JPH11284136A - Ferroelectric thin film and its manufacture - Google Patents

Ferroelectric thin film and its manufacture

Info

Publication number
JPH11284136A
JPH11284136A JP10083232A JP8323298A JPH11284136A JP H11284136 A JPH11284136 A JP H11284136A JP 10083232 A JP10083232 A JP 10083232A JP 8323298 A JP8323298 A JP 8323298A JP H11284136 A JPH11284136 A JP H11284136A
Authority
JP
Japan
Prior art keywords
thin film
film
oxygen concentration
lead
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083232A
Other languages
Japanese (ja)
Inventor
Kazunari Torii
和功 鳥居
Yoshihisa Fujisaki
芳久 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10083232A priority Critical patent/JPH11284136A/en
Publication of JPH11284136A publication Critical patent/JPH11284136A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To have uniform electric characteristic on a substrate of a large area and lessen oxygen defects by a method wherein oxygen concentration is lowered in a specified temperature region to suppress generation of lead oxide, and the oxygen concentration is increased in a region of a temperature more than that which causes crystallization into a perovskite structure to suppress generation of oxygen defects. SOLUTION: A titanium nitride film 52 and a lower electrode 53 of platinum are formed on a silicon substrate 51. Next, an amorphous film lead zirconate titanate thin film 54 is formed. And, a temperature of crystallizing excessive lead as plumbic oxide is 300 to 400 deg.C, which is lower than a temperature of starting crystallizing a ferroelectric film. Therefore, in a low temperature region of 400 deg.C or less, oxygen concentration is lower than that on which plumbic oxide starts crystallizing, and in a high temperature in which a perovskite structure starts crystallizing, the oxygen concentration is higher than a low temperature region, thereby carrying out a crystallization thermal process. Thus, it is possible to suppress generation of an oxidation loss and obtain a Pb group ferroelectric thin film arranging properly an orientation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強誘電体薄膜、特に
鉛系ペロブスカイト型強誘電体薄膜およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric thin film, particularly to a lead-based perovskite ferroelectric thin film and a method for producing the same.

【0002】[0002]

【従来の技術】近年、半導体装置の高集積化に伴い、個
々の素子は微細化の一途をたどっている。たとえば、3
年で4倍のペースで高集積化を実現してきているDRA
M(Dynamic Random Access Memory)では、既に64メ
ガビットメモリの量産が始まっているが、素子の微細化
に伴う蓄積容量の減少のために信号対雑音(SN)比の
低下や、α線の入射による信号反転等の弊害が顕在化
し、信頼性の確保が大きな問題となっている。
2. Description of the Related Art In recent years, with the high integration of semiconductor devices, individual elements have been steadily miniaturized. For example, 3
DRA is achieving high integration four times a year
In M (Dynamic Random Access Memory), mass production of 64-Mbit memory has already begun, but the signal-to-noise (SN) ratio decreases due to the decrease in storage capacity due to miniaturization of elements and the incidence of α rays The adverse effects such as signal inversion have become apparent, and securing reliability has become a major problem.

【0003】この問題を解決するため、キャパシタ絶縁
膜の薄膜化を進めると共に、3次元化によって小さな平
面面積のなかに大きなキャパシタ面積を持ったメモリセ
ルが開発されているが、このような方法によっても、メ
モリセルの微細化と構造の複雑化が進行し製造技術が非
常に難しくなるとともに、開発・製造コストが著しく増
大するという経済性の問題がある。
In order to solve this problem, a memory cell having a large capacitor area in a small plane area has been developed by making the capacitor insulating film thinner and three-dimensional, and such a method has been developed. However, there is a problem of economical efficiency that the manufacturing technology becomes extremely difficult due to the progress of miniaturization and the complication of the structure of the memory cell, and the development and manufacturing costs are significantly increased.

【0004】このため、小さな面積に大きな電荷を蓄積
することが出来る誘電率の大きな材料を用いたキャパシ
タが必要とされている。チタン酸ジルコン酸鉛を代表と
する強誘電体は、従来のキャパシタ用の誘電体膜SiO
2 やSi34に比較し100〜1000倍の誘電率を持
つため、比較的簡単なキャパシタ構造と組み合わせるだ
けで静電容量の大きなキャパシタを実現できる可能性が
ある。例えば、強誘電体薄膜をキャパシタ絶縁膜に用い
たDRAMとしては特開平3−165557 号や、特開平3−2
56358号,特開平3−296262号に記載されているものがあ
る。
[0004] Therefore, a capacitor using a material having a large dielectric constant capable of storing a large charge in a small area is required. A ferroelectric represented by lead zirconate titanate is a conventional dielectric film SiO for a capacitor.
Since it has a dielectric constant 100 to 1000 times that of 2 or Si 3 N 4 , there is a possibility that a capacitor having a large capacitance can be realized only by combining it with a relatively simple capacitor structure. For example, as a DRAM using a ferroelectric thin film as a capacitor insulating film, Japanese Patent Application Laid-Open No. 3-165557 and Japanese Patent Application Laid-Open
No. 56358 and JP-A-3-296262.

【0005】また、強誘電体は永久双極子間の相互作用
が強く、外部電場を印加しない状態でも自発分極と呼ば
れる電気分極を生じており、この自発分極を外部電場に
より反転することができ、電場をかけるとヒステリシス
曲線を描く。一旦高い電圧を印加したあとには電場が零
になっても残留分極+Pr、または−Prが保持されて
いる。これらの状態をそれぞれ“1”と“0”と定義す
れば、外部電場の方向によって“1”,“0”の情報を
書き込むことが出来る。スイッチ用トランジスタと強誘
電体キャパシタを組み合わせたメモリセルを用いた分極
反転型不揮発性メモリは低電圧で高速の書き込み,読み
出し動作が可能であるためICカードなどの用途に適し
ている。また、高集積化することができれば読み出し書
き込みともに高速な不揮発性のRAMという理想的なメ
モリとなる可能性がある。スイッチ用トランジスタと強
誘電体キャパシタを組み合わせたメモリセルを用いた分
極反転型不揮発性メモリとしては例えば特開平1−15869
1 号に記載されているものがある。
Further, the ferroelectric has a strong interaction between the permanent dipoles and generates an electric polarization called spontaneous polarization even in a state where no external electric field is applied. The spontaneous polarization can be reversed by the external electric field. When an electric field is applied, a hysteresis curve is drawn. Once a high voltage is applied, the residual polarization + Pr or -Pr is maintained even when the electric field becomes zero. If these states are defined as "1" and "0", information "1" and "0" can be written depending on the direction of the external electric field. A domain-inverted nonvolatile memory using a memory cell in which a switching transistor and a ferroelectric capacitor are combined is suitable for applications such as an IC card because it can perform high-speed writing and reading operations at a low voltage. In addition, if high integration is possible, there is a possibility that an ideal memory such as a nonvolatile RAM, which is high-speed for both reading and writing, may be used. As a domain-inverted nonvolatile memory using a memory cell in which a switching transistor and a ferroelectric capacitor are combined, for example, Japanese Patent Application Laid-Open No.
Some are listed in No. 1.

【0006】このように優れた特性をもつ強誘電体チタ
ン酸ジルコン酸鉛系薄膜は主としてスパッタ法,ゾルゲ
ル法,反応性蒸着法,化学気相蒸着法(CVD法)など
により形成される。
The ferroelectric lead zirconate titanate-based thin film having such excellent characteristics is formed mainly by a sputtering method, a sol-gel method, a reactive evaporation method, a chemical vapor deposition method (CVD method) or the like.

【0007】[0007]

【発明が解決しようとする課題】従来の技術でも、膜厚
や組成のウェハ面内でのバラツキは±5%程度以下にま
で抑えることが可能であるが、にもかかわらず、電気特
性は±10%以上のウェハ面内バラツキがあった。現
在、Si−LSIの量産には6〜8インチウェハが使用
されており、次世代のラインでは12インチウェハが主
流となると考えられている。このような大面積に均一な
特性の素子を形成するためには特性バラツキの原因を明
らかにし、その対策を確立することが必要不可欠であ
る。
In the prior art, the variation in the film thickness and composition in the wafer surface can be suppressed to about ± 5% or less. There was a 10% or more in-wafer variation. At present, 6 to 8 inch wafers are used for mass production of Si-LSI, and it is considered that 12 inch wafers will be the mainstream in next generation lines. In order to form an element having uniform characteristics in such a large area, it is indispensable to clarify the cause of the characteristic variation and establish a countermeasure.

【0008】発明者等の検討によると特性分布の主な原
因は結晶配向性の面内バラツキによることが明らかとな
った。強誘電体の自発分極は結晶格子の歪みに基づくも
のなので、結晶に対して電界を印加する方向によりその
誘電率や、残留分極などが異なる。強誘電体を薄膜とし
て用いる素子では、通常、膜厚方向に電界を印加するの
で下地に対して強誘電体がどのような結晶方位に結晶化
しているかによってその電気特性が異なることになる。
According to the studies by the inventors, it has been found that the main cause of the characteristic distribution is the in-plane variation of the crystal orientation. Since spontaneous polarization of a ferroelectric is based on distortion of a crystal lattice, its dielectric constant, remanent polarization, and the like differ depending on the direction in which an electric field is applied to the crystal. In an element using a ferroelectric substance as a thin film, an electric field is usually applied in the thickness direction, so that its electrical characteristics differ depending on the crystal orientation of the ferroelectric substance with respect to the base.

【0009】図7はチタン酸ジルコン酸鉛(以下、PZ
T)薄膜について、〔111〕配向膜,〔100〕配向
膜,無配向の膜のヒステリシス特性を比較したものであ
る。〔111〕配向膜では飽和特性のよい角型ループで
あるのに対して、〔100〕配向膜ではヒステリシスが
スリムになり、残留分極が小さくなっている。無配向膜
ではさらにスリムループとなる。〔111〕配向膜の残
留分極Prは45μC/cm2、抗電圧Vcは0.6V で
あるのに対し、無配向膜ではPr=16μC/cm2,V
c=1.3Vである。
FIG. 7 shows lead zirconate titanate (hereinafter referred to as PZ).
T) For the thin film, the hysteresis characteristics of the [111] -oriented film, the [100] -oriented film, and the non-oriented film are compared. The [111] orientation film has a square loop with good saturation characteristics, whereas the [100] orientation film has a slim hysteresis and a small residual polarization. In a non-oriented film, a slim loop is further formed. [111] the residual polarization Pr of the alignment film is 45μC / cm 2, whereas the coercive voltage Vc is 0.6V, the non-oriented film Pr = 16μC / cm 2, V
c = 1.3V.

【0010】図8はダブルパルス測定による分極反転電
荷の電圧依存性を比較したものである。〔111〕配向
膜の飽和特性の良さがよくわかる。3Vパルス印加時の
分極反転電荷は約38μC/cm2 であった。
FIG. 8 compares the voltage dependence of the domain-inverted charges by double pulse measurement. [111] The good saturation characteristics of the alignment film can be clearly understood. The domain-inverted charge when a 3 V pulse was applied was about 38 μC / cm 2 .

【0011】従来の技術、特に、スパッタ法,ゾルゲル
法で非晶質膜を形成し、熱処理によってこの非晶質膜を
結晶化させてペロブスカイト構造とする薄膜作製法によ
って作製されるPb系強誘電体薄膜は、通常〔100〕
/〔111〕混合配向となっている。結晶粒の大きさが
数十〜数百ナノメータであるのに対して、素子に用いら
れるキャパシタの大きさはミクロンサイズなので、キャ
パシタ中に含まれる〔100〕結晶粒と〔111〕結晶
粒の割合の違いによってそのキャパシタの電気特性が異
なったものとなるわけである。
A Pb-based ferroelectric film is formed by a conventional technique, in particular, a method of forming an amorphous film by a sputtering method or a sol-gel method, and crystallizing the amorphous film by heat treatment to form a thin film having a perovskite structure. Body thin film is usually [100]
/ [111] mixed orientation. Since the size of a crystal grain is several tens to several hundreds of nanometers, whereas the size of a capacitor used in an element is a micron size, the ratio of [100] crystal grains and [111] crystal grains contained in the capacitor Therefore, the electrical characteristics of the capacitor are different depending on the difference.

【0012】本発明の目的は大面積の基板上に均一な特
性をもつ強誘電体薄膜の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a ferroelectric thin film having uniform characteristics on a large-area substrate.

【0013】[0013]

【課題を解決するための手段】本発明においては、30
0〜400℃以下の温度領域では酸素濃度を低くして酸
化鉛の形成を抑制し、ペロブスカイト構造への結晶化が
起こる500℃以上の温度領域では酸素濃度を高くして
酸素欠損の発生を抑えるという方法を用いる。
According to the present invention, 30
In a temperature range of 0 to 400 ° C. or lower, the oxygen concentration is reduced to suppress the formation of lead oxide, and in a temperature range of 500 ° C. or higher where crystallization to a perovskite structure occurs, the oxygen concentration is increased to suppress the generation of oxygen vacancies. Is used.

【0014】従来技術においては、鉛が十分に酸化され
ず、膜中に酸素欠損が存在したり、また、酸化されない
鉛が電極中に拡散したり再蒸発したりして組成ずれを起
こしてしまう。特に、スパッタ法,ゾルゲル法で非晶質
膜を形成し、熱処理によってこの非晶質膜を結晶化させ
てペロブスカイト構造とする薄膜作製法においては、結
晶化熱処理中の鉛の再蒸発を防止することは困難である
ため、あらかじめ非晶質膜中に化学量論比(Pb=Zr
+Ti)よりも過剰に鉛が含まれるようにする方法が用
いられる。
In the prior art, lead is not sufficiently oxidized, oxygen deficiency is present in the film, and lead that is not oxidized diffuses into the electrode or re-evaporates to cause a composition deviation. . In particular, in a thin film forming method in which an amorphous film is formed by a sputtering method or a sol-gel method and the amorphous film is crystallized by a heat treatment to have a perovskite structure, re-evaporation of lead during the crystallization heat treatment is prevented. Is difficult, the stoichiometric ratio (Pb = Zr) is previously stored in the amorphous film.
+ Ti) is used so that lead is contained in excess.

【0015】ところが、過剰に含まれる酸化不十分な鉛
は300〜400℃の低温で酸化鉛となる。立方晶のP
bOは〔100〕配向の層状化合物である。図9に示し
たようにPbOの(100)面はPZTの(100)面と
格子の整合性もよく、PZTの〔100〕配向を促進す
る。
However, excessively insufficiently oxidized lead becomes lead oxide at a low temperature of 300 to 400 ° C. Cubic P
bO is a layered compound having a [100] orientation. As shown in FIG. 9, the (100) plane of PbO has good lattice matching with the (100) plane of PZT, and promotes the [100] orientation of PZT.

【0016】発明者は非晶質膜中に含まれる鉛の酸化の
度合いを調整できる反応性蒸着法を用いて検討を行っ
た。図10に示したように非晶質膜堆積時に十分にオゾ
ンを供給して非晶質膜中に含まれる鉛を十分に酸化した
場合、結晶化熱処理後には〔111〕配向膜が得られ
た。一方、オゾンの供給量が不十分な場合には〔10
0〕配向が混じってくる。図11に結晶化熱処理後の薄
膜の配向性の鉛組成依存性を示す。鉛が化学量論比より
も過剰になると100ピークが強くなっている。
The inventor studied using a reactive evaporation method capable of adjusting the degree of oxidation of lead contained in an amorphous film. As shown in FIG. 10, when the ozone was sufficiently supplied during the deposition of the amorphous film to sufficiently oxidize the lead contained in the amorphous film, a [111] oriented film was obtained after the crystallization heat treatment. . On the other hand, if the supply amount of ozone is insufficient, [10
0] The orientation is mixed. FIG. 11 shows the lead composition dependence of the orientation of the thin film after the crystallization heat treatment. When the lead content exceeds the stoichiometric ratio, the 100 peak becomes strong.

【0017】また、ジャーナル オブ アメリカン セ
ラミックス ソサイエティ 77巻2337ページ(J.
Am. Ceram. Soc. 77, p. 2337 (1994))に述べられて
いるように、ゾルゲル法によるPZT薄膜形成において
も同様な結果が得られている。すなわち、仮焼成400
℃,30分を行った後650℃,30分の熱処理を行う
と、過剰なPbが350〜400℃で立方晶のPbOと
なり、これが核となってPZTの(100)が成長する
ため、熱処理後のPZT膜は〔100〕配向となる。さ
らに、PbOを50nm基板上に塗布し、400℃,1
時間熱処理して立方晶PbO〔100〕を形成し、この
うえにPZTを塗布して結晶化させると、〔100〕配
向のPZTが得られることからPbOが〔100〕配向
のPZTの核となっていることが示されている。したが
って、〔100〕結晶粒の発生を抑制するためには過剰
な鉛が酸化鉛として結晶化するのを抑制すればよい。
The Journal of American Ceramics Society, Vol. 77, p. 2337 (J.
As described in Am. Ceram. Soc. 77, p. 2337 (1994)), similar results have been obtained in forming a PZT thin film by a sol-gel method. That is, the preliminary firing 400
When the heat treatment is performed at 650 ° C. for 30 minutes after performing the heat treatment at 650 ° C. for 30 minutes, excess Pb becomes cubic PbO at 350 to 400 ° C., which becomes a nucleus to grow (100) of PZT. The subsequent PZT film has the [100] orientation. Further, PbO is applied on a 50 nm substrate,
When cubic PbO [100] is formed by heat treatment for a period of time, and PZT is applied thereon and crystallized, PZT of [100] orientation is obtained, so that PbO becomes a core of PZT of [100] orientation. Is shown. Therefore, in order to suppress the generation of the [100] crystal grains, it is only necessary to suppress the crystallization of excess lead as lead oxide.

【0018】図12は結晶化熱処理時の雰囲気依存性を
検討した結果である。雰囲気ガスに含まれる酸素の割合
を5%以下とすると、同じ非晶質膜でも〔111〕配向
となることがわかる。すなわち、酸素濃度を酸化鉛が結
晶化を開始するよりも低くすることで〔111〕に配向
の揃ったPZT膜が得られるわけである。しかしこのよ
うに低い酸素濃度で結晶化熱処理を行うと膜中に酸素欠
損が発生しリーク電流の増大や膜疲労耐性の低下などの
信頼性に対する問題を引き起こす。一旦、結晶化した
後、酸素雰囲気中で追酸化することによりある程度の特
性改善が可能であるが、すでに結晶化してしまった後な
ので、高温,長時間の追酸化が必要となり、集積回路の
他の部分の信頼性に及ぼす影響は無視できない。たとえ
ば、強誘電体キャパシタとスイッチ用トランジスタを接
続するコンタクト部での抵抗増大や、膜剥がれなどの問
題による歩留まりの低下がおこる。
FIG. 12 shows the result of studying the atmosphere dependency during the crystallization heat treatment. When the proportion of oxygen contained in the atmosphere gas is set to 5% or less, it can be seen that even the same amorphous film has [111] orientation. That is, a PZT film having a uniform orientation of [111] can be obtained by setting the oxygen concentration lower than that at which lead oxide starts crystallization. However, when the crystallization heat treatment is performed at such a low oxygen concentration, oxygen vacancies are generated in the film, which causes reliability problems such as an increase in leak current and a decrease in film fatigue resistance. Once crystallization is performed, additional characteristics can be improved to some extent by additional oxidation in an oxygen atmosphere. However, since it has already been crystallized, additional oxidation at high temperature and for a long time is required. The effect on the reliability of the part cannot be ignored. For example, a decrease in yield due to a problem such as an increase in resistance at a contact portion connecting the ferroelectric capacitor and the switching transistor and a problem such as film peeling occurs.

【0019】前述のように過剰な鉛が酸化鉛として結晶
化するのは300〜400℃と強誘電体膜が結晶化を開
始する温度(約500℃)よりも低いので、400℃以
下の低温領域では酸素濃度を酸化鉛が結晶化を開始する
よりも低くし、ペロブスカイト構造の結晶化が開始する
温度よりも高温では酸素濃度を低温領域よりも高くする
ことにより酸素欠損の発生を抑え、かつ、配向の揃った
Pb系強誘電体薄膜が得られる。
As described above, the excess lead crystallizes as lead oxide at 300 to 400 ° C., which is lower than the temperature at which the ferroelectric film starts to crystallize (about 500 ° C.). In the region, the oxygen concentration is made lower than that at which lead oxide starts to crystallize, and at a temperature higher than the temperature at which crystallization of the perovskite structure starts, the oxygen concentration is made higher than that at the lower temperature region to suppress the generation of oxygen deficiency, and Thus, a Pb-based ferroelectric thin film having a uniform orientation can be obtained.

【0020】[0020]

【発明の実施の形態】(実施例1)基板にはシリコン基
板上に密着層として窒化チタンを50nm形成し、その
上に下部電極の白金をDCスパッタ法により形成した物
を用いた。オゾンを用いた反応性同時蒸着により非晶質
のチタン酸ジルコン酸鉛薄膜を形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1) A substrate obtained by forming titanium nitride as an adhesion layer to a thickness of 50 nm on a silicon substrate and forming platinum of a lower electrode thereon by DC sputtering is used. An amorphous lead zirconate titanate thin film was formed by reactive co-evaporation using ozone.

【0021】結晶化熱処理は図1に示したようなシーケ
ンスを用いて行った。まず、ウェハをチャンバー内に搬
送した後、十分にN2 パージを行い搬送時に巻き込んだ
大気をN2 で置換する。そのままN2 雰囲気下で500
℃まで加熱し、500℃になったところでN2/O2=1
/1のガスに切り替えて700℃,30sec の熱処理を
行い、ガスを流したままランプを切って冷却し、200
℃以下になったところでウェハをチャンバーから取り出
した。比較のために雰囲気を1気圧酸素とする従来の結
晶化熱処理を行った試料も作製した。
The crystallization heat treatment was performed using a sequence as shown in FIG. First, after the wafer is transferred into the chamber, N 2 is sufficiently purged to replace the air entrained during the transfer with N 2 . As it is 500 under N 2 atmosphere
℃ and when the temperature reaches 500 ℃, N 2 / O 2 = 1
/ 1 gas and heat treatment at 700 ° C. for 30 sec.
When the temperature fell below the temperature, the wafer was taken out of the chamber. For comparison, a sample subjected to a conventional crystallization heat treatment in which the atmosphere was 1 atm oxygen was also prepared.

【0022】図2に、結晶化熱処理後のXRD図形を、
従来法による結果と比較して示す。従来法では〔10
0〕配向となる同じ非晶質膜でも、本発明の熱処理法を
用いれば加熱速度によらず〔111〕配向となっている
のがわかる。本発明の熱処理法により結晶化したPZT
膜は図3,図4に示すように残留分極の大きな角型ルー
プをもち飽和特性も優れている。また、リーク電流も酸
素100%で結晶化した膜と比べて遜色のないものが得
られた。
FIG. 2 shows an XRD pattern after the crystallization heat treatment.
The results are shown in comparison with the results of the conventional method. In the conventional method, [10
It can be seen that the same amorphous film having the [0] orientation has the [111] orientation regardless of the heating rate when the heat treatment method of the present invention is used. PZT crystallized by the heat treatment method of the present invention
As shown in FIGS. 3 and 4, the film has a square loop with large remanent polarization and excellent saturation characteristics. Also, a leak current comparable to that of a film crystallized with 100% oxygen was obtained.

【0023】(実施例2)図5は、本実施例のキャパシ
タの断面を模式的に表したものである。シリコン基板5
1上に窒化チタン膜52を50nmをスパッタ法により
形成し、次に、厚さ200nmの白金の下部電極53を
スパッタ法により形成した。次に、厚さ150nmの非
晶質膜チタン酸ジルコン酸鉛薄膜54を反応性蒸着法に
より形成した。
(Embodiment 2) FIG. 5 schematically shows a cross section of a capacitor of this embodiment. Silicon substrate 5
A 50 nm thick titanium nitride film 52 was formed on 1 by a sputtering method, and then a 200 nm-thick platinum lower electrode 53 was formed by a sputtering method. Next, an amorphous film of lead zirconate titanate thin film 54 having a thickness of 150 nm was formed by a reactive evaporation method.

【0024】次に、図1に示した結晶化熱処理を行っ
た。次にDCスパッタ法により厚さ約50nmの白金膜
55,250nmタングステン膜56を順次被着する。
フォトレジスト57をマスクに最上層のタングステン膜
56をドライエッチング法によりパターンニングする。
フォトレジスト57を除去した後、タングステン56を
マスクに用いたスパッタエッチング法により白金膜5
5,チタン酸ジルコン酸鉛薄膜54,下地白金膜53を
パターンニングする。次にドライエッチング法により最
下層の窒化チタン膜52とマスクに用いたタングステン
膜56を同時に除去しキャパシタを完成する。本実施例
ではドライエッチングのマスクにタングステンを用いた
が、窒化チタン膜を用いてもよい。また、目的の用途に
応じてチタン酸ジルコン酸鉛薄膜中の鉛の一部をLaや
Baなどの元素で置換してもよい。
Next, the crystallization heat treatment shown in FIG. 1 was performed. Next, a platinum film 55 having a thickness of about 50 nm and a tungsten film 56 having a thickness of 250 nm are sequentially deposited by DC sputtering.
Using the photoresist 57 as a mask, the uppermost tungsten film 56 is patterned by dry etching.
After removing the photoresist 57, the platinum film 5 is formed by sputter etching using tungsten 56 as a mask.
5. Pattern the lead titanate zirconate thin film 54 and the underlying platinum film 53. Next, the lowermost titanium nitride film 52 and the tungsten film 56 used as the mask are simultaneously removed by dry etching to complete the capacitor. In this embodiment, tungsten is used as a mask for dry etching, but a titanium nitride film may be used. Further, depending on the intended use, part of the lead in the lead zirconate titanate thin film may be replaced with an element such as La or Ba.

【0025】また、本実施例では非晶質膜の形成に反応
性蒸着法を用いたが、スパッタリング法やゾルゲル法に
よっても同様の効果が得られることは言うまでもない。
In this embodiment, the reactive evaporation method is used for forming the amorphous film. However, it goes without saying that the same effect can be obtained by the sputtering method or the sol-gel method.

【0026】図6には分極反転電荷の面内分布を示し
た。他のプロセスは同じで、結晶化熱処理のみ従来のプ
ロセスを用いたキャパシタの面内分布を比較して示す。
従来、±10%以上あった面内分布が±1%程度に改善
された。
FIG. 6 shows the in-plane distribution of the domain-inverted charges. The other processes are the same, and the in-plane distribution of the capacitor using the conventional process only for the crystallization heat treatment is shown for comparison.
The in-plane distribution, which was conventionally ± 10% or more, has been improved to about ± 1%.

【0027】[0027]

【発明の効果】本発明によれば、大面積で均一な電気特
性をもち、かつ酸素欠陥の少ないペロブスカイト構造の
鉛系強誘電体薄膜が得られる。この強誘電体薄膜を用い
れば、たとえば、256メガビットレベル以上の高集積
ダイナミックランダムアクセスメモリに必要とされる、
構造が簡単で大きな蓄積電荷量をもった微細なキャパシ
タを高均質な特性で形成できる。また、分極反転型不揮
発性メモリに必要とされる、強誘電体キャパシタの電気
特性の面内分布を、6インチ以上の大面積基板を用いた
場合でも±2%以下とすることができる。
According to the present invention, it is possible to obtain a lead-based ferroelectric thin film having a perovskite structure having a large area and uniform electric characteristics and having few oxygen defects. Using this ferroelectric thin film, for example, is required for a highly integrated dynamic random access memory of 256 megabit level or more.
A fine capacitor having a simple structure and a large amount of accumulated charge can be formed with high uniform characteristics. Further, the in-plane distribution of the electric characteristics of the ferroelectric capacitor required for the domain-inverted nonvolatile memory can be set to ± 2% or less even when a large area substrate of 6 inches or more is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における熱処理方法のシーケ
ンス図。
FIG. 1 is a sequence diagram of a heat treatment method according to an embodiment of the present invention.

【図2】本発明と従来の方法によるチタン酸ジルコン酸
鉛膜のX線回折スペクトル図。
FIG. 2 is an X-ray diffraction spectrum of a lead zirconate titanate film according to the present invention and a conventional method.

【図3】本発明の一実施例の強誘電体を用いたキャパシ
タのヒステリシス特性図。
FIG. 3 is a diagram showing a hysteresis characteristic of a capacitor using a ferroelectric according to one embodiment of the present invention.

【図4】本発明の一実施例の強誘電体を用いたキャパシ
タの分極反転電荷の電圧依存特性図。
FIG. 4 is a diagram showing a voltage-dependent characteristic of domain-inverted charges of a capacitor using a ferroelectric substance according to one embodiment of the present invention.

【図5】本発明の一実施例の強誘電体を用いたキャパシ
タの断面図。
FIG. 5 is a sectional view of a capacitor using a ferroelectric substance according to one embodiment of the present invention.

【図6】本発明と従来法による強誘電体を用いたキャパ
シタの分極反転電荷の面内分布図。
FIG. 6 is an in-plane distribution diagram of domain-inverted charges of a capacitor using a ferroelectric according to the present invention and a conventional method.

【図7】チタン酸ジルコン酸鉛薄膜のヒステリシス特性
の配向性による差を示す図面。
FIG. 7 is a view showing a difference in hysteresis characteristic of a lead zirconate titanate thin film due to orientation.

【図8】チタン酸ジルコン酸鉛薄膜の分極反転電荷の電
圧依存性の特性図。
FIG. 8 is a characteristic diagram of the voltage dependence of the domain-inverted charge of a lead zirconate titanate thin film.

【図9】PbOの(100)面とPZTの(100)面
との格子整合の説明図。
FIG. 9 is an explanatory diagram of lattice matching between the (100) plane of PbO and the (100) plane of PZT.

【図10】結晶化熱処理後のチタン酸ジルコン酸鉛薄膜
の配向性のオゾン供給量依存性の測定図。
FIG. 10 is a view showing a measurement of the dependence of the orientation of the lead zirconate titanate thin film on the amount of supplied ozone after the crystallization heat treatment.

【図11】結晶化熱処理後のチタン酸ジルコン酸鉛薄膜
の配向性の鉛組成依存性の測定図。
FIG. 11 is a measurement diagram of the lead composition dependence of the orientation of a lead zirconate titanate thin film after crystallization heat treatment.

【図12】チタン酸ジルコン酸鉛結晶薄膜の熱処理雰囲
気依存性を示すX線回折スペクトル図。
FIG. 12 is an X-ray diffraction spectrum showing the heat treatment atmosphere dependence of a lead zirconate titanate crystal thin film.

【符号の説明】[Explanation of symbols]

51…半導体基板、52…窒化チタン膜、53…白金膜
(下部電極)、54…チタン酸ジルコン酸鉛薄膜、55
…白金膜(上部電極)、56…タングステン膜、57…
フォトレジスト。
51: semiconductor substrate, 52: titanium nitride film, 53: platinum film (lower electrode), 54: lead zirconate titanate thin film, 55
... Platinum film (upper electrode), 56 ... Tungsten film, 57 ...
Photoresist.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】鉛系強誘電体を構成する金属元素と酸素を
含む非晶質膜を、400℃以下の低温領域では酸素濃度
が酸化鉛が結晶化を開始するよりも低く、ペロブスカイ
ト構造の結晶化が開始する温度よりも高温では酸素濃度
を低温領域よりも高い雰囲気中で熱処理をして得られた
〔111〕配向度80%以上であることを特徴とする強
誘電体薄膜。
An amorphous film containing a metal element and oxygen constituting a lead-based ferroelectric material has an oxygen concentration in a low temperature region of 400 ° C. or lower which is lower than that at which lead oxide starts crystallization, and has a perovskite structure. A ferroelectric thin film having a degree of [111] orientation of 80% or more obtained by performing a heat treatment in an atmosphere in which the oxygen concentration is higher than the temperature at which crystallization starts and the oxygen concentration is higher than in the low temperature region.
【請求項2】鉛系強誘電体を構成する金属元素と酸素を
含む非晶質膜を熱処理してペロブスカイト構造に結晶化
した薄膜を得る鉛系強誘電体薄膜の製造方法において、
400℃以下の低温領域では酸素濃度を酸化鉛が結晶化を
開始するよりも低くし、ペロブスカイト構造の結晶化が
開始する温度よりも高温では酸素濃度を低温領域よりも
高くすることを特徴とする強誘電体薄膜の製造方法。
2. A method for producing a lead-based ferroelectric thin film, wherein an amorphous film containing a metal element and oxygen constituting a lead-based ferroelectric is heat-treated to obtain a thin film crystallized into a perovskite structure.
It is characterized in that the oxygen concentration is lower than the temperature at which lead oxide starts to crystallize in the low temperature region of 400 ° C or lower, and the oxygen concentration is higher than the low temperature region at a temperature higher than the temperature at which the perovskite structure starts to crystallize. A method for manufacturing a ferroelectric thin film.
【請求項3】請求項2記載の強誘電体薄膜の製造方法に
おいて、低温領域での酸素濃度を5%以下とすることを
特徴とする強誘電体薄膜の製造方法。
3. The method for producing a ferroelectric thin film according to claim 2, wherein the oxygen concentration in the low temperature region is 5% or less.
【請求項4】請求項2記載の強誘電体薄膜の製造方法に
おいて、高温領域での酸素濃度を10%以上とすること
を特徴とする強誘電体薄膜の製造方法。
4. The method for producing a ferroelectric thin film according to claim 2, wherein the oxygen concentration in a high temperature region is 10% or more.
【請求項5】請求項2記載の強誘電体薄膜の製造方法に
おいて、非晶質膜を反応性蒸着法により作製することを
特徴とする強誘電体薄膜の製造方法。
5. The method for producing a ferroelectric thin film according to claim 2, wherein the amorphous film is produced by a reactive vapor deposition method.
【請求項6】請求項2記載の強誘電体薄膜の製造方法に
おいて、非晶質膜をゾルゲル法により作製することを特
徴とする強誘電体薄膜の製造方法。
6. The method for producing a ferroelectric thin film according to claim 2, wherein the amorphous film is produced by a sol-gel method.
【請求項7】請求項2記載の強誘電体薄膜の製造方法に
おいて、非晶質膜をスパッタリング法により作製するこ
とを特徴とする強誘電体薄膜の製造方法。
7. The method for producing a ferroelectric thin film according to claim 2, wherein the amorphous film is produced by a sputtering method.
【請求項8】上記強誘電体薄膜はチタン酸ジルコン酸鉛
からなることを特徴とする請求項2ないし請求項7の何
れかに記載の強誘電体薄膜の製造方法。
8. The method according to claim 2, wherein said ferroelectric thin film is made of lead zirconate titanate.
JP10083232A 1998-03-30 1998-03-30 Ferroelectric thin film and its manufacture Pending JPH11284136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10083232A JPH11284136A (en) 1998-03-30 1998-03-30 Ferroelectric thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083232A JPH11284136A (en) 1998-03-30 1998-03-30 Ferroelectric thin film and its manufacture

Publications (1)

Publication Number Publication Date
JPH11284136A true JPH11284136A (en) 1999-10-15

Family

ID=13796589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083232A Pending JPH11284136A (en) 1998-03-30 1998-03-30 Ferroelectric thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPH11284136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046706A1 (en) * 2010-10-06 2012-04-12 株式会社アルバック Method for producing dielectric thin film
CN103189968B (en) * 2010-10-06 2016-11-30 株式会社爱发科 The film build method of thin dielectric film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046706A1 (en) * 2010-10-06 2012-04-12 株式会社アルバック Method for producing dielectric thin film
CN103189968A (en) * 2010-10-06 2013-07-03 株式会社爱发科 Method for producing dielectric thin film
US9347128B2 (en) 2010-10-06 2016-05-24 Ulvac, Inc. Method for forming dielectric thin film
CN103189968B (en) * 2010-10-06 2016-11-30 株式会社爱发科 The film build method of thin dielectric film

Similar Documents

Publication Publication Date Title
JP3363301B2 (en) Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3040483B2 (en) Polycrystalline ferroelectric capacitor heterostructure using hybrid electrode
EP0747937B1 (en) Method of forming a substrate coated with a ferroelectric thin film
US20060038214A1 (en) Low voltage drive ferroelectric capacitor
US6197600B1 (en) Ferroelectric thin film, manufacturing method thereof and device incorporating the same
CN100388497C (en) Metal thin film and method of manufacturing the same, dielectric capacitor and method of manufacturing the same, and semiconductor memory device
KR19990013720A (en) Ferroelectric Capacitor, Manufacturing Method Thereof and Memory Cell Using the Capacitor
KR20010080131A (en) Low imprint ferroelectric material for long retention memory and method of making the same
JPH10270654A (en) Semiconductor storage device
JP2017059751A (en) Ferroelectric memory, manufacturing method of the same, ferroelectric film, and manufacturing method of the same
JP3891603B2 (en) Ferroelectric thin film coated substrate, capacitor structure element, and method for manufacturing ferroelectric thin film coated substrate
JPH0817939A (en) Semiconductor device and manufacture thereof
KR100378276B1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
EP1150344A2 (en) Semiconductor device having ferroelectric thin film and fabricating method therefor
JP4573009B2 (en) Vapor phase growth method of metal oxide dielectric film
JPH1012832A (en) Method for manufacturing ferroelectrics capacitor and method for manufacturing ferroelectrics memory device
JPH104181A (en) Ferroelectric element and semiconductor device
JPH11284136A (en) Ferroelectric thin film and its manufacture
JP2658878B2 (en) Ferroelectric thin film capacitor and method of manufacturing the same
JP3405050B2 (en) Dielectric thin film and method for forming the same
JPH10270646A (en) Manufacture of ferroelectric thin film element and semiconductor device
JP2001028426A (en) Semiconductor device and manufacture thereof
JP2000150677A (en) Ferroelectric gate memory and fabrication thereof
JP2000068455A (en) High dielectric const. capacitor and manufacture thereof