JPH11279604A - Production of wear resistance material - Google Patents

Production of wear resistance material

Info

Publication number
JPH11279604A
JPH11279604A JP8171598A JP8171598A JPH11279604A JP H11279604 A JPH11279604 A JP H11279604A JP 8171598 A JP8171598 A JP 8171598A JP 8171598 A JP8171598 A JP 8171598A JP H11279604 A JPH11279604 A JP H11279604A
Authority
JP
Japan
Prior art keywords
sintering
particles
current density
resistant material
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8171598A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
上 潔 井
Masahisa Furumiya
宮 正 久 古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP8171598A priority Critical patent/JPH11279604A/en
Publication of JPH11279604A publication Critical patent/JPH11279604A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a wear resistant material excellent in hardness and high temp. resistance by supplying electric current to wear resistant material powder using no binder, raising the discharging current to high current density having more than the fixed limit as quick as possible and discharge-sintering in a short time while keeping this discharging current density. SOLUTION: At this time of discharge-sintering the high hardness heat resistant material powder (WC, TiC) using not at all of binder (Co etc.) or <1% binder, the current density is raised to the high current density at the fixed limit or higher as quick as possible. The optimum speed raising the current density is generally >=(5-50) N/cm<2> within (0.1-1) min, desirably, (10-50) A/cm<2> or (50-150) A/cm<2> . Successively, this current density is kept and the discharge- sintering is completed in a short time within 10 min, desirably about 3-5 min to complete the discharge-sintering without growing the crystal grain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高硬度耐熱材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-hardness heat-resistant material.

【0002】[0002]

【従来の技術】従来は、高硬度耐熱材は例えばWC等の
高硬度耐熱材料から成る粉末に、適宜のバインダー、例
えばCo等の粉末を混合し、圧縮成形後、真空焼結を行う
等の方法で製造されている。この方法では焼結に1ない
し2時間を要する上、WC等に比して硬度及び耐熱性に
劣るバインダーを用いるため、得られる硬度はHv1100
程度となり、耐熱性も 300〜600 ℃までに止まってい
た。
2. Description of the Related Art Conventionally, a high-hardness heat-resistant material is prepared by mixing a powder made of a high-hardness heat-resistant material such as WC with an appropriate binder, for example, a powder of Co or the like, performing compression molding, and then performing vacuum sintering. Manufactured by the method. This method requires one to two hours for sintering and uses a binder having inferior hardness and heat resistance as compared with WC or the like.
And the heat resistance stopped at 300-600 ° C.

【0003】[0003]

【発明が解決しようとする課題】本発明は、叙上の課題
を解決するためなされたものであって、その目的とする
ところは、硬度と耐高温特性の優れた高硬度耐熱材を、
短時間で製造する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a high-hardness heat-resistant material having excellent hardness and high-temperature resistance.
It is to provide a method for manufacturing in a short time.

【0004】[0004]

【課題を解決するための手段】叙上の目的は、全くバイ
ンダーを用いないか、又は用いるとしても数%以下の少
量とし、WC、TiC等の高硬度耐熱材料粉末を放電焼結
するに当たって、通電開始後、電流密度を可及的速やか
に一定限度以上の電流密度迄上昇させ、その後はその電
流密度を保持して、10分以内の短時間、望ましくは3〜
5分程度の短時間内で、放電焼結を完了して高硬度耐熱
材を得ることにより達成される。而して、電流密度を上
昇させる最適速度は、焼結体の材質、形状及び大きさに
応じ、適宜の試験加工や経験により定めるものである
が、一般的には、0.1分ないし1分以内に、5〜50A/
cm2 以上の高電流密度、望ましくは10〜50A/cm2
上、50〜150 A/cm2 以下の電流密度とするものであ
る。焼結開始時の電流密度の上昇速度が上記より遅い
と、望ましくない結晶の成長が生じ、所期の目的を達成
することができなくなる。放電焼結がこのように短時間
で終了すると、結晶粒を成長させることなく放電焼結が
完了し、そのため、硬度と耐高温特性に優れた高硬度耐
熱材が得られる。而して、焼結に当たっては、放電焼結
条件を適切に定めて、焼結粒子間の物質の相互拡散速度
を急速にして、できるだけ分子(原子)の振動を少なく
保って焼結することにより、焼結体の結晶粒度を焼結前
の粉末状態の結晶粒度と略同じ程度に保つようにする。
SUMMARY OF THE INVENTION The purpose of the present invention is to use no binder at all, or to use a small amount of several percent or less even when using a binder. After the start of energization, the current density is increased as quickly as possible to a current density above a certain limit, and thereafter, the current density is maintained, and a short time within 10 minutes, preferably 3 to
This is achieved by completing spark sintering and obtaining a high hardness heat resistant material within a short time of about 5 minutes. The optimum speed for increasing the current density is determined by appropriate test processing and experience according to the material, shape and size of the sintered body, but generally ranges from 0.1 minute to 1 minute. Within 5 minutes, 5-50A /
cm 2 or more high current density, preferably 10 to 50 A / cm 2 or more, it is an 50 to 150 A / cm 2 or less of the current density. If the current density rise rate at the start of sintering is lower than the above, undesirable crystal growth occurs, and the intended purpose cannot be achieved. When the spark sintering is completed in such a short time, the spark sintering is completed without growing crystal grains, so that a high-hardness heat-resistant material having excellent hardness and high-temperature resistance can be obtained. Therefore, in sintering, the spark sintering conditions are appropriately determined, the interdiffusion rate of the material between the sintered particles is increased, and the sintering is performed while keeping the vibration of molecules (atoms) as small as possible. The crystal grain size of the sintered body is kept substantially the same as the crystal grain size in the powder state before sintering.

【0005】[0005]

【作用】本発明によるときは、焼結は以下の通りに進行
し、放電焼結が大電流密度で短時間内に完結するので、
結晶粒が微細で高密度の焼結体が得られる。本発明方法
による焼結では、焼結の開始時に焼結されるべき粒子と
粒子との間に電圧が印加され、電流が流れ同時に型から
の熱が伝導され、更に同時的に粒子と粒子の間に接触圧
力が加わって、全体としてコンパクションが起こること
になる。図1の加圧粉体の状態を示す図参照。
According to the present invention, sintering proceeds as follows, and discharge sintering is completed within a short time at a large current density.
A sintered body with fine crystal grains and high density can be obtained. In the sintering according to the method of the present invention, a voltage is applied between the particles to be sintered at the start of sintering, an electric current flows and heat from the mold is transmitted at the same time. The contact pressure is applied in between, and compaction occurs as a whole. See the diagram showing the state of the pressed powder of FIG.

【0006】始めからのステップは以下の通りである。 a)始めに焼結すべき粒子同志が接触する。 b)接触と同時に粒子間に電圧が加わる。 c)粒子と粒子の接触部分では粒子層のnmオーダーの吸
着層に電圧が加わり、高い電位傾度が生じる。 d)コヒラー現象を起こして表面層の絶縁が破壊する
(式1参照)。 e)絶縁破壊の発生に伴ってプラズマが生じ、電子イオ
ンの拡散が起きる(式2参照)。 f)粒子間のイオン、電子介在部に電圧が印加されてい
るので、電流が流れ加熱される(1ev=0.38×10-19ca
l)(式3参照)。 g)続いて型の側よりの加熱が始まり、全体の温度が均
一化する。 h)粒子間の表面がプラズマ浄化された状態で、粒子間
に圧力が加わっているので粒子間の接触面積が増大す
る。 i)粒子間の接触面積が増大した部分はエネルギーの供
給が低下し、他の粒子間にエネルギーが加わる。即ち、
弱い圧力で接触している粒子部分へとエネルギー供給
(プラズマ発生部分)は移動する。 j)接触粒子間でのプラズマ発生が全体の粒子間の波及
する。 k)全体にプラズマ発生が無くなったとき、丁度全体の
温度が均一になるように、始めの焼結条件を設定して置
く。 l)粒子と粒子の間のネック間の空隙体積が無くなるま
で加圧を続けて、焼結が完了する(式5参照)。 m)加圧力によって内部の加熱状態は変化する(式4参
照)。
The steps from the beginning are as follows. a) The particles to be sintered first come into contact. b) A voltage is applied between the particles simultaneously with the contact. c) At a contact portion between particles, a voltage is applied to the adsorption layer in the order of nm of the particle layer, and a high potential gradient is generated. d) The Coherer phenomenon occurs and the insulation of the surface layer is destroyed (see Equation 1). e) Plasma is generated with the occurrence of dielectric breakdown, and electron ions are diffused (see Equation 2). f) Since a voltage is applied to the ion and electron intervening portions between particles, a current flows and is heated (1ev = 0.38 × 10 −19 ca).
l) (see equation 3). g) Subsequently, heating from the mold side starts, and the entire temperature becomes uniform. h) The pressure between the particles is increased while the surface between the particles is plasma-purified, so that the contact area between the particles increases. i) In the portion where the contact area between the particles is increased, the supply of energy is reduced, and energy is applied between other particles. That is,
The energy supply (plasma generating portion) moves to the particle portion that is in contact with a weak pressure. j) Plasma generation between the contacting particles spreads among all the particles. k) The initial sintering conditions are set and set so that the entire temperature becomes uniform when the plasma is completely eliminated. l) Pressing is continued until there is no void volume between the necks between the particles and the sintering is completed (see Equation 5). m) The internal heating state changes depending on the pressing force (see Equation 4).

【0007】粒子間の拡散を考えるときの現象として、
上記d)項のコヒラー現象は、
As a phenomenon when considering diffusion between particles,
The coherer phenomenon of the above item d) is

【数1】 C :コヒラー電圧 e :表面の吸着層による固有抵抗 t :粒子と粒子との間の吸着層の厚さ A :接触面積 i :電子流(Equation 1) E C : Coherer voltage e: Specific resistance due to the adsorption layer on the surface t: Thickness of the adsorption layer between particles A: Contact area i: Electron flow

【0008】更に、トンネル効果電圧としては、Further, as a tunnel effect voltage,

【数2】 T :トンネル効果電圧 h :プランク常数 me :電子の質量 φ :粒子の仕事関数 が成り立つ。(Equation 2) E T: tunneling Voltage h: Planck's constant m e: electron mass phi: holds the work function of the particles.

【0009】以上のようになり、主として粒子間でプラ
ズマは数1で起こり、同時に式2によって加速して起こ
るものと考えることができる。式1の電位傾度として
は、105 〜106 V/cm程度の電位傾度を生むことが容易
に解る。即ち、 0.1〜1V/nm程度の場において、表面
層は破壊されることになる。
As described above, it can be considered that plasma is mainly generated between particles by the equation (1), and simultaneously accelerated by the equation (2). It can be easily understood that a potential gradient of about 10 5 to 10 6 V / cm is generated as the potential gradient of the formula 1. That is, the surface layer is broken in a field of about 0.1 to 1 V / nm.

【0010】焼結作用としては基本的にアレニウスの拡
散法則(Arrhenius の式)に従うので、
The sintering action basically follows Arrhenius diffusion law (Arrhenius equation).

【数3】 D :拡散係数 D0 :初期拡散係数 T :温度 E :表面活性化エネルギー k :ボルツマン常数(Equation 3) D: diffusion coefficient D 0 : initial diffusion coefficient T: temperature E: surface activation energy k: Boltzmann constant

【0011】[0011]

【数4】 U :イオンモビリティ C :イオン濃度 EM :粒子に加わる電場の強さ(電位傾度) J :イオン流密度 X :粒子接触点からの位置 として表される。(Equation 4) U: Ion Mobility C: ion concentration E M: intensity of the electric field applied to the particles (potential gradient) J: ion current density X: represented as a position from the particle contact points.

【0012】従って焼結すべき物質は、結局イオン濃度
分布により濃度分配を弱める方向に作用し、Jの符号は
負となる。そこで粒子間の電位傾度に依存して比例的に
拡散が進むことになる。粒子間の拡散が進むことにより
焼結が進み、粒子間は加圧力により空隙空間の体積が減
少して焼結体の密度は上昇することになる。
Therefore, the substance to be sintered eventually acts to weaken the concentration distribution due to the ion concentration distribution, and the sign of J becomes negative. Therefore, the diffusion proceeds proportionally depending on the potential gradient between the particles. As the diffusion between the particles progresses, the sintering progresses, and between the particles, the volume of the void space decreases due to the pressing force, and the density of the sintered body increases.

【0013】加圧力は放電が終了するまで加圧されてい
るので、焼結電流をIとすれば、総合的に、
[0013] Since the pressing force is applied until the discharge is completed, if the sintering current is I, comprehensively,

【数5】 V :粒子間に加える印加電圧 ρ: 焼結材の比抵抗 F: 流体の変形係数 H: 粉体の硬度 P: 加圧力 となる。(Equation 5) E V: applied voltage applied between the particle [rho: resistivity F of sintered material: deformation coefficient of the fluid H: powder Hardness P: the pressure.

【0014】即ち、材料が一定(勿論一定の型)のと
き、焼結電流は焼結電圧に比例して増大し、粒子間に加
わる圧力の平方根に比例して増大することを示してい
る。上記の特性により、結局始めは活性化し、更にイオ
ン拡散をし最終的には熱と加圧力により、焼結を特徴づ
けることができるので、極めて短時間に焼結が完了し、
粗のため結晶の成長が抑制され、更に高い密度に焼結さ
れることが解る。
That is, when the material is constant (of course, of a fixed type), the sintering current increases in proportion to the sintering voltage and increases in proportion to the square root of the pressure applied between the particles. By the above-mentioned characteristics, it is activated at first, further diffuses ions, and finally sintering can be characterized by heat and pressure, so that sintering is completed in a very short time,
It can be seen that the crystal growth is suppressed due to the coarseness, and the crystal is sintered to a higher density.

【0015】従来のホットプレス式に比べて、10〜100
倍の速度で焼結が可能であると同時に、極めてポイドの
少ない焼結が容易に進むことが解る。粒の材質、粒径、
粒の表面状態、型の材質、型の形状、媒体の状況等によ
り、最適な加圧力、加圧速度、印加電圧、通電電流の時
間特性、焼結時間、型からの離脱時間等々によって、最
小結晶成長下における固体化を可能にする。
[0015] Compared to the conventional hot press type, 10 to 100
It can be seen that sintering can be performed at twice the speed, and sintering with very few voids proceeds easily. Grain material, particle size,
Depending on the surface condition of the grain, the material of the mold, the shape of the mold, the condition of the medium, etc., the optimum pressing force, pressurizing speed, applied voltage, time characteristics of the applied current, sintering time, release time from the mold, etc. Enables solidification during crystal growth.

【0016】図1に模式図を示す。即ちA〜Nの方向
に、焼結すべき粒子a1 〜an を型に入れて加圧(P)
をしたとき、焼結粒a1 〜an はa11〜a1nとなり、粒
の接点がA〜Nの方向からA1 〜Nn の方向に移動し、
粒子の回転方向の力は、N-1、N-2〜〜となり、粒子は
滑ることになる。
FIG. 1 is a schematic diagram. That is, the particles a 1 to an to be sintered are put in a mold in the directions A to N and pressurized (P).
When the, Shoyuitsubu a 1 ~a n moves a 11 ~a 1n, and the contacts of the grain from the direction of A~N in the direction of A 1 to N n,
The forces in the direction of rotation of the particles are N −1 , N −2 〜, and the particles will slip.

【0017】丁度図2の模式図に示すように、通電加圧
パンチ上下1、2と、型3との間に挿入された焼結粒子
11〜a1nが挟まれてパンチ1、2より圧力Pと電圧E
が加えられたとき、上パンチ1の1n の部分より各粒子
/点を介して、電圧が印加される。このとき、粒子の接
触抵抗値の一番低い点より絶縁破壊を起こし、次々と上
下パンチの点1n 、2n を経て粒子に電流が流れる。
As shown in the schematic diagram of FIG. 2, the sintered particles a 11 to a 1n inserted between the upper and lower portions 1 and 2 of the current-pressing punch and the mold 3 are sandwiched between the punches 1 and 2. Pressure P and voltage E
Is applied, a voltage is applied from the portion 1 n of the upper punch 1 via each particle / point. At this time, dielectric breakdown occurs from the point where the contact resistance value of the particles is the lowest, and current flows through the particles one after another via the points 1 n and 2 n of the upper and lower punches.

【0018】このとき、上述の式に従って作用を起こ
す。更に、型と粒子の接触点3a 〜〜3n において、上
パンチ1及び下パンチ2と型の間の接触抵抗と型の比抵
抗に相当する印加電圧Eで粒子と型との間にも電流が流
れることになる。尚、加圧Pと印加電圧Eが加わってい
れば、図1に相当する。
At this time, the operation is performed in accordance with the above-mentioned equation. Further, at the contact point 3 a ~~3 n type and particle, also between an applied voltage E corresponding to the specific resistance of the contact resistance and type between the upper punch 1 and the lower punch 2 and the type of the particles and the type Current will flow. Note that if the pressure P and the applied voltage E are applied, it corresponds to FIG.

【0019】粒子の回動と接触点1n と2n には通電に
よる加熱が起こり、粒子の変形を発生し、常に粒子間、
粒子〜型間、パンチ〜粒子間でダイナミック運動を起こ
す。また同時に粒子間の通電による加熱と、型からの通
電による加熱とが相俟って粒子の流動は加速され、粒子
間の空隙41 〜4n がなくなるまで流動は続くことにな
り、空隙41 〜4n が零となったとき、粒子間で拡散が
生じ、焼結は完了することになる。
The rotation of the particles and the contact points 1 n and 2 n are heated by energization, causing deformation of the particles.
Dynamic movement occurs between the particle and the mold, and between the punch and the particle. At the same time, the flow of the particles is accelerated by the combination of the heating by the energization between the particles and the heating by the energization from the mold, and the flow continues until the gaps 4 1 to 4 n between the particles disappear. When 1 to 4 n becomes zero, diffusion occurs between particles and sintering is completed.

【0020】焼結が完了した部分へのエネルギーの供給
は、未焼結の部分に比べて低下することになるので、全
体が均一化される。粒子と粒子で構成できる空隙サイズ
をDとすれば、
Since the supply of energy to the portion where sintering is completed is lower than that of the unsintered portion, the whole is made uniform. Assuming that the void size that can be composed of particles and particles is D,

【数6】 に相当する空隙が焼結の進行に従って0.156 dのサイズ
が零になる。
(Equation 6) The size of 0.156 d becomes zero as the sintering progresses.

【0021】従って、上パンチ1と下パンチ2と型との
間隙長さ5、6と型材質、特に耐熱性、電気抵抗値、電
気抵抗温度係数は焼結に重要で、特性として焼結(拡
散)が終わった部分へのエネルギーは、外部より熱的に
供給されることが大きくなる。始めの焼結設定が悪けれ
ば、焼結粒の分解を促進するようになる。また、粒子の
サイズ、粒子の表面状態、粒子の物理的常数により、始
めに圧力Pと電圧Eと焼結時間を設定し、焼結するもの
である。
Therefore, the gap lengths 5 and 6 between the upper punch 1 and the lower punch 2 and the mold and the material of the mold, especially the heat resistance, the electric resistance value and the temperature coefficient of electric resistance are important for sintering. The energy to the portion where the diffusion has been completed is more likely to be thermally supplied from the outside. Poor initial sintering settings will promote the decomposition of sintered grains. Further, the pressure P, the voltage E and the sintering time are first set according to the size of the particles, the surface state of the particles, and the physical constant of the particles, and the sintering is performed.

【0022】従来のWC系の高温度特性として信じられ
たデータとして、ドイツのDawihlによって示されている
ものがある(表1参照)。更にまた、硬度特性として図
3に示すデータを示すことができる。即ち、ホットプレ
ス方式で成形したWCにおいて、純WCと1%Co入りの
WCの高温度特性として、HB =170 の鋼鉄の場合は、
純WCは1000℃、1%Co入りのWCは 775℃で凝着が生
じ、HB =310 の鋼鉄の場合には、純WCは1040℃、1
%Co入りのWCは 800℃で凝着が生じることが示されて
いる。また、図3には純WCのデータは示されていない
が、図から外挿して推定すれば、純WCの硬度は1800Hv
以上となり、1%Co入りWCのそれは1675Hvということ
ができる。
Data believed to be the high temperature characteristics of the conventional WC system is shown by Dawihl of Germany (see Table 1). Furthermore, data shown in FIG. 3 can be shown as the hardness characteristics. That is, in the WC formed by the hot press method, as a high temperature characteristic of pure WC and WC containing 1% Co, in the case of steel of H B = 170,
Pure WC is 1000 ° C., WC of 1% Co-containing occurs is adhesion at 775 ° C., in the case of steel H B = 310 is pure WC is 1040 ° C., 1
It has been shown that WC with% Co causes adhesion at 800 ° C. Further, although the data of pure WC is not shown in FIG. 3, extrapolation from the figure estimates that the hardness of pure WC is 1800 Hv.
Thus, it can be said that that of the WC containing 1% Co is 1675 Hv.

【0023】以下、実施例により本発明の詳細を説明す
る。 実施例1:0.6 μφ中心サイズのWC粉末(0.5 %C)
を本発明方法により放電焼結し、直径20mm、厚み5m
mの焼結体を得た。先ず圧力を加えながら1分間で電流
を3000A( 153A/cm2 )まで上げ、その電流で3分間
保持し、計4分間で焼結した。取り出すまでの冷却期間
は1分間で、総合所要時間は5分間であった。加圧力は
始め100 kg/cm2 、1 分間で400 kg/cm2 迄昇圧し、以
後はその圧力に保持した。
Hereinafter, the present invention will be described in detail with reference to examples. Example 1: WC powder having a center size of 0.6 μφ (0.5% C)
Is sintered by the method of the present invention to a diameter of 20 mm and a thickness of 5 m.
m was obtained. First, the current was increased to 3000 A (153 A / cm 2 ) in 1 minute while applying pressure, and the current was maintained for 3 minutes, and sintering was performed for a total of 4 minutes. The cooling period before removal was 1 minute, and the total required time was 5 minutes. The pressure was initially 100 kg / cm 2 , and the pressure was increased to 400 kg / cm 2 in one minute, and thereafter the pressure was maintained.

【0024】比較例1:実施例1と同じ材料を放電条件
を変えて焼結し、直径20mm、厚み5mmの焼結体を得
た。始め400g/cm2 に加圧後、1.5 分間掛けて電流を 5
00Aまで上げて1分間保持し、続いて1. 5分間で2000A
まで上昇させて1分間保ち、更に3000Aで5分間通電
し、4000Aにして12分間保持してから、電流をカットし
て取り出した。通電時間は合計20分であった。いづれも
アルゴンガス中である。
Comparative Example 1 The same material as in Example 1 was sintered under different discharge conditions to obtain a sintered body having a diameter of 20 mm and a thickness of 5 mm. Initially pressurize to 400 g / cm 2 , apply 1.5 minutes,
Raise to 00A and hold for 1 minute, then 2000A for 1.5 minutes
Then, the current was cut and taken out after holding at 3,000 A for 5 minutes, supplying electricity at 3,000 A for 5 minutes, holding at 4,000 A for 12 minutes. The energization time was a total of 20 minutes. Both are in argon gas.

【0025】比較例2:WC80部とTiC15部からなる耐
熱性材料粉末に、バインダーとしてCo粉末5部を加え、
通常の真空焼結法により焼結し、直径20mm、厚み5m
mの焼結体を得、上記実施例及び比較例1で得た焼結体
と比較した。
Comparative Example 2: To a heat-resistant material powder composed of 80 parts of WC and 15 parts of TiC, 5 parts of Co powder as a binder was added.
Sintered by normal vacuum sintering method, diameter 20mm, thickness 5m
m was obtained and compared with the sintered bodies obtained in the above Examples and Comparative Example 1.

【0026】電解酸化処理試験 上記実施例及び比較例で得た材料を電解酸化処理して耐
熱性を類推比較した結果を表1に示す。電解条件は以下
の通りである。 IP : 2.5 A τon : 12 μsec τoff : 30 μsec 入力Power : 30 W 処理時間 : 30 sec
Electrolytic Oxidation Test Table 1 shows the results of analogous comparison of the heat resistance of the materials obtained in the above Examples and Comparative Examples by electrolytic oxidation. The electrolysis conditions are as follows. I P: 2.5 A τ on: 12 μsec τ off: 30 μsec Input Power: 30 W processing time: 30 sec

【表1】 酸化反応度は、比較例1のものを基準とし、酸化タング
ステンの色反応で計測した。このデータから明らかなよ
うに、本発明方法により5分間で焼結したものは、20分
間掛けて焼結したものに比して、約4倍、周知の真空焼
結によるものの2倍程度の酸化抵抗力があるものと見ら
れる。
[Table 1] The oxidation reactivity was measured based on the color reaction of tungsten oxide with reference to that of Comparative Example 1. As is clear from this data, the sintering in 5 minutes by the method of the present invention is about four times as large as the sintering in 20 minutes, and about twice as much as that of the well-known vacuum sintering. Seems to be resistant.

【0027】溶着点試験 上記の3試料をアルゴンガス中で鉄材と接触させて溶着
点をテストした結果、3回の測定の平均値として、鉄材
との凝着反応を起こした温度は、実施例のもので1100℃
であったのに対し、比較例1のものは 850℃、比較例2
のものは 700℃であった。即ち、本発明方法により製造
したものは、凝着温度が高く、硬度の耐熱性を有するこ
とが知られる。焼結時間が長くなると、却って凝着温度
は低下する。その理由は、結晶成長と加熱分解による脱
タングステンによって、材料が変質するからである。一
般の工具材料と、加工材料の組合せと凝着温度の関係に
就いては、表2のデータ(Dawihl)が知られている。上
記の成績はこのデータを凌ぐものである。
Welding point test The above three samples were brought into contact with an iron material in argon gas to test the welding point. As a result of the three measurements, the temperature at which the adhesion reaction with the iron material occurred was determined as an average value. 1100 ℃
850 ° C for Comparative Example 1 and Comparative Example 2
Was at 700 ° C. That is, it is known that those produced by the method of the present invention have a high adhesion temperature and have heat resistance of hardness. The longer the sintering time, the lower the adhesion temperature. The reason is that the material is degraded by the crystal growth and the removal of tungsten by thermal decomposition. The data in Table 2 (Dawihl) are known for the relationship between general tool materials, combinations of working materials, and adhesion temperatures. The above results outperform this data.

【表2】 [Table 2]

【0028】サンプル密度と硬度は表3の通りであっ
た。これらのデータから、本発明方法により製造された
サンプルは、比較例1、2に比して硬度が格段に高く、
密度も 0.3〜0.5 %高いことが知られる。
The sample density and hardness are shown in Table 3. From these data, the sample manufactured by the method of the present invention has significantly higher hardness than Comparative Examples 1 and 2,
The density is also known to be 0.3-0.5% higher.

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒体加圧状態を示す模式図である。FIG. 1 is a schematic diagram showing a pressed state of a granular material.

【図2】焼結時状態を示す模式図である。FIG. 2 is a schematic view showing a state during sintering.

【図3】WCに対するCo添加量と硬度の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the amount of Co added to WC and hardness.

【符号の説明】[Explanation of symbols]

1 ・・・・・上パンチ 2 ・・・・・下パンチ 3 ・・・・・型 1 ・ ・ ・ ・ ・ ・ ・ Upper punch 2 ・ ・ ・ ・ ・ Lower punch 3 ・ ・ ・ ・ ・ Mold

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】バインダーを用いることなく、通電開始後
可及的速やかに一定限度以上の高電流密度まで放電電流
を高め、以降その放電電流密度を保持して短時間内に耐
摩耗材粉末を放電焼結することを特徴とする耐摩耗材製
造方法。
(1) A discharge current is increased to a high current density exceeding a certain limit as soon as possible after the start of energization without using a binder, and thereafter, the wear-resistant material powder is discharged within a short time while maintaining the discharge current density. A method for producing a wear-resistant material, comprising sintering.
【請求項2】バインダーの使用量を1%未満とし通電開
始後可及的速やかに一定限度以上の高電流密度まで放電
電流を高め、以降その放電電流密度を保持して短時間内
に耐摩耗材粉末を放電焼結することを特徴とする耐摩耗
材製造方法。
2. The use of a wear-resistant material within a short time by increasing the discharge current to a high current density exceeding a certain limit as soon as possible after the start of energization by reducing the amount of binder used to less than 1%. A method for producing a wear-resistant material, comprising spark sintering a powder.
【請求項3】耐摩耗材粉末がWCである請求項1又は2
に記載の耐摩耗材製造方法。
3. The method according to claim 1, wherein the wear-resistant material powder is WC.
2. The method for producing a wear-resistant material according to item 1.
【請求項4】耐摩耗材粉末がTiCである請求項1又は2
に記載の耐摩耗材製造方法。
4. The wear-resistant material powder is TiC.
2. The method for producing a wear-resistant material according to item 1.
JP8171598A 1998-03-27 1998-03-27 Production of wear resistance material Pending JPH11279604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8171598A JPH11279604A (en) 1998-03-27 1998-03-27 Production of wear resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8171598A JPH11279604A (en) 1998-03-27 1998-03-27 Production of wear resistance material

Publications (1)

Publication Number Publication Date
JPH11279604A true JPH11279604A (en) 1999-10-12

Family

ID=13754109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8171598A Pending JPH11279604A (en) 1998-03-27 1998-03-27 Production of wear resistance material

Country Status (1)

Country Link
JP (1) JPH11279604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544838A (en) * 2006-07-21 2009-12-17 ヴァルティオン テクニリネン ツッツキムスケスクス Conductor and semiconductor manufacturing method
JP2014527124A (en) * 2011-08-03 2014-10-09 コリア インスティチュート オブ インダストリアル テクノロジー Method for manufacturing tungsten carbide sintered body for friction stir welding tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544838A (en) * 2006-07-21 2009-12-17 ヴァルティオン テクニリネン ツッツキムスケスクス Conductor and semiconductor manufacturing method
JP2014040661A (en) * 2006-07-21 2014-03-06 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductor and semiconductor
US9011762B2 (en) 2006-07-21 2015-04-21 Valtion Teknillinen Tutkimuskeskus Method for manufacturing conductors and semiconductors
JP2014527124A (en) * 2011-08-03 2014-10-09 コリア インスティチュート オブ インダストリアル テクノロジー Method for manufacturing tungsten carbide sintered body for friction stir welding tool

Similar Documents

Publication Publication Date Title
US3574580A (en) Process for producing sintered diamond compact and products
CN106116582B (en) A kind of sintering method without cobalt tungsten carbide
IE53592B1 (en) Polycrystalline silicon-bonded cubic boron nitride body and method
EP2300366A2 (en) Pulsed electrical field assisted or spark plasma sintered polycrystalline ultra hard material and thermally stable ultra hard material cutting elements and compacts and methods of forming the same
JPH03503663A (en) Composite material manufacturing method
JP6211775B2 (en) Method for manufacturing sintered body
JPH11279604A (en) Production of wear resistance material
JP4636816B2 (en) Cemented carbide and method for producing the same
JP2663190B2 (en) Manufacturing method of decorative plastics mold
US20020114725A1 (en) Palladium-boron alloys and methods for making and using such alloys
US1531666A (en) Refractory metallic body of high density and process for making the same
EP1225994B1 (en) One-step synthesis and consolidation of nanophase materials
JP3998831B2 (en) Cemented carbide manufacturing method
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
Ando et al. Preparation of ultrafine SiC particles by gas evaporation
US3105760A (en) Dispersion strengthened molybdenum
JP5076140B2 (en) Manufacturing method of grinding wheel
JP2001151578A (en) Porous silicon carbide sintered compact and method of producing the same
Tracey The Properties and Some Applications of Carbonyl-Nickel Powders
JPS6216724B2 (en)
CN115505376A (en) Process control method for preparing wide-width AFG material
JP2004031028A (en) Electric contact material or electrode material
Olevsky et al. Field Effects on Reacting Systems
JPS63262432A (en) Manufacture of hard sintered compact
Luyckx et al. Healing of cracks in WC-Co in the temperature range 600–800° C