JPH11274089A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPH11274089A
JPH11274089A JP9677698A JP9677698A JPH11274089A JP H11274089 A JPH11274089 A JP H11274089A JP 9677698 A JP9677698 A JP 9677698A JP 9677698 A JP9677698 A JP 9677698A JP H11274089 A JPH11274089 A JP H11274089A
Authority
JP
Japan
Prior art keywords
thin film
boron
silicon
single crystal
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9677698A
Other languages
Japanese (ja)
Inventor
Hitoshi Habuka
等 羽深
Toru Otsuka
徹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP9677698A priority Critical patent/JPH11274089A/en
Publication of JPH11274089A publication Critical patent/JPH11274089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the decline in boron density near the surface of a semiconductor crystalline substrate at the growing of a silicon thin film on the boron- doped semiconductor crystalline substrate, by growing the silicon thin film after forming a boron thin film on the boron-doped semiconductor crystalline substrate. SOLUTION: Since a silicon semiconductor crystalline substrate 1 including boron as a dopant is formed on its surface with a natural oxide film 2, in order to completely remove the natural oxide film 2, the substrate is heat-treated in a hydrogen gas atmosphere. During the heat treatment, boron segregates on the surface of the substrate, and then a boron thin film 4 of about one monolayer thickness is formed on the surface of the substrate. Next, the substrate is heat-treated in a hydrogen gas atmosphere to completely remove the boron thin film 4. After that, while the silicon semiconductor crystalline substrate 1 is being heated, for example, to 1,000 deg.C, trichlorosilane is supplied together with hydrogen to grow a silicon crystalline thin film 3 on the silicon semiconductor crystalline substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素がドープさ
れた半導体単結晶基板上に珪素薄膜を成長する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a silicon thin film on a semiconductor single crystal substrate doped with boron.

【0002】[0002]

【従来の技術】ホウ素は、p型の半導体単結晶基板を製
造するためのドーパントとして従来より用いられてい
る。そして、ホウ素が予めドープされて所望の抵抗率に
調整された半導体単結晶基板上に珪素原料ガスを供給し
て、気相成長により珪素薄膜を半導体単結晶基板上に成
長する方法がよく知られている。具体的には、例えば珪
素半導体単結晶基板を反応容器内で1000℃等の所望
の温度に昇温すると共に、水素ガス等の希釈ガス中に珪
素原料としてトリクロロシラン(SiHCl3)ガスを
希釈したガスを反応容器内に供給し、珪素半導体単結晶
基板上に珪素単結晶薄膜を成長する。
2. Description of the Related Art Boron has been conventionally used as a dopant for manufacturing a p-type semiconductor single crystal substrate. It is well known that a silicon source gas is supplied onto a semiconductor single crystal substrate which has been doped with boron and adjusted to a desired resistivity, and a silicon thin film is grown on the semiconductor single crystal substrate by vapor phase growth. ing. Specifically, for example, a silicon semiconductor single crystal substrate was heated to a desired temperature such as 1000 ° C. in a reaction vessel, and trichlorosilane (SiHCl 3 ) gas was diluted as a silicon raw material in a diluent gas such as hydrogen gas. A gas is supplied into the reaction vessel to grow a silicon single crystal thin film on the silicon semiconductor single crystal substrate.

【0003】ところで、珪素半導体単結晶基板の表面に
は自然酸化膜、有機物、微粒子等(以下、「自然酸化膜
等」と総称する。)が生成・付着しているので、これら
を珪素薄膜の成長工程前に除去する必要がある。その除
去方法として、水素ガスなどの雰囲気中で1000℃以
上に半導体単結晶基板を加熱する方法が用いられる。す
なわち、図5に示すように、表面に自然酸化膜等2が付
いた半導体単結晶基板1(図5(a))を、水素ガス雰
囲気中で1000℃以上に加熱して自然酸化膜等2を除
去し(図5(b))、その後にトリクロロシラン(Si
HCl3)を水素ガス中に希釈させて供給することによ
り、半導体単結晶基板1上に珪素単結晶薄膜3を成長す
る(図5(c))。
On the surface of a silicon semiconductor single crystal substrate, natural oxide films, organic substances, fine particles, etc. (hereinafter collectively referred to as "natural oxide films, etc.") are generated and adhered. It must be removed before the growth step. As a removing method, a method of heating the semiconductor single crystal substrate to 1000 ° C. or more in an atmosphere such as a hydrogen gas is used. That is, as shown in FIG. 5, a semiconductor single crystal substrate 1 (FIG. 5A) having a native oxide film 2 or the like on its surface is heated to 1000 ° C. or more in a hydrogen gas atmosphere to thereby remove the native oxide film 2 or the like. (FIG. 5 (b)), and then trichlorosilane (Si
HCl 3 ) is diluted in hydrogen gas and supplied to grow a silicon single crystal thin film 3 on the semiconductor single crystal substrate 1 (FIG. 5C).

【0004】[0004]

【発明が解決しようとする課題】自然酸化膜等2を除去
するために、半導体単結晶基板1を1000℃以上の温
度に加熱すると、この熱処理中に、半導体単結晶基板1
に含まれているホウ素の一部が外方拡散と気化により気
相中に放散し、その結果、半導体単結晶基板1の表面近
傍のドーパント濃度が低下して、図2の(B)に示すよ
うに、濃度プロファイルが平坦でなくなるという問題点
があった。
When the semiconductor single crystal substrate 1 is heated to a temperature of 1000 ° C. or more to remove the natural oxide film 2 or the like, the semiconductor single crystal substrate 1 is removed during the heat treatment.
Of the boron contained in the semiconductor single crystal diffuses into the gas phase by outward diffusion and vaporization. As a result, the dopant concentration in the vicinity of the surface of the semiconductor single crystal substrate 1 decreases, as shown in FIG. As described above, there has been a problem that the density profile is not flat.

【0005】そこで本発明は、ホウ素がドープされた半
導体単結晶基板上に珪素薄膜を成長する際に、半導体単
結晶基板の表面近傍のホウ素濃度が低下しない方法を提
供することを目的とする。
Accordingly, an object of the present invention is to provide a method for preventing a decrease in the boron concentration near the surface of a semiconductor single crystal substrate when a silicon thin film is grown on the semiconductor single crystal substrate doped with boron.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、発明者らが基礎実験の結果に基づく研究を重ねた結
果、以下の発明に至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors have conducted researches based on the results of basic experiments, and as a result, have reached the following invention.

【0007】本願の請求項1記載の発明は、ホウ素をド
ープした半導体単結晶基板上にホウ素薄膜を形成した後
に、珪素薄膜を成長することを特徴とする薄膜の製造方
法を提供する。
The invention described in claim 1 of the present application provides a method for manufacturing a thin film, comprising forming a boron thin film on a boron-doped semiconductor single crystal substrate and then growing a silicon thin film.

【0008】本願の請求項2記載の発明は、請求項1に
おいて、形成したホウ素薄膜を除去した後に珪素薄膜を
成長することを特徴とする薄膜の製造方法を提供する。
According to a second aspect of the present invention, there is provided a method of manufacturing a thin film according to the first aspect, wherein a silicon thin film is grown after removing the formed boron thin film.

【0009】本願の請求項3記載の発明は、請求項1に
おいて、形成したホウ素薄膜上に珪素薄膜を成長した
後、更に熱処理を施すことを特徴とする薄膜の製造方法
を提供する。
According to a third aspect of the present invention, there is provided a method of manufacturing a thin film according to the first aspect, wherein a silicon thin film is grown on the formed boron thin film, and further subjected to a heat treatment.

【0010】本願の請求項4記載の発明は、請求項1な
いし請求項3のいずれか1項において、半導体単結晶基
板内にドープされたホウ素を基板表面に偏析させてホウ
素薄膜を形成することを特徴とする薄膜の製造方法を提
供する。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the boron doped in the semiconductor single crystal substrate is segregated on the substrate surface to form a boron thin film. And a method for producing a thin film characterized by the following.

【0011】本願の請求項5記載の発明は、請求項1な
いし請求項3のいずれか1項において、半導体単結晶基
板上にジボランガスを供給してホウ素薄膜を形成するこ
とを特徴とする薄膜の製造方法を提供する。
According to a fifth aspect of the present invention, there is provided a thin film forming method according to any one of the first to third aspects, wherein a diborane gas is supplied onto the semiconductor single crystal substrate to form a boron thin film. A manufacturing method is provided.

【0012】本願の請求項6記載の発明は、請求項4に
おいて、ホウ素を偏析させる際の加熱温度が700℃以
上980℃以下であることを特徴とする薄膜の製造方法
を提供する。
According to a sixth aspect of the present invention, there is provided a method for producing a thin film according to the fourth aspect, wherein the heating temperature for segregating boron is 700 ° C. or more and 980 ° C. or less.

【0013】本願の請求項7記載の発明は、請求項2に
おいて、ホウ素薄膜を除去すると同時にホウ素を内方拡
散させた後に、珪素薄膜を成長することを特徴とする薄
膜の製造方法を提供する。
According to a seventh aspect of the present invention, there is provided a method of manufacturing a thin film according to the second aspect, wherein the silicon thin film is grown after removing the boron thin film and inwardly diffusing boron. .

【0014】本願の請求項8記載の発明は、請求項1な
いし請求項7のいずれか1項において、前記半導体単結
晶基板が珪素半導体単結晶基板であり、前記珪素薄膜が
珪素単結晶薄膜であることを特徴とする珪素薄膜の製造
方法を提供する。
According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the semiconductor single crystal substrate is a silicon semiconductor single crystal substrate, and the silicon thin film is a silicon single crystal thin film. There is provided a method for manufacturing a silicon thin film.

【0015】本発明においては、半導体単結晶基板上に
ホウ素薄膜を形成してから珪素薄膜を成長するので、珪
素薄膜の成長時の熱又はその前後の熱処理によりホウ素
薄膜からホウ素が半導体単結晶基板中へ内方拡散し、半
導体単結晶基板の表面近傍のホウ素濃度の低下を抑制す
ることができる。
In the present invention, since the silicon thin film is grown after the boron thin film is formed on the semiconductor single crystal substrate, the boron is removed from the boron thin film by the heat during the growth of the silicon thin film or the heat treatment before and after it. It can be diffused inward to suppress a decrease in boron concentration near the surface of the semiconductor single crystal substrate.

【0016】ホウ素薄膜の形成方法としては、半導体単
結晶基板中のホウ素を基板表面に偏析させる方法と、ジ
ボラン(B26)等のホウ素原料ガスを基板表面に供給
してホウ素薄膜を堆積させる方法とがある。ホウ素を偏
析させる方法は、水素ガス雰囲気中で700℃以上98
0℃以下に加熱することにより、半導体単結晶基板中に
添加されて含有されていたホウ素が表面に偏析してホウ
素薄膜を形成するものである。
As a method of forming a boron thin film, there is a method of segregating boron in a semiconductor single crystal substrate on a substrate surface, and a method of supplying a boron source gas such as diborane (B 2 H 6 ) to the substrate surface to deposit a boron thin film. There is a way to make it. The method of segregating boron is as follows.
By heating to 0 ° C. or lower, boron added and contained in the semiconductor single crystal substrate segregates on the surface to form a boron thin film.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態について、図
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings.

【0018】図1は、本発明の実施形態の一例を示す工
程図である。本例では、まずホウ素をドーパントとして
含有する珪素半導体単結晶基板1を用意する。この珪素
半導体単結晶基板1の表面には自然酸化膜等2が付いて
いる(図1(a))。この珪素半導体単結晶基板1を、
水素ガス雰囲気中で950℃で1分間加熱すると、自然
酸化膜等2は完全にエッチング除去される。この際、ホ
ウ素原子は珪素半導体単結晶基板1内から外へ出て表面
に集ろうとする性質があるため、ホウ素が基板表面に偏
析して厚さが1モノレイヤー程度のホウ素薄膜4を形成
する(図1(b))。次に、水素ガス雰囲気中、110
0℃で珪素半導体単結晶基板1を30秒間加熱すると、
ホウ素は水素ガスの還元作用によりボラン(BH3)や
ジボラン(B26)などの水素化物になって気化すると
共に、珪素半導体単結晶基板1内へ内方拡散し(図1
(c))、ホウ素薄膜4は完全に除去される(図1
(d))。その後、珪素半導体単結晶基板1を1000
℃に加熱しながらトリクロロシラン(SiHCl3)を
水素と共に供給することにより、珪素半導体単結晶基板
1上に珪素単結晶薄膜3を成長する。
FIG. 1 is a process chart showing an example of an embodiment of the present invention. In this example, first, a silicon semiconductor single crystal substrate 1 containing boron as a dopant is prepared. The surface of the silicon semiconductor single crystal substrate 1 is provided with a natural oxide film 2 or the like 2 (FIG. 1A). This silicon semiconductor single crystal substrate 1 is
When heated at 950 ° C. for 1 minute in a hydrogen gas atmosphere, the natural oxide film 2 and the like 2 are completely removed by etching. At this time, since boron atoms have a property of going out of the silicon semiconductor single crystal substrate 1 and collecting on the surface, boron segregates on the substrate surface to form a boron thin film 4 having a thickness of about one monolayer. (FIG. 1 (b)). Next, in a hydrogen gas atmosphere, 110
When the silicon semiconductor single crystal substrate 1 is heated at 0 ° C. for 30 seconds,
Boron is converted into a hydride such as borane (BH 3 ) or diborane (B 2 H 6 ) by the reduction action of hydrogen gas to vaporize and diffuse inward into the silicon semiconductor single crystal substrate 1 (FIG. 1).
(C)), the boron thin film 4 is completely removed (FIG. 1)
(D)). After that, the silicon semiconductor single crystal substrate 1
By supplying trichlorosilane (SiHCl 3 ) together with hydrogen while heating to ° C., a silicon single crystal thin film 3 is grown on the silicon semiconductor single crystal substrate 1.

【0019】上記ホウ素の偏析現象は、表面偏析として
特に超高真空を用いる分子線エピタキシーの分野では既
知である。本発明の主要な点は、この表面偏析が1気圧
においても水素ガス雰囲気中などで生じるという自然法
則を利用し、これを工業的に重要な珪素半導体単結晶基
板の表面処理方法に応用したことにある。
The boron segregation phenomenon is known in the field of molecular beam epitaxy using ultra-high vacuum, especially as surface segregation. The main point of the present invention is to use the natural law that this surface segregation occurs even in a hydrogen gas atmosphere even at 1 atm, and apply this to the industrially important surface treatment method of a silicon semiconductor single crystal substrate. It is in.

【0020】ホウ素は蒸気圧の極めて小さな元素であ
り、且つ沸点が2500℃を越える元素であるため、珪
素半導体単結晶基板1を水素ガス雰囲気中において70
0〜980℃の比較的低い温度範囲で加熱した場合、ホ
ウ素薄膜4は珪素半導体単結晶基板1の表面に安定に存
在することができる。同時に、ホウ素薄膜4は珪素半導
体単結晶基板1内へのホウ素の拡散源としての役割を果
すので、ホウ素薄膜4の除去後の珪素半導体単結晶基板
1の表面近傍のホウ素原子の濃度分布は、実質的に平坦
な濃度プロファイルを維持することができるのである。
Boron is an element having a very low vapor pressure and an element having a boiling point exceeding 2500 ° C., so that the silicon semiconductor single crystal substrate 1 is heated to 70 ° C. in a hydrogen gas atmosphere.
When heated in a relatively low temperature range of 0 to 980 ° C., the boron thin film 4 can be stably present on the surface of the silicon semiconductor single crystal substrate 1. At the same time, since the boron thin film 4 serves as a diffusion source of boron into the silicon semiconductor single crystal substrate 1, the concentration distribution of boron atoms near the surface of the silicon semiconductor single crystal substrate 1 after the removal of the boron thin film 4 is: A substantially flat density profile can be maintained.

【0021】なお、700℃未満では表面偏析が全く生
じないか或いはその程度が微弱であり、本発明の目的に
有効な条件を形成しない。また、珪素半導体単結晶基板
1を水素ガス雰囲気中で980℃を越える温度で加熱し
た場合、水素ガス雰囲気中では水素ガスがホウ素膜膜4
を還元して蒸気圧の大きなボラン(BH3)やジボラン
(B26)などの水素化物を形成する反応が顕著化する
ので、ホウ素薄膜4は直ちに除去されてしまう。
If the temperature is lower than 700 ° C., no surface segregation occurs or the degree of the surface segregation is very weak, so that the conditions effective for the purpose of the present invention are not formed. When the silicon semiconductor single crystal substrate 1 is heated at a temperature exceeding 980 ° C. in a hydrogen gas atmosphere, the hydrogen gas is
Is reduced to form a hydride such as borane (BH 3 ) or diborane (B 2 H 6 ) having a high vapor pressure, so that the boron thin film 4 is immediately removed.

【0022】図2は、上述した工程、すなわちホウ素を
1×1018個/cm3にドープした珪素半導体単結晶基
板1を、水素ガス雰囲気中で950℃に1分間保持し、
次に1100℃に30秒間保持した場合(A)と、95
0℃の保持工程を経ずに1100℃に30秒間保持した
場合(B)とで、珪素半導体単結晶基板1の深さ方向の
ホウ素濃度の濃度プロファイルを比較したものである。
(B)では、珪素半導体単結晶基板1の極表面近傍にお
いて、基板表面から深さ方向に約0.1μmの範囲でド
ーパントであるホウ素の濃度が著しく減少しているが、
(A)では珪素半導体単結晶基板1内のホウ素濃度が実
質的に平坦に維持されている。このことから、本発明の
方法の有効性が明らかとなった。
FIG. 2 shows the above-mentioned process, that is, the silicon semiconductor single crystal substrate 1 doped with boron at 1 × 10 18 / cm 3 is kept at 950 ° C. for 1 minute in a hydrogen gas atmosphere.
Next, when it is held at 1100 ° C. for 30 seconds (A),
The concentration profile of the boron concentration in the depth direction of the silicon semiconductor single crystal substrate 1 is compared between the case where the silicon semiconductor single crystal substrate 1 is held at 1100 ° C. for 30 seconds without passing through the 0 ° C. holding process.
In (B), in the vicinity of the very surface of the silicon semiconductor single crystal substrate 1, the concentration of boron as a dopant is remarkably reduced in the range of about 0.1 μm from the substrate surface in the depth direction.
In (A), the boron concentration in the silicon semiconductor single crystal substrate 1 is maintained substantially flat. From this, the effectiveness of the method of the present invention became clear.

【0023】図3は、本発明の実施形態の他の例を示す
工程図である。本例では、表面に自然酸化膜等2が付い
た珪素半導体単結晶基板1(図3(a))を、水素ガス
雰囲気中で950℃で1分間加熱してホウ素を偏析させ
て基板表面にホウ素薄膜4を形成した(図3(b))
後、引き続き、珪素半導体単結晶基板1の表面にトリク
ロロシラン(SiHCl3)を水素と共に供給すること
により、950℃でホウ素薄膜4上に珪素単結晶薄膜3
を成長する(図3(c))。次に、水素ガス雰囲気中、
1100℃で10秒間加熱すると、ホウ素薄膜4のホウ
素は上方の珪素単結晶薄膜3中に拡散すると共に、珪素
半導体単結晶基板1内へも内方拡散し(図3(d))、
ホウ素薄膜4は消滅する(図3(e))。
FIG. 3 is a process chart showing another example of the embodiment of the present invention. In this example, a silicon semiconductor single crystal substrate 1 (FIG. 3A) having a natural oxide film or the like 2 on its surface is heated at 950 ° C. for 1 minute in a hydrogen gas atmosphere to segregate boron onto the substrate surface. Boron thin film 4 was formed (FIG. 3B)
Thereafter, by supplying trichlorosilane (SiHCl 3 ) together with hydrogen to the surface of the silicon semiconductor single crystal substrate 1, the silicon single crystal thin film 3 is formed on the boron thin film 4 at 950 ° C.
Is grown (FIG. 3C). Next, in a hydrogen gas atmosphere,
When heated at 1100 ° C. for 10 seconds, the boron of the boron thin film 4 diffuses into the upper silicon single crystal thin film 3 and also into the silicon semiconductor single crystal substrate 1 (FIG. 3D),
The boron thin film 4 disappears (FIG. 3E).

【0024】図4は、本発明の実施形態の他の例を示す
工程図である。本例では、表面に自然酸化膜等2が付い
た珪素半導体単結晶基板1(図4(a))を水素ガス雰
囲気中で1100℃に加熱して自然酸化膜等2を除去し
た後に、基板表面に0.001ppmのジボラン(B2
6)ガスを10秒間供給し、基板表面にホウ素薄膜4
を堆積させる(図4(b))。引き続き、ホウ素薄膜4
が堆積した珪素半導体単結晶基板1の表面にトリクロロ
シラン(SiHCl3)を水素と共に供給することによ
り、ホウ素薄膜4上に珪素薄膜3を成長する(図4
(c))。次に、窒素ガス雰囲気中で1100℃で10
秒間加熱すると、ホウ素薄膜4のホウ素原子は上方の珪
素薄膜3中に拡散すると共に、珪素半導体単結晶基板1
内へも内方拡散し(図4(d))、ホウ素薄膜4は消滅
する(図4(e))。
FIG. 4 is a process chart showing another example of the embodiment of the present invention. In this example, the silicon semiconductor single crystal substrate 1 (FIG. 4A) having a natural oxide film 2 on the surface is heated to 1100 ° C. in a hydrogen gas atmosphere to remove the natural oxide film 2 and the like. 0.001 ppm of diborane (B 2
H 6 ) gas is supplied for 10 seconds, and a boron thin film 4 is
Is deposited (FIG. 4B). Then, boron thin film 4
By supplying trichlorosilane (SiHCl 3 ) together with hydrogen to the surface of the silicon semiconductor single crystal substrate 1 on which is deposited, the silicon thin film 3 is grown on the boron thin film 4 (FIG. 4).
(C)). Next, 10 minutes at 1100 ° C. in a nitrogen gas atmosphere.
When heated for 2 seconds, the boron atoms of the boron thin film 4 diffuse into the upper silicon thin film 3 and the silicon semiconductor single crystal substrate 1
The boron thin film 4 also diffuses inward (FIG. 4D) and disappears (FIG. 4E).

【0025】一旦形成したホウ素薄膜4は、第1の実施
形態のように珪素薄膜3の成長前に除去しても良いし、
或いは第2及び第3の実施形態のようにホウ素薄膜4を
残したまま珪素薄膜3を成長し、珪素薄膜3の成長時の
熱またはその後の熱処理によりホウ素薄膜4を消滅させ
るようにしてもよい。しかし、ホウ素薄膜4が次の珪素
薄膜3の成長に悪影響を及ぼす可能性があるならば、珪
素薄膜3の成長前に除去することが好ましい。このホウ
素薄膜4の除去方法としては、前述のように水素ガス雰
囲気中で1000℃以上に適度な時間加熱する方法以外
に、例えば、プラズマ処理やエッチング性ガスを用いる
方法がある。
The once formed boron thin film 4 may be removed before the growth of the silicon thin film 3 as in the first embodiment,
Alternatively, as in the second and third embodiments, the silicon thin film 3 may be grown while the boron thin film 4 is left, and the boron thin film 4 may be annihilated by heat during the growth of the silicon thin film 3 or subsequent heat treatment. . However, if the boron thin film 4 may adversely affect the next growth of the silicon thin film 3, it is preferable to remove the boron thin film 3 before growing the silicon thin film 3. As a method for removing the boron thin film 4, for example, there is a method using a plasma treatment or an etching gas in addition to the method of heating to 1000 ° C. or more for a suitable time in a hydrogen gas atmosphere as described above.

【0026】なお、本発明は上記の実施形態に限定され
るものではない。例えば、同様の考え方を適用すれば珪
素半導体単結晶基板以外に化合物半導体単結晶基板にも
適用できることは自明である。また、圧力は特に1気圧
において有効であるが、減圧でも同様の効果が確認され
ている。
The present invention is not limited to the above embodiment. For example, it is obvious that the same concept can be applied to a compound semiconductor single crystal substrate in addition to a silicon semiconductor single crystal substrate. Although the pressure is particularly effective at 1 atm, the same effect has been confirmed at reduced pressure.

【0027】[0027]

【発明の効果】以上説明した通り本発明によれば、ホウ
素がドープされた半導体単結晶基板上に珪素薄膜を成長
する際に、半導体単結晶基板の表面近傍のホウ素濃度を
低下させずに珪素薄膜を成長することができる。
As described above, according to the present invention, when growing a silicon thin film on a boron-doped semiconductor single crystal substrate, the silicon concentration can be reduced without decreasing the boron concentration near the surface of the semiconductor single crystal substrate. A thin film can be grown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の珪素薄膜の成長工程の一例を示す工程
図である。
FIG. 1 is a process chart showing an example of a silicon thin film growth process of the present invention.

【図2】基板中のホウ素原子濃度の深さ方向における濃
度分布を示すグラフである。
FIG. 2 is a graph showing a concentration distribution of a boron atom concentration in a substrate in a depth direction.

【図3】本発明の珪素薄膜の成長工程の他の例を示す工
程図である。
FIG. 3 is a process chart showing another example of the silicon thin film growth process of the present invention.

【図4】本発明の珪素薄膜の成長工程の他の例を示す工
程図である。
FIG. 4 is a process chart showing another example of the growth process of the silicon thin film of the present invention.

【図5】従来の珪素薄膜の成長工程の一例を示す工程図
である。
FIG. 5 is a process chart showing an example of a conventional silicon thin film growth process.

【符号の説明】[Explanation of symbols]

1 半導体単結晶基板 2 自然酸化膜等 3 珪素薄膜 4 ホウ素薄膜 Reference Signs List 1 semiconductor single crystal substrate 2 natural oxide film 3 silicon thin film 4 boron thin film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素をドープした半導体単結晶基板上
にホウ素薄膜を形成した後に、珪素薄膜を成長すること
を特徴とする薄膜の製造方法。
1. A method for producing a thin film, comprising: forming a boron thin film on a boron-doped semiconductor single crystal substrate and then growing a silicon thin film.
【請求項2】 形成したホウ素薄膜を除去した後に珪素
薄膜を成長することを特徴とする請求項1記載の薄膜の
製造方法。
2. The method according to claim 1, wherein the silicon thin film is grown after removing the formed boron thin film.
【請求項3】 形成したホウ素薄膜上に珪素薄膜を成長
した後、更に熱処理を施すことを特徴とする請求項1記
載の薄膜の製造方法。
3. The method for producing a thin film according to claim 1, wherein a heat treatment is further performed after growing the silicon thin film on the formed boron thin film.
【請求項4】 半導体単結晶基板内にドープされたホウ
素を基板表面に偏析させてホウ素薄膜を形成することを
特徴とする請求項1ないし請求項3のいずれか1項に記
載の薄膜の製造方法。
4. The method of manufacturing a thin film according to claim 1, wherein boron doped in the semiconductor single crystal substrate is segregated on the substrate surface to form a boron thin film. Method.
【請求項5】 半導体単結晶基板上にジボランガスを供
給してホウ素薄膜を形成することを特徴とする請求項1
ないし請求項3のいずれか1項に記載の薄膜の製造方
法。
5. A boron thin film is formed by supplying diborane gas onto a semiconductor single crystal substrate.
A method for producing a thin film according to claim 3.
【請求項6】 ホウ素を偏析させる際の加熱温度が70
0℃以上980℃以下であることを特徴とする請求項4
記載の薄膜の製造方法。
6. A heating temperature at the time of segregating boron is 70.
The temperature is between 0 ° C and 980 ° C.
A method for producing the thin film according to the above.
【請求項7】 ホウ素薄膜を除去すると同時にホウ素を
内方拡散させた後に、珪素薄膜を成長することを特徴と
する請求項2記載の薄膜の製造方法。
7. The method according to claim 2, wherein a silicon thin film is grown after the boron thin film is removed and boron is diffused inward at the same time.
【請求項8】 前記半導体単結晶基板は珪素半導体単結
晶基板であり、前記珪素薄膜は珪素単結晶薄膜であるこ
とを特徴とする請求項1ないし請求項7のいずれか1項
に記載の珪素薄膜の製造方法。
8. The silicon according to claim 1, wherein the semiconductor single crystal substrate is a silicon semiconductor single crystal substrate, and the silicon thin film is a silicon single crystal thin film. Manufacturing method of thin film.
JP9677698A 1998-03-25 1998-03-25 Manufacture of thin film Pending JPH11274089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9677698A JPH11274089A (en) 1998-03-25 1998-03-25 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9677698A JPH11274089A (en) 1998-03-25 1998-03-25 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPH11274089A true JPH11274089A (en) 1999-10-08

Family

ID=14174049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9677698A Pending JPH11274089A (en) 1998-03-25 1998-03-25 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPH11274089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685266B1 (en) 2005-12-26 2007-02-22 주식회사 실트론 Method of heat treatment using ozone buffer layer
JP2009111292A (en) * 2007-10-31 2009-05-21 Sumco Corp Method and device for manufacturing epitaxial wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685266B1 (en) 2005-12-26 2007-02-22 주식회사 실트론 Method of heat treatment using ozone buffer layer
JP2009111292A (en) * 2007-10-31 2009-05-21 Sumco Corp Method and device for manufacturing epitaxial wafer

Similar Documents

Publication Publication Date Title
US6630024B2 (en) Method for the production of an epitaxially grown semiconductor wafer
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
JP6448805B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing epitaxially coated semiconductor wafer
WO2005048331A1 (en) Process for producing silicon epitaxial wafer
Lin et al. Effects of SiH4, GeH4, and B 2 H 6 on the Nucleation and Deposition of Polycrystalline Si1− x Ge x Films
JPH05182920A (en) Epitaxial semiconductor wafer with low oxygen region, spread of which can be adjusted, and manufacture thereof
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
JPH02260531A (en) Treatment of silicon surface
JP3169114B2 (en) Method for manufacturing single crystal thin film
JP7435516B2 (en) Epitaxial wafer manufacturing method
JP2916580B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing the same
JPH11274089A (en) Manufacture of thin film
US20070140828A1 (en) Silicon wafer and method for production of silicon wafer
Cao et al. Growth of phosphorus and nitrogen co-doped diamond films
Comfort et al. I n situ arsenic doping of epitaxial silicon at 800° C by plasma enhanced chemical vapor deposition
JPH09266214A (en) Silicon wafer
JPH10144698A (en) Silicon wafer and its manufacture
JPH07183231A (en) Semiconductor substrate and its manufacture
JP2013051348A (en) Epitaxial wafer and method for producing the same
JP2004363510A (en) Manufacturing method of semiconductor substrate
O'Neil et al. Optimization of process conditions for selective silicon epitaxy using disilane, hydrogen, and chlorine
WO2020054149A1 (en) Manufacturing method for epitaxial silicon wafer and epitaxial silicon wafer
KR100679870B1 (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JPH04330717A (en) Manufacture of semiconductor film
JP2987926B2 (en) Vapor growth method