JPH11281475A - Infrared ray sensor using pyroelectric element - Google Patents

Infrared ray sensor using pyroelectric element

Info

Publication number
JPH11281475A
JPH11281475A JP10083328A JP8332898A JPH11281475A JP H11281475 A JPH11281475 A JP H11281475A JP 10083328 A JP10083328 A JP 10083328A JP 8332898 A JP8332898 A JP 8332898A JP H11281475 A JPH11281475 A JP H11281475A
Authority
JP
Japan
Prior art keywords
pyroelectric
pyroelectric element
monitoring area
infrared sensor
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083328A
Other languages
Japanese (ja)
Inventor
Masao Inoue
雅央 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP10083328A priority Critical patent/JPH11281475A/en
Publication of JPH11281475A publication Critical patent/JPH11281475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate reduction in resolution in a distant point of a scanning monitoring area, and to reduce a noise quantity of respective pyroelectric elements by forming the arranging directional length of distant point side pyroelectric elements in a pyroelectric element row shorter than the near point side, and forming the light receiving areas in the almost same. SOLUTION: A pyroelectric element row L is arranged in its slant attitude on a wall surface in the vicinity of the ceiling of a gymnasium so as to be turnable with a vertical directional shaft as a fulcrum. In pyroelectric elements E1 to E8 , the arranging directional length X is formed so that the 1CH side existing at a near point successively becomes longer than distant point side 8CH. At the same time, the light receiving areas (the surface areas) of the pyroelectric elements E1 to E8 are wholly equally constituted. That is, when the longitudinal directional and lateral directional lengths of the pyroelectric elements E1 to E8 are denoted by X1 to X8 , Y1 to Y8 , the length X1 to X8 of the pyroelectric elements E1 to E8 and the light receiving areas (X1 ×Y1 ) to (X8 ×Y8 ) are constituted so as to become [X1 >X2 ...>X8 , and (X1 ×Y1 )=(X2 ×Y2 )=...=(X8 ×Y8 )].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焦電素子を用いた赤
外線センサに係り、さらに詳しくは焦電素子列を配列方
向と交差する方向に変位させて二次元的な走査監視区域
を形成し、この走査監視区域内に発生した火源等の位置
を焦電素子列内の対応する焦電素子で検出する焦電素子
を用いた赤外線センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor using a pyroelectric element, and more particularly, to forming a two-dimensional scanning monitoring area by displacing a pyroelectric element row in a direction intersecting an arrangement direction. The present invention relates to an infrared sensor using a pyroelectric element for detecting a position of a fire source or the like generated in the scanning monitoring area by a corresponding pyroelectric element in a pyroelectric element row.

【0002】[0002]

【従来の技術】屋内空間の広い体育館や劇場のような監
視区域内で発生した火源の位置を検出する焦電素子を用
いた赤外線センサの従来の構成例を、図11の(a),
(b)に示す。図11の(a)は一般的な焦電素子の構
成を示し、(b)は特開平6−94535号の構成が示
されている。図11の(a)と(b)において、Sは赤
外線センサ、E1,E2…は焦電素子、Lは8個の焦電
素子E1,E2…で構成された焦電素子列である。図示
のように、図11(a)では長さX(X1,X2…)の
等しい焦電素子E1,E2…が直線状に配置されている
が、(b)では焦電素子E1,E2…の長さXが異なる
ように構成されている。
2. Description of the Related Art An example of a conventional configuration of an infrared sensor using a pyroelectric element for detecting a position of a fire source generated in a monitoring area such as a gymnasium or a theater having a large indoor space is shown in FIGS.
(B). FIG. 11A shows the configuration of a general pyroelectric element, and FIG. 11B shows the configuration of JP-A-6-94535. In FIGS. 11A and 11B, S is an infrared sensor, E1, E2,... Are pyroelectric elements, and L is a pyroelectric element array composed of eight pyroelectric elements E1, E2,. 11A, pyroelectric elements E1, E2... Having the same length X (X1, X2...) Are linearly arranged in FIG. 11A, but in FIG. 11B, pyroelectric elements E1, E2. Are configured to have different lengths X.

【0003】図11の(a)と(b)に示す焦電素子列
Lは共に赤外線センサSに組み込まれて、前記のような
体育館等の側壁の天井付近に設けられた垂直軸に旋回可
能に設置される。そして、焦電素子列Lの投影像が手前
の床面付近から対向する側壁に向かって投影されて、二
次元的な走査監視区域内に発生する火源の位置を監視す
るようになっている。図11(a)のように焦電素子E
1,E2…の配列方向の長さXを均一に構成すると、上
記公報に記載のように結果的に遠地点に向かって分解能
が低下することになる。これに対して、図11(b)は
焦電素子列Lの遠地点側の長さXを小さくして、設置位
置から離れた監視区域の分解能の低下を防止すると言う
説明が為されている。
The pyroelectric element rows L shown in FIGS. 11A and 11B are both incorporated in an infrared sensor S and can be turned about a vertical axis provided near the ceiling of the side wall of a gymnasium or the like as described above. Installed in Then, the projected image of the pyroelectric element row L is projected from the vicinity of the front floor surface toward the opposed side wall, and the position of the fire source generated in the two-dimensional scanning monitoring area is monitored. . As shown in FIG.
If the length X in the arrangement direction of 1, E2,... Is configured to be uniform, the resolution will eventually decrease toward the apogee as described in the above publication. On the other hand, FIG. 11B describes that the length X of the pyroelectric element row L on the apogee side is reduced so as to prevent a reduction in resolution in a monitoring area far from the installation position.

【0004】ところで、赤外線センサSにより火源の位
置を効率よく検出しようとする場合は、検出回路が構成
されて焦電素子列Lからなる赤外線センサSの検出出力
が90dBを越えるような増幅ゲインの高感度増幅器に
出力される。増幅器の増幅信号は閾値検出回路と警報回
路、及び焦電素子列Lの旋回角度に換算した火源位置検
出回路を経て火災警報を出力するようになる。この場
合、各焦電素子E1,E2…の固有のノイズ量とその均
一化が、火源の検出限界を決定するクリテカルパスとな
る。したがって、各焦電素子E1,E2…のノイズ量を
できる限り減少させると共に、バラツキをなくすこと
が、全体装置のS/Nを向上させる要因になることにな
る。
When the position of a fire source is to be detected efficiently by the infrared sensor S, a detection circuit is provided to amplify the gain so that the detection output of the infrared sensor S comprising the pyroelectric element array L exceeds 90 dB. Is output to the high-sensitivity amplifier. The amplified signal of the amplifier outputs a fire alarm via a threshold detection circuit and an alarm circuit, and a fire source position detection circuit converted into a turning angle of the pyroelectric element row L. In this case, the amount of noise inherent to each of the pyroelectric elements E1, E2,... And the equalization thereof become a critical path for determining the detection limit of the fire source. Therefore, reducing the noise amount of each pyroelectric element E1, E2,... As much as possible and eliminating the variation are factors for improving the S / N of the entire apparatus.

【0005】一方、焦電体の両面に電極を形成した構造
の焦電素子E(Eは総称)は、電気的な特性がコンデン
サと共通するものと看做すことができる。したがって、
焦電素子の受光面積と電極間に蓄積される電荷量とは、
逆比例の関係になる。このため、焦電素子Eの受光面積
を大きくすると、電極間の電荷量が増加して出力のノイ
ズが減少する傾向がある。逆に、焦電素子Eの受光面積
が小さくなると、電荷量が減少して出力の変動が大きく
なりノイズ量も拡大する。
On the other hand, a pyroelectric element E (E is a generic name) having a structure in which electrodes are formed on both surfaces of a pyroelectric body can be regarded as having electrical characteristics common to a capacitor. Therefore,
The light receiving area of the pyroelectric element and the amount of charge accumulated between the electrodes are:
The relationship is inversely proportional. For this reason, when the light receiving area of the pyroelectric element E is increased, the amount of charge between the electrodes tends to increase and the output noise tends to decrease. Conversely, when the light receiving area of the pyroelectric element E decreases, the charge amount decreases, the output fluctuates greatly, and the noise amount also increases.

【0006】普通、焦電素子Eの固有のノイズ量の測定
は、“暗視雑音測定”と呼ばれる測定方法で行われる。
暗視雑音の測定には種々の方法があり評価方式も幾つか
に分かれるが、何れも測定試料が無光の暗視状態に置か
れる。測定方法の一例を挙げれば、赤外線センサSを常
温で断熱されたケース内に静置し、ドレーン電流が一定
値になるのを待つ。このとき、静電誘導や高周波誘導等
の電磁的な雑音の悪影響を除くために、ケースの外壁は
肉厚の金属で包囲してアース線で接地する。赤外線セン
サSをこのような暗視環境下に収容した測定装置の出力
端子から、各焦電素子E1,E2…のノイズ量が測定さ
れる。
Normally, the measurement of the amount of noise inherent in the pyroelectric element E is performed by a measurement method called “night-vision noise measurement”.
There are various methods for measuring night-vision noise, and there are several evaluation methods. In each case, the measurement sample is placed in a dark-light-free state. To give an example of the measuring method, the infrared sensor S is allowed to stand still in a case insulated at room temperature, and waits for a constant drain current. At this time, the outer wall of the case is surrounded by a thick metal and grounded with a ground wire in order to eliminate adverse effects of electromagnetic noise such as electrostatic induction and high-frequency induction. The amount of noise of each of the pyroelectric elements E1, E2,... Is measured from the output terminal of the measuring device in which the infrared sensor S is accommodated in such a night-vision environment.

【0007】焦電素子Eの面積(受光面積)に対するノ
イズの測定結果が、図12に示されている。図12の横
軸は面積、縦軸はノイズ量である。焦電素子Eの受光面
積とノイズ量が逆比例の関係にあることが、図12に示
されている。また、図11の(b)に示す従来の赤外線
センサSのノイズ量の測定結果が、図13に示されてい
る。遠地点に向かって長さXを順次短くして受光面積A
1〜A8が縮小された図11の(b)の赤外線センサS
では、図13に示されたようにノイズ量がほぼ0.5〜
1.05μVの広い範囲に亘ってバラついていることが
示されている。
FIG. 12 shows a measurement result of noise with respect to the area (light receiving area) of the pyroelectric element E. The horizontal axis in FIG. 12 is the area, and the vertical axis is the noise amount. FIG. 12 shows that the light receiving area of the pyroelectric element E and the noise amount are in inverse proportion. FIG. 13 shows a measurement result of the noise amount of the conventional infrared sensor S shown in FIG. 11B. The light receiving area A is obtained by sequentially decreasing the length X toward the apogee.
Infrared sensor S of FIG. 11B in which 1 to A8 are reduced.
Then, as shown in FIG.
The variation is shown over a wide range of 1.05 μV.

【0008】[0008]

【発明が解決しようとする課題】図11(b)に示され
た従来の赤外線センサSは上記のように、焦電素子列L
内の焦電素子E1,E2…の配列方向の長さXを、対応
する走査監視区域の近地点から遠地点に向かって順次短
く構成して火源検出の分解能の低下を防止するようにな
っている。しかしながら、焦電素子E1,E2…の配列
方向の長さXを短くして表面積が小さくなると、前述の
ように焦電素子E1,E2…の静電容量が減少してノイ
ズ量が反比例して増加することになる。また、従来の赤
外線センサSは図11の(a),(b)に示すように、
投影された走査監視区域内に各焦電素子E1,E2…間
の隙間に対応する監視不能の死角域が形成される等の問
題点があった。
The conventional infrared sensor S shown in FIG. 11B has a pyroelectric element array L as described above.
Are arranged in the arrangement direction of the pyroelectric elements E1, E2,... In order from the near point to the far point of the corresponding scanning monitoring area so as to prevent the resolution of the fire source detection from lowering. . However, when the surface area is reduced by shortening the length X in the arrangement direction of the pyroelectric elements E1, E2,..., The capacitance of the pyroelectric elements E1, E2. Will increase. Further, as shown in FIGS. 11A and 11B, the conventional infrared sensor S
There is a problem that an unmonitored blind spot area corresponding to the gap between the pyroelectric elements E1, E2,... Is formed in the projected scanning monitoring area.

【0009】本発明は、このような従来の焦電素子を用
いた赤外線センサの問題点を解消するためになされたも
ので、走査監視区域の遠地点における分解能の低下をな
くして各焦電素子のノイズ量を減少すると共に、走査監
視区域内の死角域の発生を防止して検出精度の高い焦電
素子を用いた赤外線センサを実現することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the conventional infrared sensor using a pyroelectric element. It is an object of the present invention to realize an infrared sensor using a pyroelectric element with high detection accuracy while reducing the amount of noise and preventing the occurrence of a blind spot in a scan monitoring area.

【0010】[0010]

【課題を解決するための手段】この発明は、焦電素子列
を監視領域内に拡大投影した投影像により複数の区画監
視域からなる一次元的な監視区域を形成し、一次元的な
監視区域内で発生した線源から放射された赤外線を区画
監視域に対応する焦電素子列内の焦電素子で光学系を介
して受光して線源の位置を検出する赤外線センサにおい
て、焦電素子列における遠地点側の焦電素子の配列方向
の長さを近地点側より短くすると共に、受光面積をほぼ
同一に形成した焦電素子を用いた赤外線センサを構成し
たものである。また、この発明は、焦電素子列を監視領
域内に拡大投影した投影像により複数の区画監視域から
なる一次元的な監視区域を形成し、一次元的な監視区域
内で発生した線源から放射された赤外線を区画監視域に
対応する焦電素子列内の焦電素子で光学系を介して受光
して線源の位置を検出する赤外線センサにおいて、焦電
素子列を2列設けて、一方の列の焦電素子が他方の列の
焦電素子の隙間を埋める位置に配置した焦電素子を用い
た赤外線センサを構成したものである。また、請求項2
の発明において、焦電素子列における遠地点側の焦電素
子の配列方向の長さを近地点側より短くすると共に、受
光面積をほぼ同一に形成した焦電素子を用いた赤外線セ
ンサを構成したものである。また、この発明は、焦電素
子列を監視領域内に拡大投影した投影像により複数の区
画監視域からなる一次元的な監視区域を形成し、焦電素
子列を配列方向と交差する方向に変位させて二次元的な
走査監視区域に展開し、二次元的な走査監視区域内で発
生した線源から放射された赤外線を区画監視域に対応す
る焦電素子列内の焦電素子で光学系を介して受光して線
源の位置を検出する赤外線センサにおいて、焦電素子列
における遠地点側の焦電素子の配列方向の長さを近地点
側より短くすると共に、受光面積をほぼ同一に形成した
焦電素子を用いた赤外線センサを構成したものである。
また、この発明は、焦電素子列を監視領域内に拡大投影
した投影像により複数の区画監視域からなる一次元的な
監視区域を形成し、焦電素子列を配列方向と交差する方
向に変位させて二次元的な走査監視区域に展開し、この
二次元的な走査監視区域内で発生した線源から放射され
た赤外線を区画監視域に対応する焦電素子列内の焦電素
子で光学系を介して受光して線源の位置を検出する赤外
線センサにおいて、焦電素子列を2列設けて、一方の列
の焦電素子が他方の列の焦電素子の隙間を埋める位置に
配置した焦電素子を用いた赤外線センサを構成したもの
である。さらに、請求項5の発明において、焦電素子列
における遠地点側の焦電素子の配列方向の長さを近地点
側より短くすると共に、受光面積をほぼ同一に形成した
焦電素子を用いた赤外線センサを構成したものである。
According to the present invention, a one-dimensional monitoring area comprising a plurality of section monitoring areas is formed by a projected image obtained by enlarging and projecting a pyroelectric element array in a monitoring area, and one-dimensional monitoring is performed. An infrared sensor that detects the position of the source by receiving infrared rays emitted from the source generated in the area by the pyroelectric elements in the array of pyroelectric elements corresponding to the section monitoring area through the optical system. An infrared sensor using a pyroelectric element in which the arrangement length of the pyroelectric element on the apogee side in the element row is shorter than that on the perigee side and the light receiving area is formed substantially the same. According to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projected image obtained by enlarging and projecting a pyroelectric element array in a monitoring area, and a radiation source generated in the one-dimensional monitoring area is provided. An infrared sensor for detecting the position of the radiation source by receiving infrared rays emitted from the pyroelectric element in the pyroelectric element row corresponding to the section monitoring area through the optical system, and providing two pyroelectric element rows. An infrared sensor using a pyroelectric element in which pyroelectric elements in one row are arranged at positions filling the gap between pyroelectric elements in the other row. Claim 2
In the invention of the above, the length of the array of pyroelectric elements on the apogee side in the pyroelectric element row is made shorter than that on the perigee side, and an infrared sensor using a pyroelectric element having a substantially same light receiving area is configured. is there. Further, according to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting the pyroelectric element array in the monitoring area, and the pyroelectric element array is arranged in a direction intersecting the arrangement direction. It is displaced and developed in the two-dimensional scanning monitoring area, and the infrared radiation emitted from the source generated in the two-dimensional scanning monitoring area is optically converted by the pyroelectric elements in the pyroelectric element row corresponding to the section monitoring area. In the infrared sensor that detects the position of the radiation source by receiving light through the system, the length in the arrangement direction of the pyroelectric elements on the apogee side in the pyroelectric element row is shorter than that on the perigee side, and the light receiving area is made almost the same An infrared sensor using the pyroelectric element described above.
Further, according to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting the pyroelectric element array in the monitoring area, and the pyroelectric element array is arranged in a direction intersecting the arrangement direction. It is displaced and developed in a two-dimensional scanning monitoring area, and the infrared rays radiated from the source generated in the two-dimensional scanning monitoring area are converted by the pyroelectric elements in the pyroelectric element array corresponding to the section monitoring area. In an infrared sensor that receives light via an optical system and detects the position of a radiation source, two rows of pyroelectric elements are provided, and the pyroelectric elements of one row are positioned so as to fill gaps between pyroelectric elements of the other row. This constitutes an infrared sensor using the arranged pyroelectric elements. Further, in the invention according to claim 5, an infrared sensor using a pyroelectric element in which the length of the pyroelectric element on the apogee side in the pyroelectric element row is shorter than that on the perigee side and the light receiving area is formed to be substantially the same. It is what constituted.

【0011】監視が開始されると制御ユニットにより先
ず最初に、基準の位置において焦電素子列による各投射
角に対応する監視区域内の監視が行われる。基準の位置
の監視が終了すると、旋回部のステッピングモータが駆
動されて、検出部の赤外線センサが垂直軸を支点に回転
して1ステップ旋回される。赤外線センサが1ステップ
を旋回されると、一次元的な監視区域が1ステップ分水
平に移動して焦電素子列の各焦電素子による2番目の監
視が行われる。
When the monitoring is started, the control unit first monitors the reference area in the monitoring area corresponding to each projection angle by the pyroelectric element array. When the monitoring of the reference position is completed, the stepping motor of the turning section is driven, and the infrared sensor of the detecting section is rotated about the vertical axis as a fulcrum, and is turned by one step. When the infrared sensor is turned by one step, the one-dimensional monitoring area moves horizontally by one step, and the second monitoring by each pyroelectric element in the pyroelectric element row is performed.

【0012】引き続くステッピングモータのステッピン
グ駆動により、焦電素子列の一次元的な監視区域の監視
が順次行われて走査監視区域の一左端に到達する。そし
て、焦電素子列による走査監視区域端の監視が終了する
と、ステッピングモータが逆方向に回転して逆向きの監
視に移ることになる。このようにして、順次ステッピン
グ駆動されながら往復動する検出部における赤外線セン
サによって、二次元的な走査監視区域の全領域の監視が
連続的に繰り返されて行われる。監視状態において、万
一走査監視区域内に火災が発生すると、発生した火源か
ら赤外線が放射される。火源から放射された赤外線は、
ステッピング駆動されている一次元的な監視区域内の区
画監視域に対応する焦電素子によって検知される。
By the subsequent stepping drive of the stepping motor, the one-dimensional monitoring area of the pyroelectric element array is sequentially monitored and reaches the left end of the scanning monitoring area. Then, when the monitoring of the end of the scanning monitoring area by the pyroelectric element array is completed, the stepping motor rotates in the reverse direction and shifts to monitoring in the reverse direction. In this manner, the two-dimensional monitoring of the entire area of the scanning monitoring area is continuously and repeatedly performed by the infrared sensor in the detecting unit that reciprocates while being sequentially stepped. In the monitoring state, if a fire occurs in the scanning monitoring area, infrared rays are radiated from the generated fire source. The infrared radiation emitted from the fire source
Detection is performed by a pyroelectric element corresponding to a section monitoring area in a one-dimensional monitoring area that is being stepped and driven.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を、図面
を用いて説明する。 実施形態1.図1(a),(b)は本発明の実施形態1
の焦電素子列の原理的構成を示す平面図、図2は実施形
態1の赤外線センサの構造を示す断面図である。図1に
おいて、Lは焦電素子列、E1,E2…は直線上に並べ
られた1〜8CHまでの方形の焦電素子で、赤外線セン
サSを含めて従来と同じ符号が付けられている。従来と
同様に焦電素子列Lは、体育館等の天井付近の壁面に傾
斜して垂直方向の軸を支点に旋回可能に設置される。本
発明の実施形態1においては焦電素子E1,E2…の配
列方向の長さXが、近地点にある1CH側が遠地点側の
8CHより順次長くなるように形成されている。同時
に、焦電素子E1,E2…の受光面積(表面積)が、全
て等しく構成されている。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1A and 1B show Embodiment 1 of the present invention.
FIG. 2 is a plan view showing the basic configuration of the pyroelectric element row, and FIG. 2 is a sectional view showing the structure of the infrared sensor according to the first embodiment. In FIG. 1, L denotes a pyroelectric element array, E1, E2... Denote linear pyroelectric elements from 1 to 8CH arranged on a straight line, and are denoted by the same reference numerals as those of the related art including the infrared sensor S. As in the related art, the pyroelectric element row L is installed on the wall near the ceiling of a gymnasium or the like so as to be pivotable about a vertical axis as a fulcrum. In the first embodiment of the present invention, the length X in the arrangement direction of the pyroelectric elements E1, E2,... Is formed so that the 1CH side at the perigee is sequentially longer than the 8CH at the apogee side. At the same time, the light receiving areas (surface areas) of the pyroelectric elements E1, E2,.

【0014】即ち、焦電素子E1,E2…の縦方向(配
列方向)及び横方向の大きさをX1,X2…及びY1,
Y2…とすると、図1(a),(b)に示した焦電素子
E1〜E8の長さXと受光面積(X×Y)について、次
の(a),(b)のような不等式と等式で表すことがで
きる。 X1>X2>…>X8 …(a) (X1×Y1)=(X2×Y2)=…=(X8×Y8) …(b)
That is, the sizes of the pyroelectric elements E1, E2... In the vertical direction (arrangement direction) and the horizontal direction are X1, X2.
If Y2..., The length X and the light receiving area (X × Y) of the pyroelectric elements E1 to E8 shown in FIGS. 1A and 1B are inequalities such as the following (a) and (b). And can be expressed by the following equation. X1> X2 >> X8 (a) (X1 * Y1) = (X2 * Y2) = ... = (X8 * Y8) (b)

【0015】赤外線センサSの具体的な構造を示す図2
において、1は焦電体である。焦電体1には、自発分極
を有する高分子材料やセラミック材料等が使われる。焦
電体1を板状に形成して両面に電極が添着されると、 温
度変化により両電極間に受光量に対応した電位差が生じ
る。焦電体1の材質を挙げれば、PZT.タンタル酸リ
チウム.チタン酸鉛.PVDF及びそのコポリマ等を薄
いフィルム状に形成したもの等である。2は上記のよう
な焦電素子列Lを構成する受光電極、3は下地電極、4
はプリント基板、5は検出回路、6は検出用のリード線
である。図のように、赤外線センサSは受光電極2を表
面側にしてプリント基板4上にサンドイッチ状に積層さ
れ、リード線6により検出回路5に接続されている。
FIG. 2 shows a specific structure of the infrared sensor S.
In the above, 1 is a pyroelectric body. For the pyroelectric body 1, a polymer material having a spontaneous polarization, a ceramic material, or the like is used. When the pyroelectric body 1 is formed in a plate shape and electrodes are attached to both surfaces, a potential difference corresponding to the amount of received light is generated between the two electrodes due to a temperature change. If the material of the pyroelectric body 1 is given, PZT. Lithium tantalate. Lead titanate. PVDF and its copolymer are formed into a thin film. Reference numeral 2 denotes a light receiving electrode constituting the pyroelectric element row L as described above, 3 denotes a base electrode,
Is a printed circuit board, 5 is a detection circuit, and 6 is a lead wire for detection. As shown in the figure, the infrared sensor S is stacked on the printed circuit board 4 in a sandwich shape with the light receiving electrode 2 on the front side, and is connected to the detection circuit 5 by a lead wire 6.

【0016】図3の(a),(b)は実施形態1の赤外
線センサの監視区域の構成を示す説明図である。図3
(a),(b)において、θは焦電素子列Lを横軸上の
監視区域に拡大投影したときの投射角、θ1,θ2,…
は各焦電素子E1,E2,…の投射角である。また、a
1,a2,…は各焦電素子E1,E2,…の監視する区
画監視域、A1は焦電素子列Lの投影像で形成する一次
元的な監視区域、A2は焦電素子列Lを配列方向と交差
する方向に変位させて一次元的な監視区域A1を展開し
た二次元的な走査監視区域、Aは体育館や劇場等の内部
の全空間で占めるような監視領域である(A,A2は図
示されていない)。
FIGS. 3A and 3B are explanatory diagrams showing the configuration of the monitoring area of the infrared sensor according to the first embodiment. FIG.
In (a) and (b), θ is the projection angle when the pyroelectric element row L is enlarged and projected on the monitoring area on the horizontal axis, θ1, θ2,.
Is the projection angle of each pyroelectric element E1, E2,. Also, a
, A2,... Are monitoring areas of the pyroelectric elements E1, E2,..., A1 is a one-dimensional monitoring area formed by a projected image of the pyroelectric element row L, and A2 is a pyroelectric element row L. A two-dimensional scanning monitoring area in which a one-dimensional monitoring area A1 is developed by being displaced in a direction intersecting the arrangement direction, A is a monitoring area that occupies the entire space inside a gymnasium or theater (A, A2 is not shown).

【0017】図3(a),(b)では赤外線センサSが
縦軸における原点上方に60°傾斜して取り付けられ
て、焦電素子列Lの投影像が投射角θ=60°で投影さ
れた場合が示されている。図3(a)に示すように投射
角θ1,θ2,…を同一に構成すると、前述のように横
軸上の遠地点における区画監視域aが広くなり分解能が
低下する。しかしながら、前記の長さXを(a)式のよ
うに遠地点側に向かって短く構成することにより、区画
監視域a1,a2,…が監視区域A1内で均一になり遠
地点における分解能が改善されることになる。なお、図
3のD(D1,D2…)は、後述する死角域である。
3 (a) and 3 (b), the infrared sensor S is mounted at an angle of 60 ° above the origin on the vertical axis, and a projected image of the pyroelectric element array L is projected at a projection angle θ = 60 °. Is shown. When the projection angles θ1, θ2,... Are configured to be the same as shown in FIG. 3A, the section monitoring area a at the apogee on the horizontal axis is widened and the resolution is reduced as described above. However, by making the length X shorter toward the apogee side as shown in the equation (a), the section monitoring areas a1, a2,... Become uniform in the monitoring area A1, and the resolution at the apogee is improved. Will be. D (D1, D2...) In FIG. 3 is a blind spot area described later.

【0018】図4は火源検出回路の構成を示すブロック
図である。図4において、5aは前記の赤外線センサS
の検出部、5bは旋回部、5cは演算部、5fは火源で
ある。51は検出部5aに設けられたレンズや光学フィ
ルタ等の光学系、52はスリット(図1)、53は増幅
器である。図示されていないが、光学系51には入射光
を集光するレンズや断続させるチョッパ等も設けられて
いる。54は旋回部5bのステッピングモータのような
駆動手段、55は演算部5cにおける増幅器、56は比
例・演算ユニット、57は制御ユニットである。その外
の構成は、従来の焦電素子を用いた赤外線センサと変わ
るところがない。
FIG. 4 is a block diagram showing the configuration of the fire source detection circuit. In FIG. 4, 5a is the infrared sensor S
, A turning section, 5c an arithmetic section, and 5f a fire source. Reference numeral 51 denotes an optical system such as a lens and an optical filter provided in the detection unit 5a, 52 denotes a slit (FIG. 1), and 53 denotes an amplifier. Although not shown, the optical system 51 is also provided with a lens for condensing incident light, a chopper for intermittent light, and the like. Reference numeral 54 denotes a driving unit such as a stepping motor for the turning unit 5b, 55 denotes an amplifier in the calculation unit 5c, 56 denotes a proportional / calculation unit, and 57 denotes a control unit. The other configuration is the same as the conventional infrared sensor using a pyroelectric element.

【0019】上述のような構成の本発明の実施形態1の
動作を、次に説明する。旋回部52が旋回軸上の基準の
位置に静止し、焦電素子列Lの投影像で形成された一次
元的な監視区域A1が二次元的な走査監視区域A2の左
右から等距離の中央の位置で待機状態にあるものとす
る。監視が開始されると制御ユニット57により先ず最
初に、基準の位置において焦電素子列Lによる投射角θ
に対応する監視区域A1の内の監視が行われる。基準の
位置の監視が終了すると、旋回部5bのステッピングモ
ータ54が駆動されて検出部5aの赤外線センサSが垂
直軸を例えば反時計方向に回転して1ステップ旋回され
る。赤外線センサSが1ステップを旋回されると、一次
元的な監視区域A1が1ステップ分左側に移って焦電素
子列Lの各焦電素子E1,E2,…による2番目の監視
が行われる。
The operation of the first embodiment of the present invention having the above configuration will be described below. The revolving unit 52 is stopped at a reference position on the revolving axis, and the one-dimensional monitoring area A1 formed by the projected image of the pyroelectric element row L is located at the center of the two-dimensional scanning monitoring area A2 equidistant from the left and right. It is assumed that the camera is in a standby state at the position. When the monitoring is started, first, the control unit 57 starts projection angle θ by the pyroelectric element array L at the reference position.
Is monitored in the monitoring area A1 corresponding to. When the monitoring of the reference position is completed, the stepping motor 54 of the turning unit 5b is driven, and the infrared sensor S of the detecting unit 5a turns the vertical axis in, for example, a counterclockwise direction, and turns one step. When the infrared sensor S is turned by one step, the one-dimensional monitoring area A1 moves to the left by one step, and the second monitoring by the pyroelectric elements E1, E2,... Of the pyroelectric element row L is performed. .

【0020】引き続くステッピングモータ54のステッ
ピング駆動により、焦電素子列Lの一次元的な監視区域
A1の監視が順次行われて走査監視区域A2の左端の位
置に到達する。そして、焦電素子列Lによる走査監視区
域A2の左端の位置の監視が終了すると、ステッピング
モータ54が逆方向に回転して逆向きの監視に移ること
になる。このようにして、順次ステッピング駆動されな
がら往復動する検出部5aにおける赤外線センサSによ
って、二次元的な走査監視区域A2の全領域の監視が連
続的に繰り返されて行われる。監視状態において、万一
走査監視区域A2内に火災が発生すると、発生した火源
5fから赤外線が放射される。火源5fから放射された
赤外線は、上記のようなステッピング駆動されている一
次元的な監視区域A1内の区画監視域aに対応する焦電
素子En(n=1,2…)によって検知される。
By the subsequent stepping drive of the stepping motor 54, the one-dimensional monitoring area A1 of the pyroelectric element array L is sequentially monitored, and reaches the left end position of the scanning monitoring area A2. Then, when the monitoring of the position of the left end of the scanning monitoring area A2 by the pyroelectric element array L is completed, the stepping motor 54 rotates in the reverse direction, and shifts to monitoring in the reverse direction. In this manner, the two-dimensional monitoring of the entire area of the scanning monitoring area A2 is continuously and repeatedly performed by the infrared sensor S in the detecting unit 5a that reciprocates while being sequentially stepped. In the monitoring state, if a fire occurs in the scanning monitoring area A2, infrared rays are emitted from the generated fire source 5f. The infrared rays emitted from the fire source 5f are detected by the pyroelectric elements En (n = 1, 2,...) Corresponding to the section monitoring area a in the one-dimensional monitoring area A1 driven by the stepping as described above. You.

【0021】焦電素子E1,E2,…が光学系51のス
リット52を通して火源5fを検知すると、光信号が電
気信号に変換されて2つの増幅器53と55により増幅
されて演算部5cの比較・演算ユニット56に出力され
る。比較・演算ユニット56は、予め記憶された設定信
号と比較して火災の発生を判定する。同時に、焦電素子
E1,E2,…とステッピングモータ54の回転角に基
づいて、火源5fの位置を演算して位置信号を出力して
報知や防火等の火災対策が実行されるようになってい
る。
When the pyroelectric elements E1, E2,... Detect the fire source 5f through the slit 52 of the optical system 51, the optical signal is converted into an electric signal, amplified by the two amplifiers 53 and 55, and compared by the arithmetic unit 5c. -Output to the arithmetic unit 56. The comparison / arithmetic unit 56 determines the occurrence of a fire by comparing it with a preset setting signal. At the same time, based on the rotation angles of the pyroelectric elements E1, E2,... And the stepping motor 54, the position of the fire source 5f is calculated and a position signal is output to execute notification and fire prevention such as fire prevention. ing.

【0022】上述のように本発明では赤外線センサSが
複数の焦電素子E1,E2,…からなる焦電素子列Lで
構成されているので、配列方向の走査が不要になりそれ
だけ構造が簡素化される。また、焦電素子E1,E2,
…の長さXを同一に構成したので遠地点における分解能
が改善され、しかも(b)式のように受光面積(Xn×
Yn)を等しくしたのでノイズ量も減少する。実験結果
が、図5のグラフに示されている。縦軸はノイズ量(μ
V)で、横軸は焦電素子E1〜E8のチャンネルであ
る。図5のグラフによれば、全ての焦電素子E1〜E8
のノイズ量がほぼ0.75〜0.8(μV)の範囲内に
ある。
As described above, in the present invention, since the infrared sensor S is constituted by the pyroelectric element array L composed of a plurality of pyroelectric elements E1, E2,..., Scanning in the arrangement direction becomes unnecessary, and the structure is correspondingly simplified. Be transformed into Also, pyroelectric elements E1, E2,
Since the length X is the same, the resolution at the apogee is improved, and the light receiving area (Xn ×
Since Yn) is made equal, the noise amount also decreases. The experimental results are shown in the graph of FIG. The vertical axis represents the noise amount (μ
V), the horizontal axis is the channel of the pyroelectric elements E1 to E8. According to the graph of FIG. 5, all the pyroelectric elements E1 to E8
Is within a range of approximately 0.75 to 0.8 (μV).

【0023】図6(a),(b)は実施形態1の応用例
の焦電素子列Lの構成を示す平面図、図7は図6(b)
のノイズ量を示す特性図である。図6(a),(b)の
焦電素子E1〜E8の長さXと受光面積(X×Y)が、
次のような関係に構成されている。図6(a)につい
て、 X1=X2=X3=X4>X5=X6=X7=X8 …(1) (X1×Y1)=(X2×Y2)=…=(X8×Y8) …(2)
FIGS. 6A and 6B are plan views showing the configuration of a pyroelectric element row L of an application of the first embodiment, and FIG. 7 is a plan view of FIG.
FIG. 6 is a characteristic diagram showing the amount of noise of FIG. The length X and the light receiving area (X × Y) of the pyroelectric elements E1 to E8 of FIGS.
It has the following relationship. 6A, X1 = X2 = X3 = X4> X5 = X6 = X7 = X8 (1) (X1 × Y1) = (X2 × Y2) =... = (X8 × Y8) (2)

【0024】図6(b)について、同様にして、 X1>X2>X3=X4>X5=X6=X7=X8 …(3) (X1×Y1)>(X2×Y2)>(X3×Y3)=… =(X8×Y8) …(4) 図6(a),(b)の構成によれば、既に説明した理由
により何れも遠地点側の分解能が改善され、全体のノイ
ズ量を減少させることができる。図(b)についてのみ
のCHとノイズ量のグラフが、図7に示されている。
(4)式に示されたように、受光面積(X×Y)を等し
くした3CH〜8CHにおいてノイズ量が少なく且つ均
一化される。
6B, similarly, X1>X2> X3 = X4> X5 = X6 = X7 = X8 (3) (X1 * Y1)> (X2 * Y2)> (X3 * Y3) = (X8 × Y8) (4) According to the configurations of FIGS. 6A and 6B, the resolution at the apogee side is improved and the total noise amount is reduced for the reasons already described. Can be. FIG. 7 shows a graph of CH and the noise amount only for FIG.
As shown in the equation (4), the noise amount is small and uniform in 3CH to 8CH where the light receiving area (X × Y) is equal.

【0025】実施形態2.図8は本発明の実施形態2の
焦電素子列の平面図、図9は実施形態2の焦電素子列の
応用例の平面図、図10は実施形態2の焦電素子列の別
の応用例の平面図である。図8乃至図10において、G
は焦電素子列Lにおいて各焦電素子E1,E2,…の間
に形成された隙間、D(図3に線で示されている)は隙
間Gに対応して投影像上に形成される監視不能な死角域
である。実施形態2では2列の焦電素子列L1,L2が
並べられて、赤外線センサSが構成されている。2列の
焦電素子列L1,L2は配列方向がズラされていて、上
下の列L1とL2が相互に隙間Gを塞ぐように配設され
ている。このような赤外線センサSを構成した実施形態
2によれば、上記の隙間Gに対応して焦電素子列L1,
L2の投影像で構成する各区画監視域aに形成される死
角域Dを除去することができる。
Embodiment 2 FIG. FIG. 8 is a plan view of a pyroelectric element row according to the second embodiment of the present invention, FIG. 9 is a plan view of an application example of the pyroelectric element row according to the second embodiment, and FIG. It is a top view of an application example. 8 to FIG.
Is a gap formed between the pyroelectric elements E1, E2,... In the pyroelectric element row L, and D (shown by a line in FIG. 3) is formed on the projected image corresponding to the gap G. It is a blind spot that cannot be monitored. In the second embodiment, the infrared sensor S is configured by arranging two pyroelectric element rows L1 and L2. The arrangement directions of the two pyroelectric element rows L1 and L2 are shifted, and the upper and lower rows L1 and L2 are arranged so as to close the gap G between each other. According to the second embodiment having such an infrared sensor S, the pyroelectric element rows L1,
The blind spot area D formed in each section monitoring area a formed by the projected image of L2 can be removed.

【0026】図9と図10の応用例によれば、焦電素子
E1,E2,…の配列方向の遠地点側の長さXが近地点
側より短く構成されている。また、全ての焦電素子E
1,E2,…の受光面積(X×Y)が、均一に構成され
ている(図10)。この結果、実施形態1のときに説明
したように、図8と図9の構成によれば一次元的な監視
区域A1内の死角域Dが除去されると共に遠地点におけ
る分解能の低下もなく、しかもS/Nを向上することも
できる。
According to the application examples of FIGS. 9 and 10, the length X of the apogee side in the arrangement direction of the pyroelectric elements E1, E2,. In addition, all the pyroelectric elements E
The light receiving areas (X × Y) of 1, E2,... Are configured uniformly (FIG. 10). As a result, as described in the first embodiment, according to the configurations of FIGS. 8 and 9, the blind spot D in the one-dimensional monitoring area A1 is removed, and the resolution at the apogee does not decrease. S / N can also be improved.

【0027】なお、上述の本発明の実施形態では単一の
下地電極でコモン接続した場合を例示して説明したが、
下地電極を上部側の各受光電極に対応させて分離した分
離型に構成することもできる。こにように、上記各平面
図における焦電素子の形状は、赤外線検出が可能となる
焦電体とその上下面の電極による受光面であり、その受
光面の形成を司るのは受光電極でも焦電体であってもよ
い。また、赤外線センサを旋回して扇形の二次元的な走
査監視区域に展開した場合で説明したが、赤外線センサ
を平行移動して方形や長方形或いは回転軸を中心に回転
して円形や環状の二次元的な走査監視区域に展開するよ
うにしてもよく、赤外線センサを複数並べて配置するこ
とで、回転軸等を除いてもよい。さらに、焦電素子列が
8チャンネルの場合を挙げて火源を監視する場合で説明
したが、チャンネル数は適宜増減して監視区域内の移動
物体等を監視してもよく、検出回路の構成についても必
ずしも実施形態に限定するものではない。
In the above-described embodiment of the present invention, the case where the common connection is made with a single base electrode has been described as an example.
It is also possible to configure a separate type in which the base electrode is separated corresponding to each light receiving electrode on the upper side. As described above, the shape of the pyroelectric element in each of the above-described plan views is a pyroelectric body capable of detecting infrared rays and light receiving surfaces formed by electrodes on upper and lower surfaces thereof. It may be a pyroelectric body. In addition, although the case where the infrared sensor is turned and deployed in a fan-shaped two-dimensional scanning monitoring area has been described, the infrared sensor is translated and rotated around a square, rectangle, or rotation axis to form a circular or annular two-dimensional scanning monitoring area. It may be developed in a dimensional scanning monitoring area, and a plurality of infrared sensors may be arranged side by side to eliminate the rotation axis and the like. Further, the case where the fire source is monitored using the case where the pyroelectric element array has eight channels has been described. However, the number of channels may be appropriately increased or decreased to monitor a moving object or the like in the monitoring area. Is not necessarily limited to the embodiment.

【0028】[0028]

【発明の効果】この発明は、焦電素子列を監視領域内に
拡大投影した投影像により複数の区画監視域からなる一
次元的な監視区域を形成し、一次元的な監視区域内で発
生した線源から放射された赤外線を区画監視域に対応す
る焦電素子列内の焦電素子で光学系を介して受光して線
源の位置を検出する赤外線センサにおいて、焦電素子列
における遠地点側の焦電素子の配列方向の長さを近地点
側より短くすると共に、受光面積をほぼ同一に形成した
焦電素子を用いた赤外線センサを構成した。また、この
発明は、焦電素子列を監視領域内に拡大投影した投影像
により複数の区画監視域からなる一次元的な監視区域を
形成し、一次元的な監視区域内で発生した線源から放射
された赤外線を区画監視域に対応する焦電素子列内の焦
電素子で光学系を介して受光して線源の位置を検出する
赤外線センサにおいて、焦電素子列を2列設けて、一方
の列の焦電素子が他方の列の焦電素子の隙間を埋める位
置に配置した焦電素子を用いた赤外線センサを構成し
た。また、請求項2の発明において、焦電素子列におけ
る遠地点側の焦電素子の配列方向の長さを近地点側より
短くすると共に、受光面積をほぼ同一に形成した焦電素
子を用いた赤外線センサを構成した。また、この発明
は、焦電素子列を監視領域内に拡大投影した投影像によ
り複数の区画監視域からなる一次元的な監視区域を形成
し、焦電素子列を配列方向と交差する方向に変位させて
二次元的な走査監視区域に展開し、二次元的な走査監視
区域内で発生した線源から放射された赤外線を区画監視
域に対応する焦電素子列内の焦電素子で光学系を介して
受光して線源の位置を検出する赤外線センサにおいて、
焦電素子列における遠地点側の焦電素子の配列方向の長
さを近地点側より短くすると共に、受光面積をほぼ同一
に形成した焦電素子を用いた赤外線センサを構成した。
また、この発明は、焦電素子列を監視領域内に拡大投影
した投影像により複数の区画監視域からなる一次元的な
監視区域を形成し、焦電素子列を配列方向と交差する方
向に変位させて二次元的な走査監視区域に展開し、この
二次元的な走査監視区域内で発生した線源から放射され
た赤外線を区画監視域に対応する焦電素子列内の焦電素
子で光学系を介して受光して線源の位置を検出する赤外
線センサにおいて、焦電素子列を2列設けて、一方の列
の焦電素子が他方の列の焦電素子の隙間を埋める位置に
配置した焦電素子を用いた赤外線センサを構成した。さ
らに、請求項5の発明において、焦電素子列における遠
地点側の焦電素子の配列方向の長さを近地点側より短く
すると共に、受光面積をほぼ同一に形成した焦電素子を
用いた赤外線センサを構成した。
According to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting a pyroelectric element array in a monitoring area, and the one-dimensional monitoring area is generated in the one-dimensional monitoring area. Infrared sensor that detects the position of the source by receiving infrared rays radiated from the irradiated source by the pyroelectric elements in the pyroelectric element row corresponding to the section monitoring area through the optical system, An infrared sensor using a pyroelectric element in which the length in the arrangement direction of the pyroelectric elements on the side was made shorter than that on the perigee side and the light receiving area was formed to be substantially the same. According to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projected image obtained by enlarging and projecting a pyroelectric element array in a monitoring area, and a radiation source generated in the one-dimensional monitoring area is provided. An infrared sensor for detecting the position of the radiation source by receiving infrared rays emitted from the pyroelectric element in the pyroelectric element row corresponding to the section monitoring area through the optical system, and providing two pyroelectric element rows. An infrared sensor using a pyroelectric element in which the pyroelectric elements in one row are arranged to fill the gap between the pyroelectric elements in the other row. Further, in the invention according to claim 2, an infrared sensor using a pyroelectric element in which the length of the pyroelectric element on the apogee side in the pyroelectric element row is shorter than that on the perigee side and the light receiving area is formed to be substantially the same. Was configured. Further, according to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projected image obtained by enlarging and projecting the pyroelectric element array in the monitoring area, and the pyroelectric element array is arranged in a direction intersecting the arrangement direction. It is displaced and developed in the two-dimensional scanning monitoring area, and the infrared radiation emitted from the source generated in the two-dimensional scanning monitoring area is optically converted by the pyroelectric elements in the pyroelectric element row corresponding to the section monitoring area. In the infrared sensor which receives the light through the system and detects the position of the radiation source,
An infrared sensor using a pyroelectric element in which the length of the pyroelectric element on the apogee side in the array of pyroelectric elements is shorter than that on the perigee side and the light receiving area is formed substantially the same.
Further, according to the present invention, a one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projected image obtained by enlarging and projecting the pyroelectric element array in the monitoring area, and the pyroelectric element array is arranged in a direction intersecting the arrangement direction. It is displaced and developed in a two-dimensional scanning monitoring area, and the infrared rays radiated from the source generated in the two-dimensional scanning monitoring area are converted by the pyroelectric elements in the pyroelectric element array corresponding to the section monitoring area. In an infrared sensor that receives light via an optical system and detects the position of a radiation source, two rows of pyroelectric elements are provided, and the pyroelectric elements in one row are filled at positions where the gaps between the pyroelectric elements in the other row are filled. An infrared sensor using the arranged pyroelectric element was constructed. Further, in the invention according to claim 5, an infrared sensor using a pyroelectric element in which the length of the pyroelectric element on the apogee side in the pyroelectric element row is shorter than that on the perigee side and the light receiving area is formed substantially the same. Was configured.

【0029】この結果、本発明の請求項1,3,4,6
の各発明によれば、従来のような監視区域内の遠地点の
分解能の低下もなく、全ての監視区画のSN比の向上を
図ることができる。また、請求項2,3,5,6によれ
ば、火源の監視が不可能な監視不能区域がなくなり、一
次元的な監視区域を含めて展開された二次元的な走査監
視区域内における火災の発生や移動物体を監視すること
ができる。よって、本発明によれば、高精度で、しかも
死角域のない焦電素子を用いた赤外線センサを提供する
ことができる。
As a result, claims 1, 3, 4, 6 of the present invention
According to each of the inventions described above, it is possible to improve the SN ratio of all the monitoring sections without lowering the resolution of the apogee in the monitoring area as in the related art. According to the second, third, fifth, and sixth aspects, there is no longer a non-monitoring area where the monitoring of the fire source is impossible, and the two-dimensional scanning monitoring area expanded including the one-dimensional monitoring area. It can monitor fires and moving objects. Therefore, according to the present invention, it is possible to provide an infrared sensor that uses a pyroelectric element with high accuracy and without a blind spot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の焦電素子列の原理的構成
を示す平面図である。
FIG. 1 is a plan view showing a basic configuration of a pyroelectric element row according to a first embodiment of the present invention.

【図2】実施形態1の赤外線センサの構造を示す断面図
である。
FIG. 2 is a cross-sectional view illustrating a structure of the infrared sensor according to the first embodiment.

【図3】赤外線センサの監視区域の構成を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a configuration of a monitoring area of an infrared sensor.

【図4】火源検出回路の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of a fire source detection circuit.

【図5】実施形態1の焦電素子列の応用例の平面図であ
る。
FIG. 5 is a plan view of an application example of the pyroelectric element row according to the first embodiment.

【図6】実施形態1のノイズ量を示す特性図である。FIG. 6 is a characteristic diagram illustrating a noise amount according to the first embodiment.

【図7】実施形態1の応用例のノイズ量を示す特性図で
ある。
FIG. 7 is a characteristic diagram illustrating a noise amount of an application example of the first embodiment.

【図8】本発明の実施形態2の焦電素子列の平面図であ
る。
FIG. 8 is a plan view of a pyroelectric element row according to Embodiment 2 of the present invention.

【図9】実施形態2の焦電素子列の応用例の平面図であ
る。
FIG. 9 is a plan view of an application example of the pyroelectric element row according to the second embodiment.

【図10】実施形態2の焦電素子列の別の応用例の平面
図である。
FIG. 10 is a plan view of another application example of the pyroelectric element row according to the second embodiment.

【図11】従来の赤外線センサの焦電素子列の平面図で
ある。
FIG. 11 is a plan view of a pyroelectric element row of a conventional infrared sensor.

【図12】従来の赤外線センサのノイズ量を示す特性図
である。
FIG. 12 is a characteristic diagram showing a noise amount of a conventional infrared sensor.

【図13】従来の焦電素子を用いた赤外線センサの斜視
図である。
FIG. 13 is a perspective view of a conventional infrared sensor using a pyroelectric element.

【符号の説明】[Explanation of symbols]

1 焦電体 2 受光電極 3 下地電極 4 プリント基板 5 検出回路 5a 検出部 5b 旋回部 5c 演算部 5f 火源 6 リード線 51 光学系 52 スリット 53 増幅器 54 ステッピングモータ(旋回駆動手段) 55 増幅器 56 比例・演算ユニット 57 制御ユニット a 区画監視域 A1 監視区域 A2 走査監視区域 CH チャンネル E 焦電素子 D 死角域 G 隙間 L 焦電素子列 S 赤外線センサ X 焦電素子の長さ θ 焦電素子列の投射角 θ1,… 焦電素子の投射角 DESCRIPTION OF SYMBOLS 1 Pyroelectric body 2 Light receiving electrode 3 Base electrode 4 Printed circuit board 5 Detecting circuit 5a Detecting unit 5b Revolving unit 5c Computing unit 5f Fire source 6 Lead wire 51 Optical system 52 Slit 53 Amplifier 54 Stepping motor (Turning driving means) 55 Amplifier 56 Proportional Calculation unit 57 control unit a section monitoring area A1 monitoring area A2 scanning monitoring area CH channel E pyroelectric element D blind spot area G gap L pyroelectric element array S infrared sensor X length of pyroelectric element θ projection of pyroelectric element array Angle θ1, Projection angle of pyroelectric element

フロントページの続き (51)Int.Cl.6 識別記号 FI // H01L 27/14 G01V 9/04 T 37/02 H01L 27/14 K Continued on the front page (51) Int.Cl. 6 Identification symbol FI // H01L 27/14 G01V 9/04 T 37/02 H01L 27/14 K

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焦電素子列を監視領域内に拡大投影した
投影像により複数の区画監視域からなる一次元的な監視
区域を形成し、該一次元的な監視区域内で発生した線源
から放射された赤外線を前記区画監視域に対応する焦電
素子列内の焦電素子で光学系を介して受光して前記線源
の位置を検出する赤外線センサにおいて、 前記焦電素子列における遠地点側の焦電素子の配列方向
の長さを近地点側より短くすると共に、受光面積をほぼ
同一に形成したことを特徴とする焦電素子を用いた赤外
線センサ。
1. A one-dimensional monitoring area comprising a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting a pyroelectric element array into a monitoring area, and a radiation source generated in the one-dimensional monitoring area An infrared sensor that receives infrared rays emitted from the pyroelectric element in the pyroelectric element array corresponding to the section monitoring area via an optical system and detects the position of the radiation source, wherein the apogee in the pyroelectric element array An infrared sensor using a pyroelectric element, wherein the length in the arrangement direction of the pyroelectric elements on the side is shorter than that on the perigee side, and the light receiving area is formed substantially the same.
【請求項2】 焦電素子列を監視領域内に拡大投影した
投影像により複数の区画監視域からなる一次元的な監視
区域を形成し、該一次元的な監視区域内で発生した線源
から放射された赤外線を前記区画監視域に対応する焦電
素子列内の焦電素子で光学系を介して受光して前記線源
の位置を検出する赤外線センサにおいて、 前記焦電素子列を2列設けて、一方の列の焦電素子が他
方の列の焦電素子の隙間を埋める位置に配置したことを
特徴とする焦電素子を用いた赤外線センサ。
2. A one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting a pyroelectric element array into a monitoring area, and a radiation source generated in the one-dimensional monitoring area. An infrared sensor for detecting the position of the radiation source by receiving infrared rays emitted from a pyroelectric element in a pyroelectric element array corresponding to the section monitoring area via an optical system, wherein the pyroelectric element array is 2 An infrared sensor using a pyroelectric element, wherein a plurality of pyroelectric elements are provided in rows, and the pyroelectric elements in one row are arranged at positions where the pyroelectric elements in the other row are filled.
【請求項3】 前記焦電素子列における遠地点側の焦電
素子の配列方向の長さを近地点側より短くすると共に、
受光面積をほぼ同一に形成したことを特徴とする請求項
2記載の焦電素子を用いた赤外線センサ。
3. The arrangement of the pyroelectric elements on the apogee side in the pyroelectric element row in the arrangement direction is shorter than that on the perigee side.
3. An infrared sensor using a pyroelectric element according to claim 2, wherein the light receiving areas are formed to be substantially the same.
【請求項4】 焦電素子列を監視領域内に拡大投影した
投影像により複数の区画監視域からなる一次元的な監視
区域を形成し、前記焦電素子列を配列方向と交差する方
向に変位させて二次元的な走査監視区域に展開し、該二
次元的な走査監視区域内で発生した線源から放射された
赤外線を前記区画監視域に対応する焦電素子列内の焦電
素子で光学系を介して受光して前記線源の位置を検出す
る赤外線センサにおいて、 前記焦電素子列における遠地点側の焦電素子の配列方向
の長さを近地点側より短くすると共に、受光面積をほぼ
同一に形成したことを特徴とする焦電素子を用いた赤外
線センサ。
4. A one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting the pyroelectric element array in a monitoring area, and the pyroelectric element array is arranged in a direction intersecting the arrangement direction. Displaced and developed in a two-dimensional scan monitoring area, and infrared rays radiated from a source generated in the two-dimensional scan monitoring area are converted to pyroelectric elements in a pyroelectric element array corresponding to the section monitoring area. In an infrared sensor that detects the position of the radiation source by receiving light via an optical system, the length of the pyroelectric element on the apogee side in the pyroelectric element row is shorter than that on the perigee side and the light receiving area is reduced. An infrared sensor using a pyroelectric element, which is formed substantially identically.
【請求項5】 焦電素子列を監視領域内に拡大投影した
投影像により複数の区画監視域からなる一次元的な監視
区域を形成し、前記焦電素子列を配列方向と交差する方
向に変位させて二次元的な走査監視区域に展開し、該二
次元的な走査監視区域内で発生した線源から放射された
赤外線を前記区画監視域に対応する焦電素子列内の焦電
素子で光学系を介して受光して前記線源の位置を検出す
る赤外線センサにおいて、 前記焦電素子列を2列設けて、一方の列の焦電素子が他
方の列の焦電素子の隙間を埋める位置に配置したことを
特徴とする焦電素子を用いた赤外線センサ。
5. A one-dimensional monitoring area composed of a plurality of section monitoring areas is formed by a projection image obtained by enlarging and projecting a pyroelectric element array into a monitoring area, and the pyroelectric element array is arranged in a direction intersecting an arrangement direction. Displaced and developed in a two-dimensional scan monitoring area, and infrared rays radiated from a source generated in the two-dimensional scan monitoring area are converted to pyroelectric elements in a pyroelectric element array corresponding to the section monitoring area. An infrared sensor that receives light via an optical system to detect the position of the radiation source, wherein two rows of the pyroelectric elements are provided, and the pyroelectric elements in one row are provided with a gap between the pyroelectric elements in the other row. An infrared sensor using a pyroelectric element, wherein the infrared sensor is disposed at a filling position.
【請求項6】 前記焦電素子列における遠地点側の焦電
素子の配列方向の長さを近地点側より短くすると共に、
受光面積をほぼ同一に形成したことを特徴とする請求項
5記載の焦電素子を用いた赤外線センサ。
6. The arrangement of the pyroelectric elements on the apogee side of the pyroelectric element row in the arrangement direction is shorter than that on the perigee side.
6. An infrared sensor using a pyroelectric element according to claim 5, wherein the light receiving areas are formed to be substantially the same.
JP10083328A 1998-03-30 1998-03-30 Infrared ray sensor using pyroelectric element Pending JPH11281475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10083328A JPH11281475A (en) 1998-03-30 1998-03-30 Infrared ray sensor using pyroelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083328A JPH11281475A (en) 1998-03-30 1998-03-30 Infrared ray sensor using pyroelectric element

Publications (1)

Publication Number Publication Date
JPH11281475A true JPH11281475A (en) 1999-10-15

Family

ID=13799373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083328A Pending JPH11281475A (en) 1998-03-30 1998-03-30 Infrared ray sensor using pyroelectric element

Country Status (1)

Country Link
JP (1) JPH11281475A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175967A (en) * 1999-12-17 2001-06-29 Hochiki Corp Flame detector
JP2010092388A (en) * 2008-10-10 2010-04-22 Everspring Industry Co Ltd Sensing method of sensor
JP2016194535A (en) * 2015-02-06 2016-11-17 パナソニックIpマネジメント株式会社 Infrared detection apparatus
JP2017083470A (en) * 2010-04-01 2017-05-18 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Radiation sensor
US10288488B2 (en) 2015-02-06 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Infrared detecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001175967A (en) * 1999-12-17 2001-06-29 Hochiki Corp Flame detector
JP2010092388A (en) * 2008-10-10 2010-04-22 Everspring Industry Co Ltd Sensing method of sensor
JP2017083470A (en) * 2010-04-01 2017-05-18 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Radiation sensor
JP2016194535A (en) * 2015-02-06 2016-11-17 パナソニックIpマネジメント株式会社 Infrared detection apparatus
US10288488B2 (en) 2015-02-06 2019-05-14 Panasonic Intellectual Property Management Co., Ltd. Infrared detecting device
US10378960B2 (en) 2015-02-06 2019-08-13 Panasonic Intellectual Property Management Co., Ltd. Infrared detecting device
JP2019168469A (en) * 2015-02-06 2019-10-03 パナソニックIpマネジメント株式会社 Infrared detector and air conditioner

Similar Documents

Publication Publication Date Title
US4967183A (en) Method of intrusion detection over a wide area
JPH0981867A (en) Position-discrimination infrared sensor and sensing method using it
JPH0850060A (en) Heat detector and manufacture therrof
JPH11281475A (en) Infrared ray sensor using pyroelectric element
JP2013057526A (en) Infrared sensor, manufacturing method therefor, and electronic apparatus
US5281818A (en) Pyro-electric type infrared detector
US6414314B1 (en) Passive-type infrared detector with elongated detection areas
JP3777029B2 (en) Thermal infrared detector, thermal infrared detector manufacturing method, infrared imaging system and infrared imaging device
JPH01229918A (en) Pyroelectric type infrared sensor
US3792275A (en) Infrared intrusion sensor
JP3293350B2 (en) Human body detection device
JP2002040145A (en) X-ray detector
JP2003535444A (en) Particle detection method and apparatus using a sensor structure with moving parts
KR20150136654A (en) System and method for position tracking by sensing the sound and event monitoring network thereof
JP2523948B2 (en) Pyroelectric infrared detector
JPH11281476A (en) Infrared ray sensor and monitoring device using it
WO2017221718A1 (en) Infrared detection element and infrared detection device
JPH06165049A (en) Solid-state image pickup device
JP3289120B2 (en) Human body detection device
KR102046086B1 (en) Inclined micro bolometer array
JP3422619B2 (en) Pyroelectric infrared sensor and device
JPH0862035A (en) Infrared detector
JPH07134181A (en) Radiation detecting device
JP6007477B2 (en) Pyroelectric detector, pyroelectric detector and electronic device
JPH07301568A (en) Infrared detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207