JPH11281501A - Apparatus for measuring surface stress - Google Patents

Apparatus for measuring surface stress

Info

Publication number
JPH11281501A
JPH11281501A JP8441598A JP8441598A JPH11281501A JP H11281501 A JPH11281501 A JP H11281501A JP 8441598 A JP8441598 A JP 8441598A JP 8441598 A JP8441598 A JP 8441598A JP H11281501 A JPH11281501 A JP H11281501A
Authority
JP
Japan
Prior art keywords
light
measured
medium
light source
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8441598A
Other languages
Japanese (ja)
Inventor
Yoshio Orihara
芳男 折原
Takeshi Sugio
健 杉生
Shiro Funatsu
志郎 舩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIHARA SEISAKUSHO KK
AGC Inc
Original Assignee
ORIHARA SEISAKUSHO KK
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIHARA SEISAKUSHO KK, Asahi Glass Co Ltd filed Critical ORIHARA SEISAKUSHO KK
Priority to JP8441598A priority Critical patent/JPH11281501A/en
Publication of JPH11281501A publication Critical patent/JPH11281501A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately measure the surface stress of a rough surface, the surface of an object of a low transmittance, the curved surface or the surface of a combination of these by separating or connecting with a degree of freedom a part comprising a measurement prism and a light-shielding plate to the other part and bringing the part in tight contact with the surface of a body to be measured. SOLUTION: A mechanism for bringing a part of a measurement part in tight contact with a surface 1a of a body to be measured, and a mechanism for supporting a part constituted of the other elements than the measurement part to the surface 1a are separated from each other or connected with a degree of freedom. The measurement part is not influenced by the other parts than the measurement part or the surface 1a, or is influenced to a minimum. The measurement part can be brought in tight contact with the surface 1a of the body to be measured at all times in a desired state. The stress of a surface having a curvature can thus be measured simply, highly accurately in a nondestructive way which is impossible or hard to measure in conventional surface stress-measuring apparatuses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス、透明プラ
スチックなどの透明性を有する物体の表面応力を非破壊
的に測定する表面応力測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface stress measuring device for non-destructively measuring the surface stress of a transparent object such as glass or transparent plastic.

【0002】[0002]

【従来の技術】従来、ガラスなどの透明性を有する物体
の表面応力を非破壊的に測定する装置としては、光源か
らの光を被測定体表面で集光させて臨界屈折角で入射
し、被測定体表面に平行に進行する表面伝播光を生じさ
せ、その表面伝搬光の進行経路の各所で散乱する光を射
出光として被測定体から取り出し、伝播距離とともに変
化する表面伝播光の偏光特性の状況を光の筋の明暗とし
て観察することで表面応力を測定するものが提供されて
いる(米国特許3286581)。しかし、この装置
は、光源に白色電球、ナトリウムランプなどのスペクト
ル電球等を用いているため、発生する表面伝播光が弱
く、光量が小さいために、表面伝播光の偏光特性の状況
の観察が著しく困難で測定精度が低い欠点があった。
2. Description of the Related Art Conventionally, as a device for non-destructively measuring the surface stress of a transparent object such as glass, light from a light source is condensed on the surface of an object to be measured and is incident at a critical refraction angle. Generates surface-propagating light that travels parallel to the surface of the device under test, extracts the light scattered at various points along the path of the surface-propagating light from the device as output light, and changes the polarization characteristics of the surface-propagating light that varies with the propagation distance. The surface stress is measured by observing the above condition as light and dark of a light streak (US Pat. No. 3,286,581). However, since this device uses a white light bulb, a spectrum lamp such as a sodium lamp, or the like as a light source, the generated surface propagation light is weak and the amount of light is small, so that observation of the polarization characteristics of the surface propagation light is remarkable. There was a drawback that it was difficult and measurement accuracy was low.

【0003】前記欠点を除去するために、光源に光束密
度の大きいレーザーを使用し、射出光に生じる光弾性的
光路差の測定にセナルモン補正器の原理を用いたものが
提供されている(特開昭58−55830)。しかし、
この装置は、表面応力が大きい場合は観察する光の筋の
明暗の周期が短く、装置の分解能の上限に近づくために
測定精度が低くなり、表面応力が小さい場合には光の筋
の明暗の周期は長くなるが、その境の判別が著しく困難
となるために測定できない欠点があった。つまり、これ
までの装置は、光の筋の明暗を観察対象とすることに起
因して精度が低く、小応力が測定できない欠点があっ
た。
In order to eliminate the above-mentioned drawbacks, there has been provided an apparatus which uses a laser having a high luminous flux density as a light source and uses a principle of a Senarmont corrector for measuring a photoelastic optical path difference generated in emitted light (see, for example, Japanese Patent Application Laid-Open No. H11-157,837). 58-55830). But,
In this device, when the surface stress is large, the light and dark cycle of the observed light streak is short, and the measurement accuracy is low because it approaches the upper limit of the resolution of the device.When the surface stress is small, the contrast of the light streak is small. Although the period is long, there is a disadvantage that the measurement cannot be performed because it is extremely difficult to determine the boundary. In other words, the conventional devices have a drawback that the accuracy is low due to the observation of light and dark of light streaks and small stress cannot be measured.

【0004】前記の欠点を除去するために、光の筋の明
暗を観察対象としないで測定するものが提供されている
(GASP(登録商標)、GASP−CS、ストレイン
オプティック テクノロジーズ社製)。この装置は、光
源からの光をスリット光に変えて偏光板で直線偏光し、
被測定体表面に臨界屈折角で入射して被測定体表面に平
行に進行する帯状の表面伝播光を生じさせ、その進行経
路の各所で散乱する散乱光を帯状の射出光として被測定
体から取り出し、伝播距離とともに変化する表面伝播光
の偏光特性の状況をバビネ補正器と検光板で明暗をなす
斜めの光の縞として観察し、その光の縞の傾斜角を測定
して表面応力を求めるものである。
[0004] In order to eliminate the above-mentioned drawbacks, there has been provided an apparatus which measures the brightness of light streaks without observing the object (GASP (registered trademark), GASP-CS, manufactured by Strain Optics Technologies). This device converts the light from the light source into slit light, linearly polarizes it with a polarizing plate,
A band-shaped surface-propagating light that enters the surface of the measured object at a critical refraction angle and travels parallel to the surface of the measured object is generated, and scattered light scattered at various points along the traveling path is emitted from the measured object as a band-like emission light. Take out, observe the polarization characteristics of the surface propagating light that changes with the propagation distance as oblique light stripes that make light and dark with a Babinet corrector and an analyzer, and measure the inclination angle of the light stripes to obtain the surface stress Things.

【0005】この装置の測定原理は、本発明と同じであ
り、原理的には透明性を有するすべての物体の表面応力
が測定できる。しかし、光源からの光を入射するための
台形プリズムと射出するための長方形プリズムとを相隣
接させてできるプリズムが、構造上、被測定体表面への
密着と装置の支持の2つの役割を兼ねているために、被
測定体表面が少しでも曲率を持つ場合には2つの役割を
両立させることが難しくなり、前記プリズムの底面と被
測定体表面との密着の良い状態の維持が非常に困難で、
作業に習熟を必要とする欠点があった。
[0005] The measuring principle of this device is the same as that of the present invention, and in principle, the surface stress of all transparent objects can be measured. However, a prism formed by adjoining a trapezoidal prism for entering light from a light source and a rectangular prism for emitting light has a structurally both role of adhesion to the surface of the object to be measured and support of the device. Therefore, when the surface of the object to be measured has a slight curvature, it is difficult to balance the two roles, and it is very difficult to maintain a good state of close contact between the bottom surface of the prism and the surface of the object to be measured. so,
There was a drawback that required skill in the work.

【0006】特に、被測定体表面が3次元形状の場合な
どは全く測定ができなかった。さらに、光源の出力が小
さいのに加えて光源からの拡散光の一部をスリット光と
しているために、光束密度が小さくなり、被測定体が低
透過率の場合や粗面の場合などは光の縞が観察できない
欠点があった。
In particular, when the surface of the object to be measured has a three-dimensional shape, measurement cannot be performed at all. Furthermore, since the output of the light source is small and a part of the diffused light from the light source is used as slit light, the luminous flux density is small, and the light is low when the object to be measured has a low transmittance or a rough surface. There was a disadvantage that no stripes could be observed.

【0007】上記の制約により、実用上、この装置は光
透過率が高く、平滑な表面を有するガラスの表面応力の
測定にしか適用できず、粗面、低透過率物体および曲面
の表面応力の測定はできなかった。
Due to the above restrictions, this apparatus is practically applicable only to the measurement of the surface stress of glass having a high light transmittance and a smooth surface, and the surface stress of a rough surface, a low transmittance object and a curved surface. The measurement could not be performed.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、光透
過性物体の表面応力測定において従来の表面応力測定装
置で測定不可能であった粗面、低透過率物体および曲率
のある表面、またはこれらが組み合わされた表面の表面
応力、特に曲面の表面応力を、小応力から高精度で非破
壊的に測定する新規の表面応力測定装置を提供すること
である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for measuring the surface stress of a light-transmitting object, such as a rough surface, a low-transmitting object and a surface having a curvature, which cannot be measured by a conventional surface stress measuring device. Another object of the present invention is to provide a novel surface stress measuring device for non-destructively measuring the surface stress of a surface combined with the above, particularly the surface stress of a curved surface from a small stress with high accuracy.

【0009】[0009]

【課題を解決するための手段】本発明は前記目的を達成
するために、光源と、光源からの光を必要に応じ直線偏
光する偏光素子と、光源からの光をスリット光に変換す
る手段と、被測定体表面に密着して前記スリット光を被
測定体に臨界屈折角で入射する屈折率が被測定体よりも
大きい媒体1と、被測定体表面に密着して被測定体表面
を伝播する光またはその散乱光を被測定体の外に射出す
る屈折率が被測定体よりも大きい媒体2と、媒体1と媒
体2の間に配置された遮光板と、前記媒体2からの射出
光の進行方向に配置されたバビネ補正器またはバビネ−
ソレイユ補正器と、前記バビネ補正器またはバビネ−ソ
レイユ補正器を通過した射出光の進行方向に配置された
偏光素子を備えた表面応力測定装置において、前記媒体
1および媒体2と遮光板で構成する部分が被測定体表面
へ密着する機構と、それ以外の上記構成要素で構成され
る部分が被測定体表面に支持する機構とが、分離してい
るかまたは自由度を持って接続されていることを特徴と
する表面応力測定装置を提供する。
In order to achieve the above object, the present invention provides a light source, a polarizing element for linearly polarizing light from the light source as necessary, and a means for converting light from the light source to slit light. A medium 1 in which the slit light is incident on the object at a critical refraction angle in close contact with the surface of the object to be measured and has a larger refractive index than the object to be measured; Medium 2 having a larger refractive index than the object to be measured and a light shielding plate disposed between the medium 1 and the light emitted from the medium 2. Babinet corrector or Babinet placed in the traveling direction of
In a surface stress measuring device including a Soleil corrector and a polarizing element arranged in a traveling direction of light emitted from the Babinet corrector or the Babinet-Soleil corrector, the device includes the medium 1, the medium 2, and a light shielding plate. The mechanism in which the part is in close contact with the surface of the object to be measured and the mechanism in which the other components are supported on the surface of the object to be measured are separated or freely connected. The present invention provides a surface stress measuring device characterized by the following.

【0010】本発明の他の特徴は、光源と該光源からの
光をスリット光に変換するためのスリット状開口との間
に、前記スリット光が所望の光束密度になるように集光
する集光レンズ系を具備せしめて、被測定体に入射する
入射光の光束密度を調整することによって、入射光が入
射しにくい粗面や光の減衰が大きい低透過率の物体の表
面応力測定を可能にすることである。
Another feature of the present invention is that a light collector is provided between a light source and a slit opening for converting light from the light source into slit light so that the slit light has a desired light flux density. By providing an optical lens system and adjusting the luminous flux density of the incident light that enters the object to be measured, it is possible to measure the surface stress of a rough surface on which the incident light is difficult to enter or a low transmittance object with large light attenuation. It is to be.

【0011】[0011]

【発明の実施の形態】図1に本発明の実施例の表面応力
測定装置の構成の概略図を示す。被測定体表面1aに光
を入射および射出する媒体として、光学ガラス製の入射
用プリズム2と射出用プリズム3を用い、これらをその
間に遮光板4を挟んで相隣接して組み合わせ、被測定体
表面1aに密着させる。この被測定体表面1aにおいて
光がこれらプリズムを介して光学的に入射および射出す
るために、当該媒体の屈折率は被測定体のそれより大き
くなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing the configuration of a surface stress measuring device according to an embodiment of the present invention. As a medium for entering and exiting light on the surface 1a of the object to be measured, an incident prism 2 and an exit prism 3 made of optical glass are combined adjacently with a light-shielding plate 4 interposed therebetween. Adhere to the surface 1a. Since light is optically incident on and emitted from the surface 1a of the object through these prisms, the refractive index of the medium is larger than that of the object.

【0012】前記各プリズム2および3と遮光板4は、
図示するように一度組み合わせセットすれば、この状態
で測定装置の主要部として機能させることができる。本
例では、これら入射用プリズム2および射出用プリズム
3と遮光板4で構成される部分を測定部とする。
The prisms 2 and 3 and the light shielding plate 4 are
As shown, once the combination is set, it can function as the main part of the measuring device in this state. In the present example, a portion composed of the incident prism 2, the exit prism 3, and the light shielding plate 4 is defined as a measurement unit.

【0013】光源5からの光は偏光子6に相当する偏光
素子によって直線偏光し、例えばスリット状開口7によ
ってスリット光8に変換して、被測定体表面1aの入射
点9における垂線10に対して全反射する臨界屈折角φ
c で入射させる。このとき、入射光8の偏光面は入射面
に対して45°の角度をなすようにする。
The light from the light source 5 is linearly polarized by a polarizing element corresponding to the polarizer 6 and converted into, for example, slit light 8 by a slit-like opening 7 so as to be perpendicular to a vertical line 10 at an incident point 9 on the surface 1a of the measured object. Critical refraction angle φ
Inject at c . At this time, the plane of polarization of the incident light 8 is formed at an angle of 45 ° with respect to the plane of incidence.

【0014】入射光8のうちで臨界屈折角φc に等しい
角度で入射したものの一部は、表面伝播光11となって
被測定体表面1a近傍を表面と平行に進行する。表面伝
播光11は進行経路の各所で僅かながら散乱され、その
散乱光を射出用プリズム3によって被測定体1より射出
する。
A portion of the incident light 8 which is incident at an angle equal to the critical refraction angle φ c becomes surface propagating light 11 and travels in the vicinity of the surface 1a of the measured object in parallel with the surface. The surface propagating light 11 is slightly scattered at various points along the traveling path, and the scattered light is emitted from the measured object 1 by the emission prism 3.

【0015】取り出された射出光12は、その進行方向
に置かれたバビネ補正器13、検光子14に相当する偏
光素子および接眼レンズ15の順に通され、伝播距離と
ともに変化する表面伝播光11の進行経路の各点の偏光
特性が測定される。
The extracted emitted light 12 passes through a Babinet corrector 13 placed in the traveling direction, a polarizing element corresponding to an analyzer 14 and an eyepiece 15 in this order, and is formed by a surface propagating light 11 that changes with the propagation distance. The polarization characteristics of each point on the traveling path are measured.

【0016】本発明の表面応力測定装置は、前記測定部
とこの入射光8と射出光12の各光学系を組み合わせる
ことによって構成され、その測定原理は前記したように
公知のものと実質同じである。したがって、入射光8と
射出光12の各光学系を形成する構成要素およびこれら
要素の組み合わせは、例示のものに特定されることなく
測定原理の範囲内で変更できる。
The surface stress measuring device of the present invention is constituted by combining the measuring section and the respective optical systems of the incident light 8 and the outgoing light 12, and its measuring principle is substantially the same as that of the known device as described above. is there. Accordingly, the components forming each optical system of the incident light 8 and the output light 12 and the combination of these components can be changed within the range of the measurement principle without being limited to the example.

【0017】測定部以外の部分、すなわち入射光8と射
出光12の各光学系部分は、装置基板16によって被測
定体表面1aに支持されている。装置基板16には、そ
れぞれ単独で調整可能なネジ式支持脚17が取り付けら
れており、装置基板16と被測定体表面1aとの高さお
よび水平度の調整を、このネジ式支持脚17より行うよ
うになっている。上記装置基板16が、入射光8と射出
光12の各光学系部分を被測定体表面に対し支持するた
めの機構またはその主要部である。
Parts other than the measuring section, that is, the respective optical system parts of the incident light 8 and the emitted light 12 are supported by the device substrate 16 on the surface 1a of the measured object. A screw-type support leg 17 that can be independently adjusted is attached to the device substrate 16, and adjustment of the height and the horizontality between the device substrate 16 and the surface 1 a of the measured object is performed by the screw-type support leg 17. It is supposed to do. The device substrate 16 is a mechanism for supporting each optical system part of the incident light 8 and the emission light 12 on the surface of the measured object, or a main part thereof.

【0018】一方、前記測定部は、治具18を介して装
置基板16と圧縮コイルバネ19によって接続されてい
る。圧縮コイルバネ19は、バネ定数およびバネ長さを
変えることによって、被測定体1へ測定部を押しつける
力を調整でき、測定部を被測定体表面1aへ密着させる
機構を形成している。すなわち、測定部は装置基板16
に自由度をもって接続されており、一方測定部以外の部
分は、前記したように装置基板16に取り付け支持され
ているので、測定部は測定部以外の部分に対して被測定
体表面1aの垂直方向に自由度を持っている。
On the other hand, the measuring section is connected to the device substrate 16 via a jig 18 by a compression coil spring 19. By changing the spring constant and the spring length, the compression coil spring 19 can adjust the force of pressing the measurement unit against the DUT 1 and form a mechanism for bringing the measurement unit into close contact with the DUT surface 1a. That is, the measuring unit is the device substrate 16
And the other parts are attached to and supported by the device substrate 16 as described above, so that the measuring part is perpendicular to the surface other than the measuring part. It has a degree of freedom in the direction.

【0019】この場合、圧縮コイルバネ19は、作用が
同様であれば他の機構も使用できるが、弾性効果がある
ものは測定装置を被測定体表面1aに置くだけで測定部
を密着させることができ、その後も被測定体表面1aに
常時押し付けて密着状態を保持できるので特に望まし
い。測定部と装置基板16が圧縮コイルバネ等で接続せ
ずに分離している場合には、測定部はその自重によって
被測定体表面1aへ密着する機構を形成している。
In this case, other mechanisms can be used for the compression coil spring 19 as long as the operation is the same. However, if the compression coil spring 19 has an elastic effect, the measuring unit can be brought into close contact only by placing the measuring device on the surface 1a of the measured object. It is particularly preferable since the contact state can be maintained by always pressing against the surface 1a of the measured object. When the measurement unit and the device substrate 16 are separated from each other without being connected by a compression coil spring or the like, the measurement unit forms a mechanism that adheres to the surface 1a of the measured object by its own weight.

【0020】以上により、測定部は、装置基板16と被
測定体表面1aとの水平度や間隔の影響を受けることな
く、被測定体表面への密着を維持できる。装置基板1
6、ネジ式支持脚17および治具18は、作用が同様で
あれば、その他の機構も使用できる。
As described above, the measuring section can maintain the close contact with the surface of the object to be measured without being affected by the horizontality and the interval between the device substrate 16 and the surface 1a of the object to be measured. Equipment substrate 1
6, the screw-type support leg 17 and the jig 18 can use other mechanisms as long as the operation is the same.

【0021】光源5は、白色電球、レーザー光源などの
各種光源が使用可能である。仮にレーザー光源が直線偏
光を発するものであり、かつ、その直線偏光の偏光面が
所望の振動方向となるように光源5を取り付けることが
できる場合には、偏光子6を配置する必要はない。した
がって、偏光素子は偏光子6のように独立した単独部材
でなくても、機能として備えていればよい。偏光子6お
よび検光子14には、偏光板やニコルプリズム等の偏光
素子が使用できる。
As the light source 5, various light sources such as a white light bulb and a laser light source can be used. If the laser light source emits linearly polarized light and the light source 5 can be attached so that the plane of polarization of the linearly polarized light has a desired vibration direction, the polarizer 6 need not be disposed. Therefore, the polarizing element need not be an independent single member like the polarizer 6, but may be provided as a function. As the polarizer 6 and the analyzer 14, a polarizing element such as a polarizing plate or a Nicol prism can be used.

【0022】光源5と偏光子6の間の集光レンズ系20
は、スリット光8の光束密度が最大となるように、すな
わちスリット光8が測定に最適な所望の光束密度となる
ように、光源5からの光をスリット状開口7の幅とほぼ
等しいコヒーレントな光に集光する。この集光は、スリ
ット状開口の前またはスリット状開口の位置で行うこと
ができる。逆に、光源5が大出力で光束密度が過剰に大
きい場合には、集光レンズ系20の絞りを変えることに
より光源5からの光を調節し、スリット光8の光束密度
を小さくできる。
Condensing lens system 20 between light source 5 and polarizer 6
The light from the light source 5 is coherently equal to the width of the slit-shaped opening 7 so that the light flux density of the slit light 8 is maximized, that is, so that the slit light 8 has a desired light flux density optimal for measurement. Focus on light. This light collection can be performed before or at the position of the slit-shaped opening. Conversely, when the light source 5 has a large output and an excessively high luminous flux density, the light from the light source 5 can be adjusted by changing the aperture of the condenser lens system 20, and the luminous flux density of the slit light 8 can be reduced.

【0023】スリット光8の光束密度は、光源5の出力
によっても調節できるが、前記集光レンズ系は光束密度
の加減が絞りの調整で簡単に行うことができ、また光源
5の出力を集光し利用できるため光源がそれほど大出力
でなくても十分に足りるので特に望ましい。なおスリッ
ト状開口7は、光源からの光をスリット光に変換できる
ものであれば、他のもので代替できる。
Although the luminous flux density of the slit light 8 can be adjusted by the output of the light source 5, the condensing lens system can easily adjust the luminous flux density by adjusting the aperture and collect the output of the light source 5. It is particularly desirable because the light source can be used satisfactorily even if the light source does not have such a large output. Note that the slit opening 7 can be replaced with another as long as it can convert light from the light source into slit light.

【0024】前記各プリズム2および3は、作用が同様
であれば、さまざまな形状のプリズムまたはプリズム以
外の媒体を採用できる。また、作用が同様であれば、あ
えて各プリズム2および3を図1のように相隣接させて
一体化した構造を用いなくてもよい。遮光板4は、散乱
光12の観察を妨げる入射光8や周囲の光などの不要な
光が射出用プリズム3に入射することを排除するために
用いる。したがって、不要な光が入射する恐れのある部
分、例えば被測定体表面1aに近い部分に設けてあれば
よい。そして、遮光板の形態としては遮光膜を用いるこ
ともできる。
Each of the prisms 2 and 3 can employ various shapes of prisms or media other than the prisms, as long as the operations are the same. Further, if the operations are the same, it is not necessary to use a structure in which the prisms 2 and 3 are arranged adjacent to each other as shown in FIG. The light-shielding plate 4 is used to prevent unnecessary light such as incident light 8 or ambient light that impedes observation of the scattered light 12 from being incident on the exit prism 3. Therefore, it may be provided at a portion where unnecessary light may enter, for example, at a portion close to the surface 1a of the measured object. As a form of the light shielding plate, a light shielding film can be used.

【0025】また、前記測定部を被測定体表面1aに密
着させただけでは、入射光8が被測定体1に上手く入射
しない場合には、プリズムと屈折率が近似する液体21
を、プリズムと被測定体表面1aの間に介在させて光学
的接触を実現する。被測定体表面1aが平面であるよう
な場合には、プリズム2がなくてもスリット光を該被測
定体表面にこの液体21を通して直接に入射し測定でき
るので、この場合には液体21はプリズム2の代替手段
としても機能する。したがって、プリズム2は液体21
の媒体をも含む。なお、バビネ補正器13は、代わりに
バビネ−ソレイユ補正器を使用することもできる。
If the incident light 8 does not enter the measurement object 1 simply by bringing the measurement section into close contact with the measurement object surface 1a, the liquid 21 having a refractive index similar to that of the prism 21 can be obtained.
Is interposed between the prism and the surface 1a of the measured object to realize optical contact. In the case where the surface 1a of the object to be measured is a flat surface, the slit light can be directly incident on the surface of the object to be measured through the liquid 21 without the use of the prism 2 for measurement. It also functions as an alternative to 2. Therefore, the prism 2 is
Media. The Babinet corrector 13 may be replaced with a Babinet-Soleil corrector.

【0026】図2は、被測定体表面を平行に進行する表
面伝播光の進行経路における各点の偏光特性の模式図を
示す。被測定体22に圧縮の表面応力が存在する場合、
入射面に対して45°の角度をなすように直線偏光され
たスリット光23を、被測定体表面22aに臨界屈折角
で入射すると、表面伝播光24を生じ、その表面伝播光
24は被測定体表面に平行および垂直方向にそれぞれ振
動する2つの直線偏光成分に分かれて進行し、応力によ
る光弾性効果によって2つの成分間に光路差を生じる。
FIG. 2 is a schematic diagram showing the polarization characteristics of each point in the traveling path of the surface propagating light traveling parallel to the surface of the measured object. When there is a compressive surface stress in the measured body 22,
When slit light 23 linearly polarized so as to form an angle of 45 ° with respect to the incident surface is incident on the surface 22a of the measured object at a critical refraction angle, surface-propagating light 24 is generated. The light is split into two linearly polarized light components that vibrate in the direction parallel to and perpendicular to the body surface, respectively, and travels, and a light path difference occurs between the two components due to the photoelastic effect due to stress.

【0027】この光路差は表面伝播光24の進行に従っ
て増加し、入射した直線偏光は見かけ上、楕円偏光、円
偏光、直線偏光と順次変化を繰り返して見える。この変
化は表面伝播光24の散乱光である射出光25にそのま
ま反映するために、射出光25を検光子を通して観察す
ると表面伝播光24の経路が明暗の繰り返しに見える。
射出光25の一部をバビネ補正器を通して観察すると、
水晶クサビ上の干渉縞は光路差の増加に伴い連続的に右
(被測定体22に引っ張りの表面応力が存在する場合は
左)に移動するため、干渉縞は傾斜して観察される。
This optical path difference increases with the progress of the surface propagating light 24, and the incident linearly polarized light appears to be repeated in the order of elliptically polarized light, circularly polarized light and linearly polarized light. Since this change is reflected as it is on the emission light 25, which is the scattered light of the surface propagation light 24, when the emission light 25 is observed through an analyzer, the path of the surface propagation light 24 appears to be a repetition of light and dark.
When a part of the emitted light 25 is observed through a Babinet corrector,
Since the interference fringes on the quartz wedge move continuously to the right (to the left when a tensile surface stress is present on the measured object 22) with an increase in the optical path difference, the interference fringes are obliquely observed.

【0028】図3は一般的に観察される干渉縞の一例で
ある。クサビに投影された表面伝播光24の経路ΔL
と、その間に変化した光路差ΔRの関係は、干渉縞の傾
きΔnから次式で求められる。ただし、θは干渉縞の傾
斜角である。 Δn=tanθ=ΔR/ΔL
FIG. 3 is an example of a commonly observed interference fringe. Path ΔL of surface propagating light 24 projected on wedge
And the optical path difference ΔR changed during the period can be obtained from the following formula from the gradient Δn of the interference fringes. Here, θ is the inclination angle of the interference fringes. Δn = tan θ = ΔR / ΔL

【0029】ゆえに、光弾性の式から被測定体22の表
面応力fは次式で求めうる。ただし、Kc は被測定体2
2の光弾性定数、Cは比例定数である。 f=(C/Kc )・Δn
Therefore, the surface stress f of the measured object 22 can be obtained from the photoelastic equation by the following equation. Here, K c is measured object 2
The photoelastic constant of 2 and C is a proportional constant. f = (C / K c ) · Δn

【0030】[0030]

【実施例】図4に本発明の表面応力測定装置の一実施例
を示す。被測定体26よりも屈折率の大きい光学ガラス
製の二等辺三角形をした測定用プリズム27は、中央に
遮光板28が挿入されている。遮光板28によって隔て
られた前記プリズム27の光の入射側および射出側の部
分は、それぞれ原理上の入射用プリズム29と射出用プ
リズム30に相当する。
FIG. 4 shows an embodiment of a surface stress measuring apparatus according to the present invention. An isosceles triangular measuring prism 27 made of optical glass having a higher refractive index than the measured object 26 has a light shielding plate 28 inserted at the center. The light-incident side and the light-exiting side of the prism 27 separated by the light shielding plate 28 correspond to the incident prism 29 and the exit prism 30 in principle, respectively.

【0031】前記測定用プリズム27は、治具31に取
り付けた支軸を介して、圧縮コイルバネ32によって装
置基板33、更に正確には該装置基板に取り付けた装置
筐体35と接続される。測定用プリズム27は、被測定
体表面26aの法線方向の動作、および測定部を光が進
行する方向の被測定体表面に対する回転動作が可能であ
る。
The measuring prism 27 is connected to a device substrate 33, more precisely, a device housing 35 mounted on the device substrate by a compression coil spring 32 via a support shaft mounted on a jig 31. The measurement prism 27 is capable of moving in the direction of the normal to the surface 26a of the measured object, and rotating the measuring unit relative to the surface of the measured object in the direction in which light travels.

【0032】被測定体表面26aと測定用プリズム27
の間の光学的接触は、両者の密着面にプリズムと屈折率
が近似する液体34の薄膜を介在させることによってよ
り完全に実現する。
Measurement object surface 26a and measurement prism 27
Is more completely realized by interposing a thin film of the liquid 34 having a refractive index similar to that of the prism on the contact surfaces of the two.

【0033】装置基板33は、測定用プリズム27を格
納するために中央部が長方形に切り取られた形状となっ
ている。測定用プリズム27は、この装置基板の切り欠
き部に上下動できるように収容して保持される。これに
より、自由度を有する測定用プリズム27を、被測定体
表面に対し常に垂直または直角方向に安定した状態に保
つことができる。それぞれ単独で調整可能なネジ式支持
脚36は、3点支持で装置基板33に取り付けられてお
り、装置基板33と被測定体表面26aとの高さおよび
水平度の調整できるようにしている。
The device substrate 33 has a shape in which a central portion is cut out in a rectangular shape in order to store the measuring prism 27. The measuring prism 27 is housed and held in the notch of the device substrate so as to be able to move up and down. Thereby, the measuring prism 27 having a degree of freedom can be kept constantly stable in a direction perpendicular or perpendicular to the surface of the measured object. The independently adjustable screw-type support legs 36 are attached to the device substrate 33 at three points so that the height and the level of the device substrate 33 and the surface 26a of the measured object can be adjusted.

【0034】装置筐体35の上部にはレーザー光源37
が取り付けられる。光源37からのレーザー光は、集光
レンズ系38によって光束密度を調整され、スリット幅
に近いコヒーレントな光にされる。集光された光は偏光
板39によって直線偏光され、スリット状開口40によ
ってスリット光に変換される。スリット光に変換された
入射光は、入射ミラー41によって進行方向を変換さ
れ、測定用プリズム27で被測定体表面26aに対して
臨界屈折角をなすように入射される。偏光板39は、入
射光の偏光面が入射面に対して45°の角度をなすよう
に調整される。
A laser light source 37 is provided at the upper part of the apparatus housing 35.
Is attached. The laser beam from the light source 37 is adjusted in luminous flux density by the condenser lens system 38 to be coherent light close to the slit width. The condensed light is linearly polarized by the polarizing plate 39 and converted into slit light by the slit opening 40. The incident light converted into the slit light has its traveling direction changed by the incident mirror 41 and is incident by the measuring prism 27 so as to form a critical refraction angle with respect to the surface 26a of the measured object. The polarizing plate 39 is adjusted such that the plane of polarization of the incident light forms an angle of 45 ° with the plane of incidence.

【0035】被測定体表面26aと平行に進行する表面
伝播光の進行経路各所の散乱光は、測定用プリズム27
によって被測定体26より取り出される。測定用プリズ
ム27からの射出光は、反射ミラー42によって進行方
向を変換される。反射ミラー42によって進行方向を変
換された射出光は顕微鏡43に進入する。顕微鏡43の
内部には、光の進行方向に順に、弾性学のバビネ補正器
44、検光板45および接眼レンズ46が配置されてい
る。前記各ミラー41および42は、三角形プリズムで
代用できる。
The scattered light at various points along the traveling path of the surface propagating light traveling parallel to the surface 26a of the measured object
Is taken out of the measured object 26. The traveling direction of the light emitted from the measuring prism 27 is changed by the reflection mirror 42. The emitted light whose traveling direction has been changed by the reflection mirror 42 enters the microscope 43. Inside the microscope 43, an elasticity Babinet corrector 44, an analyzer 45, and an eyepiece 46 are arranged in this order in the light traveling direction. Each of the mirrors 41 and 42 can be replaced by a triangular prism.

【0036】この装置を用いて管球ガラスパネルの表面
応力を測定した。その結果、被測定体表面に密着する底
面の光軸方向の長さが25mmの測定用プリズムを用い
た場合、曲率半径が600mm以上の凹曲面の測定がで
き、透過率46%(λ=546nm、ガラス肉厚10.
16mm換算)という低透過率の測定ができた。
The surface stress of the tube glass panel was measured using this apparatus. As a result, when a measuring prism having a length of 25 mm in the optical axis direction of the bottom surface in close contact with the surface of the measurement object can be used to measure a concave curved surface having a radius of curvature of 600 mm or more, the transmittance is 46% (λ = 546 nm). , Glass thickness 10.
A low transmittance of 16 mm) was obtained.

【0037】[0037]

【発明の効果】本発明は、上記したように測定部の部分
を被測定体表面に密着する機構と、測定部以外の構成要
素で構成される部分を被測定体表面に支持する機構と
が、分離しているかまたは自由度を持って接続している
ので、測定部が測定部以外の部分や被測定体表面の影響
を受けることなく、または受けてもこれを最小限にする
ことができるので、測定部を常に被測定体表面に対して
所望の状態で密着させることが可能となる。これによ
り、従来の表面応力測定装置で測定不可能または測定が
困難であった、曲率のある表面の応力測定を簡便に高精
度で非破壊的に測定できる。
According to the present invention, as described above, a mechanism for bringing the measuring portion into close contact with the surface of the object to be measured and a mechanism for supporting a portion constituted by components other than the measuring portion on the surface of the object to be measured. Because it is separated or connected with a degree of freedom, the measurement unit can be minimized without being affected by or affected by the parts other than the measurement unit and the surface of the device under test. Therefore, it is possible to always bring the measuring unit into close contact with the surface of the measured object in a desired state. This makes it possible to easily and non-destructively measure stress on a curved surface, which is impossible or difficult to measure with a conventional surface stress measuring device.

【0038】さらに、光源からの光をスリット光が所望
の光束密度になるように集光するための集光レンズ系を
装備せしめると、従来の装置では測定できないような粗
面および低透過率の物体の表面、またはこれらにさらに
曲面が組み合わされた表面の表面応力を、小応力から高
精度で測定できる。
Further, if a condensing lens system for condensing the light from the light source so that the slit light has a desired luminous flux density is provided, a rough surface and a low transmittance which cannot be measured by the conventional apparatus can be obtained. The surface stress of the surface of the object or the surface in which these are further combined with a curved surface can be measured from small stress with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面応力測定装置の構成の一例の概略
を示す側面説明図。
FIG. 1 is an explanatory side view schematically showing an example of a configuration of a surface stress measuring device of the present invention.

【図2】本発明装置で生じる表面伝播光の進行経路の各
点の偏光特性の模式図。
FIG. 2 is a schematic diagram of polarization characteristics at each point of a traveling path of surface propagating light generated by the apparatus of the present invention.

【図3】本発明装置で観察される干渉縞の一例を示す
図。
FIG. 3 is a diagram showing an example of interference fringes observed by the apparatus of the present invention.

【図4】本発明の表面応力測定装置の一実施例の側面
図。
FIG. 4 is a side view of one embodiment of the surface stress measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1a:被測定体表面、2:入射用プリズム、3:射出用
プリズム、4:遮光板、5:光源、6:偏光子、7:ス
リット状開口、11:表面伝播光、13:バビネ補正
器、14:検光子、16:装置基板、19:圧縮コイル
バネ、20:集光レンズ系。
1a: surface of the object to be measured, 2: prism for incidence, 3: prism for emission, 4: light shielding plate, 5: light source, 6: polarizer, 7: slit-shaped aperture, 11: surface propagating light, 13: Babinet corrector , 14: analyzer, 16: device substrate, 19: compression coil spring, 20: condenser lens system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 舩津 志郎 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shiro Funatsu 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken Asahi Glass Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源と、光源からの光を必要に応じ直線偏
光する偏光素子と、光源からの光をスリット光に変換す
る手段と、被測定体表面に密着して前記スリット光を被
測定体に臨界屈折角で入射する屈折率が被測定体よりも
大きい媒体1と、被測定体表面に密着して被測定体表面
を伝播する光またはその散乱光を被測定体の外に射出す
る屈折率が被測定体よりも大きい媒体2と、媒体1と媒
体2の間に配置された遮光板と、前記媒体2からの射出
光の進行方向に配置されたバビネ補正器またはバビネ−
ソレイユ補正器と、前記バビネ補正器またはバビネ−ソ
レイユ補正器を通過した射出光の進行方向に配置された
偏光素子を備えた表面応力測定装置において、 前記媒体1および媒体2と遮光板で構成する部分を被測
定体表面へ密着する機構と、それ以外の上記構成要素で
構成される部分を被測定体表面に支持する機構とが、分
離しているかまたは自由度を持って接続されていること
を特徴とする表面応力測定装置。
1. A light source, a polarizing element for linearly polarizing light from the light source as required, means for converting light from the light source into slit light, and a device for measuring the slit light in close contact with the surface of the object to be measured. The medium 1 having a larger refractive index than the object to be measured incident on the body at a critical refraction angle, and light propagating on the surface of the object to be measured in close contact with the surface of the object to be measured or scattered light thereof is emitted out of the object to be measured. A medium 2 having a larger refractive index than the object to be measured, a light-shielding plate disposed between the medium 1 and the medium 2, and a Babinet corrector or a Babinet disposed in a traveling direction of light emitted from the medium 2;
A surface stress measuring device comprising a Soleil corrector and a polarizing element arranged in the traveling direction of the emitted light having passed through the Babinet corrector or the Babinet-Soleil corrector, comprising: the medium 1 and the medium 2 and a light shielding plate. The mechanism for bringing the part into close contact with the surface of the object to be measured and the mechanism for supporting the other part composed of the above components on the surface of the object to be measured are separated or connected with a degree of freedom. Surface stress measuring device characterized by the above-mentioned.
【請求項2】光源からの光をスリット状開口によりスリ
ット光に変換し、当該光源とスリット状開口との間に光
源からの光を所望の光束密度に集光する集光レンズ系を
具備している請求項1記載の表面応力測定装置。
2. A condensing lens system for converting light from a light source into slit light through a slit-shaped opening and condensing light from the light source to a desired light flux density between the light source and the slit-shaped opening. The surface stress measuring device according to claim 1, wherein
【請求項3】前記媒体1および媒体2と遮光板で構成す
る部分が被測定体表面へ密着する機構と、それ以外の上
記構成要素で構成される部分が被測定体表面に支持する
機構とが、被測定体表面に載置される装置基板に取り付
けられており、前記媒体1および媒体2と遮光板で構成
する部分は、該装置基板に設けた切り欠き部に格納して
設けられている請求項1または2記載の表面応力測定装
置。
3. A mechanism in which a portion constituted by the medium 1 and the medium 2 and a light-shielding plate is in close contact with the surface of the object to be measured, and a mechanism in which the other portion constituted by the above components is supported by the surface of the object to be measured. Is attached to a device substrate mounted on the surface of the object to be measured, and a portion composed of the medium 1 and the medium 2 and a light-shielding plate is stored and provided in a cutout provided in the device substrate. The surface stress measuring device according to claim 1 or 2, wherein
JP8441598A 1998-03-30 1998-03-30 Apparatus for measuring surface stress Withdrawn JPH11281501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8441598A JPH11281501A (en) 1998-03-30 1998-03-30 Apparatus for measuring surface stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8441598A JPH11281501A (en) 1998-03-30 1998-03-30 Apparatus for measuring surface stress

Publications (1)

Publication Number Publication Date
JPH11281501A true JPH11281501A (en) 1999-10-15

Family

ID=13829966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8441598A Withdrawn JPH11281501A (en) 1998-03-30 1998-03-30 Apparatus for measuring surface stress

Country Status (1)

Country Link
JP (1) JPH11281501A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531391A (en) * 2011-09-15 2014-11-27 アップル インコーポレイテッド Perforated mother sheet for partial edge chemical strengthening
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
WO2015031567A1 (en) * 2013-08-29 2015-03-05 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
US9696207B2 (en) 2014-04-23 2017-07-04 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
WO2017114122A1 (en) * 2015-12-29 2017-07-06 南通杰福光学仪器科技有限公司 Glass surface stress meter
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
JP2018534589A (en) * 2015-09-30 2018-11-22 蘇州精創光学儀器有限公司Suzhou Ptc Optical Instrument Co.,Ltd Glass surface stress meter and multi-tempered glass surface stress meter
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
WO2020012783A1 (en) 2018-07-13 2020-01-16 セントラル硝子株式会社 Laminated glass for automotive windshields, and method for producing same
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
WO2021086766A3 (en) * 2019-11-01 2021-06-10 Corning Incorporated Prism-coupling systems and methods with improved intensity transition position detection and tilt compensation
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet
WO2023097076A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
US11852549B2 (en) 2021-02-22 2023-12-26 Corning Incorporated Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US11518708B2 (en) 2011-03-16 2022-12-06 Apple Inc. Electronic device having selectively strengthened glass
US10676393B2 (en) 2011-03-16 2020-06-09 Apple Inc. Electronic device having selectively strengthened glass
US10656674B2 (en) 2011-05-04 2020-05-19 Apple Inc. Housing for portable electronic device with reduced border region
US10983557B2 (en) 2011-05-04 2021-04-20 Apple Inc. Housing for portable electronic device with reduced border region
US11681326B2 (en) 2011-05-04 2023-06-20 Apple Inc. Housing for portable electronic device with reduced border region
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US9140543B1 (en) 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
US9944554B2 (en) 2011-09-15 2018-04-17 Apple Inc. Perforated mother sheet for partial edge chemical strengthening and method therefor
JP2014531391A (en) * 2011-09-15 2014-11-27 アップル インコーポレイテッド Perforated mother sheet for partial edge chemical strengthening
US10551722B2 (en) 2012-01-10 2020-02-04 Apple Inc. Fused opaque and clear glass for camera or display window
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US8957374B2 (en) 2012-09-28 2015-02-17 Corning Incorporated Systems and methods for measuring birefringence in glass and glass-ceramics
CN105705936B (en) * 2013-08-29 2019-11-05 康宁股份有限公司 For characterizing the prism-coupled system and method for curved part
CN105705936A (en) * 2013-08-29 2016-06-22 康宁股份有限公司 Prism-coupling systems and methods for characterizing curved parts
TWI658261B (en) * 2013-08-29 2019-05-01 康寧公司 Prism-coupling systems and methods for characterizing curved parts
WO2015031567A1 (en) * 2013-08-29 2015-03-05 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
CN110646378B (en) * 2013-08-29 2023-02-28 康宁股份有限公司 Prism coupling system and method for characterizing curved parts
JP2019194613A (en) * 2013-08-29 2019-11-07 コーニング インコーポレイテッド Prism coupling system and method for characterizing curved component
US10495530B2 (en) 2013-08-29 2019-12-03 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
CN110646378A (en) * 2013-08-29 2020-01-03 康宁股份有限公司 Prism coupling system and method for characterizing curved parts
TWI746944B (en) * 2013-08-29 2021-11-21 美商康寧公司 Prism-coupling systems and methods for characterizing curved parts
US10156488B2 (en) 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
JP2016535854A (en) * 2013-08-29 2016-11-17 コーニング インコーポレイテッド Prism coupling system and method for characterizing curved parts
US11079280B2 (en) 2013-10-30 2021-08-03 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9983064B2 (en) 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9696207B2 (en) 2014-04-23 2017-07-04 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
US11384011B2 (en) 2014-07-17 2022-07-12 Corning Incorporated Glass sheet and system and method for making glass sheet
US9534981B2 (en) 2014-12-23 2017-01-03 Corning Incorporated Prism-coupling systems and methods for characterizing ion-exchanged waveguides with large depth-of-layer
JP2018534589A (en) * 2015-09-30 2018-11-22 蘇州精創光学儀器有限公司Suzhou Ptc Optical Instrument Co.,Ltd Glass surface stress meter and multi-tempered glass surface stress meter
US11060930B2 (en) 2015-09-30 2021-07-13 Suzhou Ptc Optical Instrument Co., Ltd Glass surface stress meter and multiple-tempered glass surface stress meter
WO2017114122A1 (en) * 2015-12-29 2017-07-06 南通杰福光学仪器科技有限公司 Glass surface stress meter
WO2020012783A1 (en) 2018-07-13 2020-01-16 セントラル硝子株式会社 Laminated glass for automotive windshields, and method for producing same
US11448595B2 (en) 2019-11-01 2022-09-20 Corning Incorporated Prism-coupling systems and methods with improved intensity transition position detection and tilt compensation
WO2021086766A3 (en) * 2019-11-01 2021-06-10 Corning Incorporated Prism-coupling systems and methods with improved intensity transition position detection and tilt compensation
US11852549B2 (en) 2021-02-22 2023-12-26 Corning Incorporated Enhanced hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
US11860090B2 (en) 2021-04-01 2024-01-02 Corning Incorporated Light source intensity control systems and methods for improved light scattering polarimetry measurements
WO2023097076A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts

Similar Documents

Publication Publication Date Title
JPH11281501A (en) Apparatus for measuring surface stress
US2601175A (en) Interference microscope
JP4130222B2 (en) Phase shift diffraction interferometer
US5712705A (en) Arrangement for analysis of substances at the surface of an optical sensor
US12000752B2 (en) Deflectometry measurement system
JPS5937452B2 (en) Air-cooled tempered glass surface stress measuring device
US6947137B2 (en) System and method for measuring birefringence in an optical material
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP4223349B2 (en) Vibration-resistant interferometer device
EP1286132A2 (en) Birefringent beam combiners for polarized beams in interferometers
JP2003240526A (en) Apparatus and method for measurement of surface
CN115031629A (en) Device and method for detecting positioning of cube beam splitter prism before gluing
US20110249272A1 (en) Optical instrument for testing optical systems and samples
US6804009B2 (en) Wollaston prism phase-stepping point diffraction interferometer and method
JP3067697B2 (en) Phase difference measuring device
SU1125592A1 (en) Optical system for producing intermediate image in application of contrasting techniques in microscopes
JPH01143906A (en) Measuring instrument for parallelism between front and rear surfaces of opaque body
KR101464698B1 (en) Easy Image Arrange Fizeau interferometer
JPS6236110Y2 (en)
JPS60211304A (en) Measuring instrument for parallelism
JPH02259512A (en) Integrated interference measuring instrument
RU2281476C1 (en) Reflectometer on the basis of multi-pass optical train
JPS59154309A (en) Interferometer for measuring face shape
JPH11325848A (en) Aspherical surface shape measurement device
SU1539713A1 (en) Method of determining losses caused by light diffusion in three-dimensional heterogeneities in planar optic waveguides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20071206

Free format text: JAPANESE INTERMEDIATE CODE: A761