. As a result, the n-layer 12 and the p-layer 1
At the interface portion 3, a high-concentration dopant intervening layer 31 a having a sufficiently higher concentration (10 19 cm −3 or more) than the so-called bulk portion of each of the layers 12 and 13 is formed. The coupling is promoted and the conventional device 7
Better ohmic contact is obtained.

【0044】これは、反応室34aでの連続形成によ
り、p層13の形成初期に、反応室34aのチャンバ壁
等に付着しているn型のドーパント(リン原子)の叩き
出しの効果が生じ、しかも、従来装置7のような搬送中
の熱によるリン原子の脱離が生じないため、逆接合界面
付近でリン原子の濃度が高くなるからであると考えられ
る。
This is because, by the continuous formation in the reaction chamber 34a, an effect of knocking out n-type dopants (phosphorus atoms) adhering to the chamber walls and the like of the reaction chamber 34a occurs at the initial stage of the formation of the p-layer 13. In addition, it is considered that phosphorus atoms are not desorbed due to heat during transportation as in the case of the conventional apparatus 7, so that the concentration of phosphorus atoms increases near the reverse junction interface.

【0045】つぎに、逆接合領域aのオーミック接触性
を向上するため、n層12をn型の微結晶シリコン
(n:μc−Si)層とした場合、この層中の結晶シリ
コン(c−Si)成分の体積分率(割合い)はその膜特
性と良い相関がある。
Next, in order to improve the ohmic contact property of the reverse junction region a, when the n layer 12 is an n-type microcrystalline silicon (n: μc-Si) layer, the crystalline silicon (c− The volume fraction of the Si) component has a good correlation with its film properties.

【0046】そして、光起電力装置7,30それぞれの
逆接合領域aのn層12をn;μc−Si層とした場
合、この層中のc−Si成分の体積分率と,体積分率8
0%の開放電圧Vocで規格化した開放電圧Vocとに
つき、図5に示す関係が得られた。
When the n layer 12 in the reverse junction region a of each of the photovoltaic devices 7 and 30 is an n; μc-Si layer, the volume fraction of the c-Si component in this layer and the volume fraction 8
The relationship shown in FIG. 5 was obtained with respect to the open circuit voltage Voc normalized by the open circuit voltage Voc of 0%.

【0047】この図5において、●は光起電力装置30
の場合を示し、■は従来装置7の場合を示す。
In FIG. 5, ● represents a photovoltaic device 30.
, And ■ indicates the case of the conventional device 7.

【0048】そして、図5から明らかなように、c−S
i成分の体積分率を例えば40%に小さくすると、従来
装置7ではオーミック接触性が著しく劣化して開放電圧
Vocが大きく低下するが、光起電力装置30は高濃度
ドーパント介在層31aでキャリアの再結合が促進され
るため、オーミック接触性がほとんど劣化せず、開放電
圧Vocはほとんど低下しない。
Then, as is apparent from FIG.
When the volume fraction of the i component is reduced to, for example, 40%, the ohmic contact property is significantly deteriorated in the conventional device 7 and the open voltage Voc is greatly reduced. Since the recombination is promoted, the ohmic contact property hardly deteriorates, and the open-circuit voltage Voc hardly decreases.

【0049】このことから、光起電力装置30において
は、n層12をn:μc−Si層とした場合、この層の
結晶成分(c−Si)の体積分率を従来より小さくする
ことができ、n層12に対する特性要求が緩和される。
Therefore, in the photovoltaic device 30, when the n-layer 12 is an n: μc-Si layer, the volume fraction of the crystal component (c-Si) in this layer can be made smaller than in the conventional case. As a result, the characteristic requirements for the n-layer 12 are relaxed.

【0050】そのため、n層12の成膜速度を速くして
製造時間を短縮し、生産効率を向上してプロセスコスト
の低減等を図ることができる。
Therefore, it is possible to increase the film forming speed of the n-layer 12 to shorten the manufacturing time, improve the production efficiency, and reduce the process cost.

【0051】また、光起電力装置7,30において、n
層12をc−Si成分の体積分率が80%(固定)の
n:μc−Si層とした場合の膜厚と前記の規格化され
た開放電圧Vocとにつき、図6に示す関係が得られ
た。
In the photovoltaic devices 7 and 30, n
FIG. 6 shows the relationship between the film thickness and the standardized open circuit voltage Voc when the layer 12 is an n: μc-Si layer in which the volume fraction of the c-Si component is 80% (fixed). Was done.

【0052】この図6において、●,■は、図5と同
様、装置30,7それぞれの場合を示す。
In FIG. 6, ● and Δ indicate the cases of the devices 30 and 7, respectively, as in FIG.

【0053】そして、この図6からも明らかなように、
従来装置7の場合はn:μc−Si層の膜厚を300Å
以上にしなければ逆接合領域aのオーミック接触性が劣
化して十分な開放電圧Vocを得ることができないが、
光起電力装置30の場合は高濃度ドーパント介在層31
aが存在するため、n:μc−Si層の膜厚を100Å
程度まで薄くしても逆接合領域aのオーミック接触性が
良好で十分な開放電圧Vocが得られる。
As is apparent from FIG.
In the case of the conventional device 7, the thickness of the n: μc-Si layer is set to 300 °
Otherwise, the ohmic contact property of the reverse junction region a deteriorates and a sufficient open-circuit voltage Voc cannot be obtained.
In the case of the photovoltaic device 30, the high-concentration dopant intervening layer 31
a, the thickness of the n: μc-Si layer is set to 100 °
Even if the thickness is reduced to the extent, the ohmic contact of the reverse junction region a is good and a sufficient open circuit voltage Voc can be obtained.

【0054】このことから、光起電力装置30はn層1
2の膜厚を薄くすることに対する制約が従来より緩和さ
れ、n層12を従来より薄くすることができ、この結
果、光起電力装置30の材料コストの大幅な低減を図る
ことができる。
For this reason, the photovoltaic device 30 has the n-layer 1
The restriction on reducing the film thickness of No. 2 is lessened than before, and the n-layer 12 can be made thinner than before. As a result, the material cost of the photovoltaic device 30 can be significantly reduced.

【0055】すなわち、光起電力装置30は逆接合領域
aのn層12とp層13との界面部分に高濃度ドーパン
ト介在層31aが存在するため、例えばn層12として
のn:μc−Si層の特性要求を緩和するとともにその
膜厚を従来より薄くし、製造時間の短縮によるプロセス
コスト及び材料コストの低減を図って製造することがで
きる。
That is, in the photovoltaic device 30, since the high-concentration dopant intervening layer 31a exists at the interface between the n-layer 12 and the p-layer 13 in the reverse junction region a, for example, n: μc-Si The layer can be manufactured by relaxing the characteristic requirements of the layer and making the film thickness thinner than before, thereby reducing the process time and material cost by shortening the manufacturing time.

【0056】また、その製造に際しては、図2の製造装
置32a又は図3の製造装置33aを使用し、n層12
とp層13とを同一の反応室34aにより連続して形成
するため、反応室数が従来より少なくなって製造設備の
小規模化及びコストダウンを図ることができる。
In the manufacture, the manufacturing apparatus 32a shown in FIG. 2 or the manufacturing apparatus 33a shown in FIG.
And the p-layer 13 are continuously formed in the same reaction chamber 34a, so that the number of reaction chambers is smaller than before and the production equipment can be reduced in size and cost can be reduced.

【0057】そのため、安価で特性の優れた2層積層型
太陽電池構造の光起電力装置を提供することができると
ともに、その製造設備の小規模化,コストダウンを図る
ことができる。
Therefore, it is possible to provide a photovoltaic device having a two-layer laminated solar cell structure which is inexpensive and has excellent characteristics, and it is possible to reduce the size and cost of the manufacturing equipment.

【0058】つぎに、光起電力装置30を製造する際、
反応室34aでの逆接合領域aのn層12,p層13の
形成を、前記の放電連続方式で行った場合と、放電不連
続方式で行った場合とにつき、図5と同様のc−Si成
分の体積分率と規格化された開放電圧Vocとの関係,
図6と同様のn:μc−Si層の膜厚と規格化された開
放電圧Vocとの関係を求めたところ、図7,図8の結
果が得られた。
Next, when manufacturing the photovoltaic device 30,
The formation of the n layer 12 and the p layer 13 in the reverse junction region a in the reaction chamber 34a by the above-described continuous discharge method and the case of the formation by the discontinuous discharge method are similar to those of FIG. Relationship between the volume fraction of the Si component and the standardized open circuit voltage Voc,
The relationship between the film thickness of the n: μc-Si layer and the standardized open circuit voltage Voc similar to that in FIG. 6 was obtained, and the results in FIGS. 7 and 8 were obtained.

【0059】図7,図8において、■は放電連続方式の
場合を示し、●は放電不連続方式の場合を示す。
In FIGS. 7 and 8, ■ indicates the case of the continuous discharge system, and ● indicates the case of the discontinuous discharge system.

【0060】そして、図7に示すように放電連続方式で
形成した場合、放電不連続方式で形成した場合よりc−
Si成分の体積分率が小さい範囲においても開放電圧V
ocが高く、良好なオーミック接触性が得られる。
Then, as shown in FIG. 7, when formed by the continuous discharge method, c- is smaller than when formed by the discontinuous discharge method.
Even when the volume fraction of the Si component is small, the open-circuit voltage V
oc is high and good ohmic contact is obtained.

【0061】また、図8に示すように放電連続方式で形
成した場合、放電不連続方式で形成した場合よりn:μ
c−Si層が薄い範囲においても開放電圧Vocが高
く、良好なオーミック接触性が得られる。
Further, as shown in FIG. 8, when formed by the continuous discharge method, n: μ is larger than when formed by the discontinuous discharge method.
Even in the range where the c-Si layer is thin, the open voltage Voc is high, and good ohmic contact is obtained.

【0062】これらの結果から、放電連続方式により放
電を止めることなく反応ガスの変更のみを行ってn層1
2,p層13を連続形成した場合、放電不連続方式によ
り放電を一旦止めて形成する場合に比し、n層12,p
層13の界面部分により効果的に高濃度ドーパント介在
層31aが形成され、ミクロスコピックに連続した接合
界面が形成されていることが判明した。
From these results, it is found that the n-layer 1
2, when the p layer 13 is formed continuously, the n layer 12 and the p layer 13
It was found that the high-concentration dopant intervening layer 31a was effectively formed by the interface portion of the layer 13, and a microscopically continuous bonding interface was formed.

【0063】したがって、反応室34でn層12,p層
13を連続形成する場合、放電連続方式により、放電を
止めることなく反応ガスを切換えて変更するのみで行う
と、放電不連続方式の場合より一層特性の優れた光起電
力装置を製造することができる。
Therefore, when the n-layer 12 and the p-layer 13 are continuously formed in the reaction chamber 34, the discharge continuity method is only required to switch and change the reaction gas without stopping the discharge. A photovoltaic device having more excellent characteristics can be manufactured.

【0064】(第2の形態)つぎに、本発明の実施の第
2の形態につき、図9ないし図11を参照して説明す
る。図9は順タイプの3層積層型太陽電池構造の光起電
力装置35を示し、図19の従来装置17と異なる点
は、光入射側の太陽電池と中間層の太陽電池との間及び
この中間層の太陽電池と裏面側の太陽電池との間の異な
る導電型半導体層が隣接する逆接合領域b,cにおい
て、p層21,24とn層20,23との界面部分に、
p型,n型のドーパントの高濃度の層として、図1の介
在層31aと同様の高濃度ドーパント介在層31b,3
1cが存在している点である。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 9 shows a photovoltaic device 35 having a forward-type three-layer stacked solar cell structure, which differs from the conventional device 17 in FIG. In the reverse junction regions b and c where different conductive semiconductor layers between the solar cell of the intermediate layer and the solar cell on the back side are adjacent, at the interface between the p layers 21 and 24 and the n layers 20 and 23,
As the high-concentration layers of the p-type and n-type dopants, the high-concentration dopant intervening layers 31b, 3 similar to the intervening layer 31a of FIG.
1c is present.

【0065】図10,図11は光起電力装置35の製造
に用いられるインライン型プラズマCVD装置32b,
枚葉型プラズマCVD装置33bを示し、両CVD装置
32b,33bが図15,図17の従来装置1b,2b
と異なる点は、逆接合領域bのn層20,p層21及び
逆接合領域cのn層23,p層24を、図2,図3の反
応室34aと同様の1個の反応室34b,34cにより
それぞれ連続して形成する点である。
FIGS. 10 and 11 show an in-line type plasma CVD device 32 b used for manufacturing the photovoltaic device 35.
This shows a single-wafer plasma CVD apparatus 33b, and both CVD apparatuses 32b and 33b are conventional apparatuses 1b and 2b shown in FIGS.
The difference from the first embodiment is that the n-layer 20 and the p-layer 21 in the reverse junction region b and the n-layer 23 and the p-layer 24 in the reverse junction region c are connected to one reaction chamber 34b similar to the reaction chamber 34a in FIGS. , 34c.

【0066】この場合、図10と図15,図11と図1
7との比較からも明らかなように、3層積層型太陽電池
の形成に必要な反応室数が9から7に減少して全体では
必要な室数が11から9又は10から8に減少し、設備
規模を著しく小さくして設備コストを従来より約1.8
〜2割低減することができ、その効果は2層積層型太陽
電池構造の場合より著しい。
In this case, FIGS. 10 and 15 and FIGS. 11 and 1
As is clear from the comparison with 7, the number of reaction chambers required for forming a three-layer stacked solar cell is reduced from 9 to 7, and the number of required chambers is reduced from 11 to 9 or 10 to 8 as a whole. , The equipment cost is about 1.8 times smaller than before,
-20%, and the effect is more remarkable than in the case of the two-layer laminated solar cell structure.

【0067】そして、CVD装置32b,33bによる
光起電力装置35の製造は、CVD装置32a,33a
による光起電力装置30の製造と同様にして行われ、逆
接合領域bのn層20とp層21とは反応室34bによ
り前記の放電連続方式又は放電不連続方式で形成され、
逆接合領域cのn層23とp層24とは反応室34cに
より反応室34bと同様にして形成される。
The production of the photovoltaic device 35 by the CVD devices 32b and 33b is performed by the CVD devices 32a and 33a.
The n-layer 20 and the p-layer 21 in the reverse junction region b are formed by the reaction chamber 34b in the discharge continuous mode or the discharge discontinuous mode,
The n layer 23 and the p layer 24 in the reverse junction region c are formed by the reaction chamber 34c in the same manner as the reaction chamber 34b.

【0068】このとき、反応室34b,34cの成膜条
件は反応室34aと同様であり、例えば13.56MHz
のRFプラズマCVDであって、形成温度100〜50
0℃,反応圧力5〜100Pa,RFパワー1〜5mW
/cm2 である。
At this time, the film forming conditions of the reaction chambers 34b and 34c are the same as those of the reaction chamber 34a, for example, 13.56 MHz.
RF plasma CVD at a formation temperature of 100 to 50
0 ° C, reaction pressure 5-100Pa, RF power 1-5mW
/ Cm 2 .

【0069】この条件下、光入射側の太陽電池の発電層
を光学ギャップ(Eopt)=1.7eV,膜厚約80
0Åの非晶質半導体とし、中間層の太陽電池の発電層を
光学ギャップ(Eopt)=1.57eV,膜厚約35
00Åの非晶質半導体とし、裏面側の太陽電池の発電層
を光学ギャップ(Eopt)=1.32eV,膜厚約1
500Åの非晶質半導体とし、さらに、p層18,2
1,24,n層20,23,26はドーピング量,膜厚
を図1のp層10,13,n層12,15と同様にして
製造したところ、光起電力装置35の特性として、前記
表1に相当するつぎの表2の結果が得られた。
Under these conditions, the power generation layer of the solar cell on the light incident side was set to have an optical gap (Eopt) of 1.7 eV and a film thickness of about 80.
An amorphous semiconductor of 0 ° is used, and the power generation layer of the intermediate solar cell is formed with an optical gap (Eopt) of 1.57 eV and a film thickness of about 35.
An amorphous semiconductor having a thickness of 00 ° and a power generation layer of a solar cell on the back side having an optical gap (Eopt) of 1.32 eV and a film thickness of about 1
A 500 ° amorphous semiconductor, and further, p-layers 18 and 2
1, 24, and n layers 20, 23, and 26 were manufactured in the same manner as the p layers 10, 13, and the n layers 12, 15 of FIG. The following results in Table 2 corresponding to Table 1 were obtained.

【0070】[0070]

【表2】 [Table 2]

【0071】なお、表1の場合と同じ条件にするため、
接合領域b,cのn層20,23とp層21,24は、
反応室34b,34cにより放電不連続方式で形成し
た。
In order to satisfy the same conditions as in Table 1,
The n layers 20 and 23 and the p layers 21 and 24 of the junction regions b and c are
The reaction chambers 34b and 34c were formed by a discontinuous discharge method.

【0072】そして、この表2からも明らかなように、
光起電力装置35の場合も、高濃度ドーパント介在層3
1b,31cが存在するため、開放電圧Voc及び曲線
因子F.F.が、共に従来装置17に比して約5%以上
改善され、逆接合領域b,cのオーミック接触性が大幅
に向上する。
As is clear from Table 2,
In the case of the photovoltaic device 35, the high concentration dopant
1b and 31c, the open circuit voltage Voc and the fill factor F.F. F. However, both are improved by about 5% or more compared to the conventional device 17, and the ohmic contact of the reverse junction regions b and c is greatly improved.

【0073】すなわち、高濃度ドーパント介在層31
b,31cにおいても、p型及びn型のドーパント濃度
が図4の(b)のように共に高濃度であり、この部分で
キャリアの効果的な再結合が促進され、従来装置17よ
り優れたオーミック接触性が得られる。
That is, the high-concentration dopant intervening layer 31
Also in b and 31c, the p-type and n-type dopant concentrations are both high as shown in FIG. 4 (b), and effective recombination of carriers is promoted in this portion, which is superior to the conventional device 17. Ohmic contact is obtained.

【0074】そして、n層20,23をそれぞれn:μ
c−Si層とすれば、c−Si成分の体積分率,n:μ
c−Si層の膜厚につき、図5,図6と同様の結果が得
られる。
Then, the n layers 20 and 23 are respectively set to n: μ
If a c-Si layer is used, the volume fraction of the c-Si component, n: μ
With respect to the thickness of the c-Si layer, the same results as in FIGS. 5 and 6 are obtained.

【0075】また、反応室34b,34cが放電連続方
式の場合には、放電不連続方式の場合に比して、図7,
図8と同様の結果が得られる。
When the reaction chambers 34b and 34c are of the continuous discharge type, the reaction chambers 34b and 34c are different from those of the discontinuous discharge type in FIG.
The same result as in FIG. 8 is obtained.

【0076】したがって、3層積層型太陽電池構造の光
起電力装置35についても、2層積層型太陽電池構造の
光起電力装置30と同様、例えばn層20,30として
のn:μc−Si層の特性要求が緩和されるとともにそ
の膜厚を従来より薄くすることができ、製造時間の短縮
による生産効率の向上を図り、プロセスコスト及び材料
コストの低減を図って製造することができ、その際、2
層積層型太陽電池構造の場合より太陽電池の数が多いた
め、その効果は光起電力装置30より著しい。
Therefore, the photovoltaic device 35 having a three-layered solar cell structure also has, for example, n: μc-Si as the n-layers 20 and 30 in the same manner as the photovoltaic device 30 having a two-layered solar cell structure. The requirements for the properties of the layers are relaxed and the film thickness can be made thinner than before, the production efficiency can be improved by shortening the production time, and the process and material costs can be reduced. , 2
The effect is more remarkable than the photovoltaic device 30 because the number of solar cells is larger than in the case of the layered solar cell structure.

【0077】また、その製造に際しては図10の製造装
置32b又は図11の製造装置33bが使用されるた
め、反応室数が従来より減少し、設備の小規模化及びコ
ストダウンが図れ、光起電力装置35を、極めて安価に
形成することができる。
In the production, the production apparatus 32b shown in FIG. 10 or the production apparatus 33b shown in FIG. 11 is used, so that the number of reaction chambers is reduced as compared with the prior art, the equipment can be downsized and the cost can be reduced, The power device 35 can be formed very inexpensively.

【0078】そして、反応室34b,34cにおいて
も、放電連続方式でn層20,23とp層21,24と
を連続形成することが好ましいのは勿論である。
In the reaction chambers 34b and 34c, it is, of course, preferable to continuously form the n-layers 20, 23 and the p-layers 21, 24 by the continuous discharge method.

【0079】(第3の形態)つぎに、本発明の実施の第
3の形態について、図12及び図13を参照して説明す
る。図12は基板の反対側から光が入射する逆タイプの
2層積層型太陽電池構造の光起電力装置36を示し、図
20の従来装置27と異なる点は、光入射側の太陽電池
と裏面側の太陽電池との間の逆接合領域dにおいて、n
層12とp層13との界面部分に、図1の高濃度ドーパ
ント介在層31aと同様の高濃度ドーパント介在層31
dが存在している点である。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 12 shows a photovoltaic device 36 having an inverted two-layered solar cell structure in which light is incident from the opposite side of the substrate, and differs from the conventional device 27 in FIG. In the reverse junction region d between the solar cell and the
At the interface between the layer 12 and the p-layer 13, a high-concentration dopant interposition layer 31 similar to the high-concentration dopant interposition layer 31a of FIG.
d is present.

【0080】図13は逆タイプの3層積層型太陽電池構
造の光起電力装置37を示し、図21の従来装置28と
異なる点は、光入射側の太陽電池と中間層の太陽電池と
の間及びこの太陽電池と裏面側の太陽電池との間の逆接
合領域e,fにおいて、p層24,21とn層23,2
0との界面部分に、図9の高濃度ドーパント介在層31
b,31cと同様の高濃度ドーパント介在層31e,3
1fが存在している点である。
FIG. 13 shows a photovoltaic device 37 having an inverted three-layer laminated solar cell structure, which differs from the conventional device 28 in FIG. 21 in that the solar cell on the light incident side and the solar cell in the intermediate layer are different. P layers 24 and 21 and n layers 23 and 2 in reverse junction regions e and f between the solar cell and the solar cell on the back side.
The high-concentration dopant intervening layer 31 of FIG.
b, 31c, the same high concentration dopant intervening layers 31e, 3
1f is present.

【0081】そして、逆タイプの光起電力装置36,3
7においても、高濃度ドーパント介在層31d,31
e,31fにより逆接合領域d,e,fのオーミック接
触性が改善され、図1,図9の光起電力装置30,35
と同様の効果が得られる。
The reverse type photovoltaic devices 36, 3
7, the high-concentration dopant intervening layers 31d, 31
The ohmic contacts of the reverse junction regions d, e, and f are improved by e and 31f, and the photovoltaic devices 30 and 35 of FIGS.
The same effect can be obtained.

【0082】また、光起電力装置36は図2,図3の製
造装置32a,33aの各p型の反応室5と各n型の反
応室5とを交換した構成の製造装置を使用し、基板29
a上に基板29b,金属膜16を介して裏面側の太陽電
池のn層15から順に各層15,14,…,10を積層
して製造することができ、光起電力装置37は図10,
図11の製造装置32b,33bの各p型の反応室5と
各n型の反応室5とを交換した構成の製造装置を使用
し、基板29a上に基板29b,金属膜16を介して裏
面側の太陽電池のn層26から順に各層26,25,
…,18を積層して製造することができる。
As the photovoltaic device 36, a manufacturing apparatus having a configuration in which each of the p-type reaction chambers 5 and each of the n-type reaction chambers 5 of the manufacturing apparatuses 32a and 33a shown in FIGS. Substrate 29
., 10 on the back surface side of the solar cell via the substrate 29b and the metal film 16, and the photovoltaic device 37 can be manufactured as shown in FIG.
Using a manufacturing apparatus having a configuration in which each of the p-type reaction chambers 5 and each of the n-type reaction chambers 5 of the manufacturing apparatuses 32b and 33b in FIG. 11 are replaced, the back surface of the substrate 29a is interposed via the substrate 29b and the metal film 16. Layers 26, 25,.
, 18 can be laminated.

【0083】そして、反応室34a,34b,34cに
より逆接合領域d,e,fのp層13,24,21とn
層12,23,20とが連続して形成され、その際、p
層13,24,21の形成後、n層12,23,20の
形成初期にチャンバ壁等に付着しているp型のドーパン
ト原子(ボロン原子)の叩き出しの効果等により、ボロ
ン原子の温度が高くなり、高濃度ドーパント介在層31
a,31b,31cと同様の高濃度ドーパント介在層3
1d,31e,31fが形成される。
Then, the p layers 13, 24, 21 of the reverse junction regions d, e, f are connected to the n layers by the reaction chambers 34a, 34b, 34c.
The layers 12, 23, 20 are formed successively, with p
After the layers 13, 24, and 21 are formed, the temperature of the boron atoms is increased by the effect of punching out p-type dopant atoms (boron atoms) adhering to the chamber walls and the like at the initial stage of the formation of the n layers 12, 23, and 20. And the high concentration dopant intervening layer 31
a, high concentration dopant intervening layer 3 similar to 31b, 31c
1d, 31e and 31f are formed.

【0084】したがって、これらの逆タイプの光起電力
装置36,37についても、光起電力装置30,35の
場合と同様の効果が得られる。
Therefore, the same effects as those of the photovoltaic devices 30 and 35 can be obtained for the photovoltaic devices 36 and 37 of the opposite types.

【0085】ところで、本発明は種々の積層型太陽電池
構造の光起電力装置及びその製造に適用できるのは勿論
である。
The present invention can of course be applied to various photovoltaic devices having a stacked solar cell structure and their manufacture.

【0086】そして、光起電力装置の各太陽電池はpi
n型であればよく、その際、各太陽電池の例えば発電層
は、a−Si:H,a−SiGe:H,a−SiC:H
等の非晶質半導体又はそれらを組合せた起格子構造又は
非晶質半導体中に結晶成分を含んだ微結晶半導体とする
ことができる。
Each solar cell of the photovoltaic device has a pi
An n-type may be used. At that time, for example, the power generation layer of each solar cell is a-Si: H, a-SiGe: H, a-SiC: H
Or a microcrystalline semiconductor containing a crystalline component in an amorphous semiconductor or a lattice structure obtained by combining them.

【0087】[0087]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の光起電力装置は逆接合領域a〜f
のp型半導体層(p層)13,21,24とn型半導体
層(n層)12,20,23との界面部分にp型,n型
両者のドーパントを、共に逆接合領域a〜fのp層1
3,21,24,n層12,20,23のドーパントの
濃度よりも高濃度に含んだ層(高濃度ドーパント介在
層)31a〜31fが介在したため、太陽電池間の逆接
合領域のオーミック接触性が大幅に改善され、各導電型
半導体層を薄くして材料コスト,プロセスコストの低減
を図ってp層13,21,22とn層12,20,23
との界面部分のオーミック接触性を良好にし、大幅なコ
ストダウンを図って特性の優れた光起電力装置を提供す
ることができる。
The present invention has the following effects. First, the photovoltaic device according to claim 1 has reverse junction regions a to f.
And p-type and n-type dopants at the interface between the p-type semiconductor layers (p-layers) 13, 21, and 24 and the n-type semiconductor layers (n-layers) 12, 20, and 23. P layer 1
Since the layers (high-concentration dopant intervening layers) 31a to 31f which are contained at a higher concentration than the dopant concentration of the 3, 21, 24, and n-layers 12, 20, and 23 are interposed, the ohmic contact property of the reverse junction region between the solar cells is provided. Is greatly improved, and the p-layers 13, 21, 22 and the n-layers 12, 20, 23 are reduced by thinning each conductive type semiconductor layer to reduce material costs and process costs.
It is possible to provide a photovoltaic device having excellent characteristics by improving the ohmic contact property of the interface portion with the substrate and greatly reducing the cost.

【0088】つぎに、請求項2の製造方法の場合は、光
起電力装置を製造する際に、各逆接合領域a〜fのp層
13,21,24とn層12,20,23とを1つの反
応室34a,34b,34cで形成したため、必要な反
応室の数が全ての導電型半導体層をそれぞれの反応室で
分離形成する場合より少なくなり、設備規模を小さく
し、設備コストを低減して製造することができるととも
に、製造時間を短縮して生産効率を向上し、プロセスコ
ストを低減することができる。
Next, in the case of the manufacturing method according to the second aspect, when manufacturing the photovoltaic device, the p layers 13, 21, 24 and the n layers 12, 20, 23 of the reverse junction regions a to f are formed. Is formed in one reaction chamber 34a, 34b, 34c, the number of required reaction chambers is smaller than in the case where all the conductive semiconductor layers are separately formed in each reaction chamber, the equipment scale is reduced, and the equipment cost is reduced. The manufacturing cost can be reduced, the manufacturing time can be shortened, the production efficiency can be improved, and the process cost can be reduced.

【0089】さらに、請求項3の製造方法の場合は、反
応室34a,34b,34cにおいて、p層13,2
1,24とn層12,20,24とを放電を維持したま
ま反応ガスの変更のみで連続して形成したため、請求項
2の場合より高濃度ドーパント介在層31a〜31fの
p型,n型のドーパントの濃度が高くなり、一層特性の
優れた光起電力装置を製造することができる。
Further, in the case of the manufacturing method according to the third aspect, the p layers 13, 2 are formed in the reaction chambers 34a, 34b, 34c.
The p-type and n-type of the high-concentration dopant intervening layers 31a to 31f as compared with the case of claim 2, since the first and second and the n-layers 12, 20, and 24 are continuously formed only by changing the reaction gas while maintaining the discharge. Is increased, and a photovoltaic device having more excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の基板側から光が入射す
るタイプの光起電力装置の断面図である。
FIG. 1 is a cross-sectional view of a photovoltaic device of a type in which light enters from a substrate side according to one embodiment of the present invention.

【図2】図1の製造に用いられるインライン型CVD装
置の構成説明図である。
FIG. 2 is an explanatory view of a configuration of an in-line type CVD apparatus used for manufacturing FIG.

【図3】図1の製造に用いられる枚葉型CVD装置の構
成説明図である。
FIG. 3 is an explanatory diagram of a configuration of a single-wafer CVD apparatus used in the manufacturing of FIG. 1;

【図4】(a),(b)はそれぞれ光起電力装置の逆接
合領域のドーパント濃度の測定結果の説明図である。
4 (a) and 4 (b) are explanatory diagrams of measurement results of a dopant concentration in a reverse junction region of a photovoltaic device, respectively.

【図5】図1の光起電力装置の特性の第1の測定結果の
説明図である。
5 is an explanatory diagram of a first measurement result of characteristics of the photovoltaic device of FIG.

【図6】図1の光起電力装置の特性の第2の測定結果の
説明図である。
FIG. 6 is an explanatory diagram of a second measurement result of the characteristic of the photovoltaic device of FIG. 1;

【図7】図1の光起電力装置の逆接合領域のp型,n型
の半導体層を放電を維持して形成した場合と,放電を一
旦停止して形成した場合との特性の相違を示す第1の測
定結果の説明図である。
7 shows a difference in characteristics between the case where the p-type and n-type semiconductor layers in the reverse junction region of the photovoltaic device of FIG. 1 are formed while maintaining discharge and the case where the discharge is temporarily stopped. FIG. 9 is an explanatory diagram of the first measurement result shown.

【図8】図1の光起電力装置の逆接合領域のp型,n型
の半導体層を放電を維持して形成した場合と,放電を一
旦停止して形成した場合との特性の相違を示す第2の測
定結果の説明図である。
8 shows a difference in characteristics between the case where the p-type and n-type semiconductor layers in the reverse junction region of the photovoltaic device of FIG. 1 are formed while maintaining discharge and the case where the discharge is temporarily stopped. FIG. 9 is an explanatory diagram of the second measurement result shown.

【図9】本発明の実施の第2の形態の基板側から光が入
射するタイプの光起電力装置の断面図である。
FIG. 9 is a cross-sectional view of a photovoltaic device according to a second embodiment of the present invention, in which light enters from the substrate side.

【図10】図9の製造に用いられるインライン型CVD
装置の構成説明図である。
FIG. 10 is an in-line type CVD used in the manufacture of FIG. 9;
FIG. 2 is an explanatory diagram of the configuration of the device.

【図11】図9の製造に用いられる枚葉型CVD装置の
構成説明図である。
11 is a configuration explanatory view of a single-wafer CVD apparatus used for the production of FIG. 9;

【図12】本発明の実施の第3の形態の基板の反対側か
ら光が入射するタイプの第1の光起電力装置の断面図で
ある。
FIG. 12 is a cross-sectional view of a first photovoltaic device of a type according to the third embodiment of the present invention in which light is incident from the opposite side of the substrate.

【図13】本発明の実施の第3の形態の基板の反対側か
ら光が入射するタイプの第2の光起電力装置の断面図で
ある。
FIG. 13 is a cross-sectional view of a second photovoltaic device of a type according to the third embodiment of the present invention, in which light is incident from the opposite side of the substrate.

【図14】従来の光起電力装置の製造に用いられるイン
ライン型CVD装置の1例の構成説明図である。
FIG. 14 is a diagram illustrating an example of an in-line type CVD apparatus used for manufacturing a conventional photovoltaic device.

【図15】従来の光起電力装置の製造に用いられるイン
ライン型CVD装置の他の例の構成説明図である。
FIG. 15 is a configuration explanatory view of another example of an in-line type CVD apparatus used for manufacturing a conventional photovoltaic device.

【図16】従来の光起電力装置の製造に用いられる枚葉
型CVD装置の1例の構成説明図である。
FIG. 16 is a configuration explanatory view of an example of a single-wafer CVD apparatus used for manufacturing a conventional photovoltaic device.

【図17】従来の光起電力装置の製造に用いられる枚葉
型CVD装置の他の例の構成説明図である。
FIG. 17 is a configuration explanatory view of another example of a single-wafer CVD apparatus used for manufacturing a conventional photovoltaic device.

【図18】従来の基板側から光が入射するタイプの光起
電力装置の1例の断面図である。
FIG. 18 is a cross-sectional view of an example of a conventional photovoltaic device in which light is incident from the substrate side.

【図19】従来の基板側から光が入射するタイプの光起
電力装置の他の側の断面図である。
FIG. 19 is a sectional view of another side of a conventional photovoltaic device in which light is incident from the substrate side.

【図20】従来の基板の反対側から光が入射するタイプ
の光起電力装置の1例の断面図である。
FIG. 20 is a cross-sectional view of an example of a conventional photovoltaic device in which light enters from the opposite side of a substrate.

【図21】従来の基板の反対側から光が入射するタイプ
の光起電力装置の他の例の断面図である。
FIG. 21 is a cross-sectional view of another example of a conventional photovoltaic device in which light is incident from the opposite side of a substrate.

【符号の説明】[Explanation of symbols]

5,34a〜34c 反応室 12,20,23 n層(n型半導体層) 13,21,24 p層(p型半導体層) 31a〜31f 高濃度ドーパント介在層 5,34a-34c Reaction chamber 12,20,23 n layer (n-type semiconductor layer) 13,21,24 p layer (p-type semiconductor layer) 31a-31f high concentration dopant intervening layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 pin型太陽電池を少なくとも2個以上
直列に積層した積層型の光起電力装置であって、異なる
導電型半導体層が隣接する逆接合領域のp型半導体層と
n型半導体層との界面部分に、p型,n型両者のドーパ
ントを、共に前記逆接合領域のp型半導体層,n型半導
体層のドーパントの濃度よりも高濃度に含んだ層が介在
することを特徴とする光起電力装置。
1. A stacked photovoltaic device in which at least two or more pin type solar cells are stacked in series, wherein a p-type semiconductor layer and an n-type semiconductor layer in a reverse junction region in which different conductive semiconductor layers are adjacent to each other. A layer containing both p-type and n-type dopants at a higher concentration than the concentration of the dopants in the p-type semiconductor layer and the n-type semiconductor layer in the reverse junction region is interposed at the interface with the substrate. Photovoltaic device.
【請求項2】 pin型太陽電池を少なくとも2個以上
直列に積層した積層型の光起電力装置を製造する方法で
あって、異なる導電型半導体層が隣接する逆接合領域の
p型半導体層とn型半導体層とのみを同一反応室にて連
続して形成し、残りの各導電型半導体層はそれぞれの反
応室にて分離形成することを特徴とする光起電力装置の
製造方法。
2. A method of manufacturing a stacked photovoltaic device in which at least two or more pin type solar cells are stacked in series, wherein a different conductive type semiconductor layer and an adjacent p-type semiconductor layer in a reverse junction region are provided. A method for manufacturing a photovoltaic device, wherein only an n-type semiconductor layer is continuously formed in the same reaction chamber, and the remaining conductive semiconductor layers are separately formed in respective reaction chambers.
【請求項3】 プラズマCVD法により、異なる導電型
半導体層が隣接する逆接合領域のp型半導体層とn型半
導体層とのみは同一反応室にて放電を維持したまま反応
ガスの変更のみで連続して形成し、残りの各導電型半導
体層はそれぞれの反応室にて分離形成することを特徴と
する請求項2記載の光起電力装置の製造方法。
3. A plasma CVD method, wherein only a p-type semiconductor layer and an n-type semiconductor layer in a reverse junction region in which different conductive semiconductor layers are adjacent to each other are changed only by changing a reaction gas while maintaining discharge in the same reaction chamber. 3. The method for manufacturing a photovoltaic device according to claim 2, wherein the conductive semiconductor layers are formed continuously and the remaining conductive semiconductor layers are separately formed in respective reaction chambers.
JP10057398A 1998-03-26 1998-03-26 Method for manufacturing photovoltaic device Expired - Lifetime JP3664875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10057398A JP3664875B2 (en) 1998-03-26 1998-03-26 Method for manufacturing photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10057398A JP3664875B2 (en) 1998-03-26 1998-03-26 Method for manufacturing photovoltaic device

Publications (2)

Publication Number Publication Date
JPH11284213A true JPH11284213A (en) 1999-10-15
JP3664875B2 JP3664875B2 (en) 2005-06-29

Family

ID=14277653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10057398A Expired - Lifetime JP3664875B2 (en) 1998-03-26 1998-03-26 Method for manufacturing photovoltaic device

Country Status (1)

Country Link
JP (1) JP3664875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065462A1 (en) * 2002-01-28 2003-08-07 Kaneka Corporation Tandem thin-film photoelectric transducer and its manufacturing method
JP2005057251A (en) * 2003-07-24 2005-03-03 Kyocera Corp Multijunction semiconductor element and solar cell element using it
JP2007123684A (en) * 2005-10-31 2007-05-17 Masato Toshima Substrate treatment device
JP2008181960A (en) * 2007-01-23 2008-08-07 Sharp Corp Laminated optoelectric converter and its fabrication process
JP2009302583A (en) * 2009-09-28 2009-12-24 Sharp Corp Laminated optoelectric transducer and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065462A1 (en) * 2002-01-28 2003-08-07 Kaneka Corporation Tandem thin-film photoelectric transducer and its manufacturing method
JP2005057251A (en) * 2003-07-24 2005-03-03 Kyocera Corp Multijunction semiconductor element and solar cell element using it
JP2007123684A (en) * 2005-10-31 2007-05-17 Masato Toshima Substrate treatment device
JP2008181960A (en) * 2007-01-23 2008-08-07 Sharp Corp Laminated optoelectric converter and its fabrication process
JP4484886B2 (en) * 2007-01-23 2010-06-16 シャープ株式会社 Manufacturing method of stacked photoelectric conversion device
JP2009302583A (en) * 2009-09-28 2009-12-24 Sharp Corp Laminated optoelectric transducer and method of manufacturing the same

Also Published As

Publication number Publication date
JP3664875B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US20170148943A1 (en) Low-cost high-efficiency solar module using epitaxial si thin-film absorber and double-sided heterojunction solar cell with integrated module fabrication
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
Gordon et al. 8% Efficient thin‐film polycrystalline‐silicon solar cells based on aluminum‐induced crystallization and thermal CVD
EP2609628B1 (en) Photovoltaic device and module with improved passivation and a method of manufacturing.
Guha et al. Amorphous silicon alloy photovoltaic research—present and future
US20100300507A1 (en) High efficiency low cost crystalline-si thin film solar module
US9231130B2 (en) Photoelectric conversion element and solar cell
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
US20050076945A1 (en) Solar battery and manufacturing method thereof
JPH05243596A (en) Manufacture of laminated type solar cell
US10134928B2 (en) Photoelectric conversion element and solar cell module provided with same
JP2024010044A (en) Method for manufacturing solar cell
NL2034299B1 (en) Solar cell and photovoltaic module
JPH11284213A (en) Photovoltaic device and its manufacture
US7075052B2 (en) Photoelectric conversion device
CN117712194B (en) Solar cell and photovoltaic module
JP2000349314A (en) Manufacture of photovoltaic element
CN213184319U (en) Heterojunction solar cell and photovoltaic module
JP2001127319A (en) Solar cell module and method of manufacturing the same
JPS6358974A (en) Amorphous phovoltaic element
JP2757896B2 (en) Photovoltaic device
CN118053924A (en) Solar cell, preparation method thereof, laminated cell and photovoltaic module
KR101022821B1 (en) Method for manufacturing photovoltaic device
TW201409735A (en) Method for fabricating a crystalline silicon solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term