JPH1127172A - Frequency selective radio relay amplifier - Google Patents

Frequency selective radio relay amplifier

Info

Publication number
JPH1127172A
JPH1127172A JP19522397A JP19522397A JPH1127172A JP H1127172 A JPH1127172 A JP H1127172A JP 19522397 A JP19522397 A JP 19522397A JP 19522397 A JP19522397 A JP 19522397A JP H1127172 A JPH1127172 A JP H1127172A
Authority
JP
Japan
Prior art keywords
frequency
signal
filter
temperature
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19522397A
Other languages
Japanese (ja)
Other versions
JP3587962B2 (en
Inventor
Michio Norichika
道夫 則近
Yoichi Okubo
陽一 大久保
Hiroshi Suzuki
鈴木  寛
Takashi Yokote
隆司 横手
Masakatsu Yamazaki
正勝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Kokusai Electric Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Kokusai Electric Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Kokusai Electric Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19522397A priority Critical patent/JP3587962B2/en
Publication of JPH1127172A publication Critical patent/JPH1127172A/en
Application granted granted Critical
Publication of JP3587962B2 publication Critical patent/JP3587962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superheterodyne Receivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce characteristic deterioration of a device which is caused by the temperature characteristic of an IF (intermediate frequency) filter of a bidirectional relay amplifier which converts an input high frequency signal of multi channel into an intermediate frequency in each channel, selects it, amplifies it and after that, converts it into a high frequency signal again to send. SOLUTION: The deviation of a center frequency to the temperature of an IF filter is preliminarily stored in memory 41, a temperature sensor 42 detects the temperature of the IF filter, the center frequency deviation of the IF filter at the time of the temperature is read from the memory 41, an IF frequency is changed by controlling a PLL 36 of a local circuit to counterbalance the deviation so that the IF frequency can be made to match the center frequency of the IF filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動通信の無線中
継装置に関し、特に、周波数選択形中継増幅装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio repeater for mobile communication, and more particularly to a frequency selective repeater amplifying apparatus.

【0002】[0002]

【従来の技術】移動無線通信では、地形や建造物による
影響や基地局からの距離等により、基地局からの電波が
届きにくい地域でのサービスを展開するために無線中継
増幅装置が用いられる。この無線中継増幅装置のうち、
受信信号の無線周波数を特定の周波数(中間周波数とい
う)に変換して増幅し、再度、無線周波数に変換して送
信する装置を周波数選択形無線中継増幅装置という。
2. Description of the Related Art In mobile radio communication, a radio relay amplifying device is used to develop a service in an area where radio waves from a base station are difficult to reach due to the influence of terrain and buildings, the distance from the base station, and the like. Of this wireless relay amplifier,
A device that converts a radio frequency of a received signal to a specific frequency (referred to as an intermediate frequency), amplifies it, converts it to a radio frequency again, and transmits the signal is called a frequency-selective wireless relay amplifier.

【0003】図2は従来の周波数選択形無線中継増幅装
置の構成例図である。図において、1,13は、それぞ
れ基地局向け,移動向けのアンテナである。2,12,
は、それぞれ基地局向け,移動局向けの共用器、3,1
4はそれぞれ下り,上り信号用の低雑音増幅器(LN
A:Low Noise Amplifier )、30は複数の周波数変換
選択増幅回路、4,10,15,21はそれぞれ複数の
周波数変換選択増幅回路30に分配合成するための分配
器,合成器、5,7,16,18は周波数変換用のミキ
サ、8,9,19,20は局部発振器、6,17はそれ
ぞれ上り,下りの中間周波フィルタ(以下、IFフィル
タという)、11,22は下り,上りの電力増幅器(H
PA)である。IF段は、一般に、IFフィルタ,増幅
器,IFフィルタの順に縦続接続されているが、ここで
は1つのIFフィルタのみを図示し、他の図示は省略し
た。
FIG. 2 is a diagram showing an example of the configuration of a conventional frequency-selective wireless relay amplifier. In the figure, reference numerals 1 and 13 denote antennas for a base station and a mobile antenna, respectively. 2,12,
Are duplexers for base stations and mobile stations, respectively.
4 are low-noise amplifiers (LN
A: Low Noise Amplifier), 30 is a plurality of frequency conversion selective amplification circuits, and 4, 10, 15, and 21 are distributors and combiners for distributing and synthesizing the plurality of frequency conversion selective amplification circuits 30, respectively. 16 and 18 are mixers for frequency conversion, 8, 9, 19 and 20 are local oscillators, 6 and 17 are upstream and downstream intermediate frequency filters (hereinafter referred to as IF filters), and 11 and 22 are downstream and upstream powers. Amplifier (H
PA). The IF stages are generally connected in cascade in the order of an IF filter, an amplifier, and an IF filter. However, here, only one IF filter is illustrated, and other illustrations are omitted.

【0004】この構成の中で、IFフィルタ6,17
は、ミキサ5,16の出力端に発生する希望中間周波以
外の不要波、いわゆるスプリアスを除去するのみなら
ず、システム内の多数の入力チャネルのうち希望するチ
ャネルを選択する役割を果たす。
In this configuration, IF filters 6, 17
Plays a role not only to remove unnecessary waves other than the desired intermediate frequency generated at the output terminals of the mixers 5 and 16, that is, so-called spurious, but also to select a desired channel among a number of input channels in the system.

【0005】この、IFフィルタの特性選定に関して
は、隣接チャネルの減衰量と同時に帯域内の振幅,位相
特性(遅延時間偏差特性)が重要である。特に、ディジ
タルセルラシステムのようなTDMA(時分割多元接
続)方式を採用している自動車電話システムでは、この
遅延特性と振幅特性の偏差による信号品質劣化は非常に
大きな問題となる。上記のうち、遅延時間偏差により生
ずる遅延歪は信号内の符号間干渉を起こし、そのための
信号品質劣化は中継システムの大きな障害となる。
In selecting the characteristics of the IF filter, the amplitude and phase characteristics (delay time deviation characteristics) in the band are important at the same time as the attenuation of the adjacent channel. In particular, in a mobile telephone system employing a TDMA (time division multiple access) system such as a digital cellular system, signal quality deterioration due to the deviation between the delay characteristic and the amplitude characteristic becomes a very serious problem. Among the above, the delay distortion caused by the delay time deviation causes intersymbol interference in the signal, and the degradation of the signal quality due to this causes a serious obstacle to the relay system.

【0006】また、フィルタの次数にほぼ比例する通過
域の絶対遅延時間も重要である。特に、TDMA方式の
場合は、基地局と移動局との間で同期をとる必要があ
り、通常、移動局の基地局からの距離によって決定され
る伝搬路の遅延に合わせ、基地局側が信号をシフトさせ
同期をとる方法が採用されている。従ってこのフィルタ
を通過する際に遅延時間が増大すると、同期可能の許容
範囲を逸脱し、通話不可能となる恐れがある。
Also important is the absolute delay time of the passband, which is approximately proportional to the order of the filter. In particular, in the case of the TDMA system, it is necessary to synchronize between the base station and the mobile station. Usually, the base station side transmits the signal in accordance with the propagation path delay determined by the distance of the mobile station from the base station. A method of shifting and synchronizing is adopted. Therefore, if the delay time increases when passing through this filter, there is a possibility that the communication may be out of the allowable range of the synchronization and the communication may not be possible.

【0007】これらの問題を踏まえ、このような周波数
選択形中継装置のIFフィルタの選定には、減衰域の減
衰傾度と減衰量、これに相反する性質の通過帯域内の振
幅,遅延時間偏差特性、そして、フィルタ通過の際の絶
対遅延時間というフィルタ段数(次数)の増加による減
衰傾度の急峻化に相反する特性の最適値を選択すること
が重要である。
In consideration of these problems, the selection of the IF filter of such a frequency-selective repeater involves selecting the attenuation gradient and attenuation in the attenuation region, and the amplitude and delay time deviation characteristics in the pass band having the opposite properties. It is important to select an optimum value of a characteristic which is opposite to the steepness of the attenuation gradient due to an increase in the number of filter stages (order), that is, the absolute delay time when passing through the filter.

【0008】さて、前述の中間周波数としては、一般に
100MHz 帯前後が使われる場合が多い。その際、IF
フィルタの素子として、クリスタルやSAWフィルタ
(弾性表面波フィルタ)が広く利用されており、特に、
SAWフィルタは小形軽量化に非常に大きな効果を発揮
する。しかし、このSAWフィルタの最大の欠点は、温
度により中心周波数が大きく変動することである。すな
わち、SAWフィルタは圧電基板のSTカットによる温
度特性を有し、二次特性を示す。
[0008] As the above-mentioned intermediate frequency, in general, around 100 MHz band is often used. At that time, IF
Crystals and SAW filters (surface acoustic wave filters) are widely used as filter elements.
The SAW filter is very effective in reducing the size and weight. However, the biggest drawback of this SAW filter is that the center frequency greatly varies depending on the temperature. That is, the SAW filter has a temperature characteristic due to the ST cut of the piezoelectric substrate and exhibits a secondary characteristic.

【0009】図3はSAWフィルタの中心周波数温度特
性例図であり、SAWフィルタの中心周波数f0 が温度
によりどのように変化するかを表した図である。縦軸は
Δf/f0 を表す。この例からもわかるように、常温
(20℃)より周囲温度が上昇(60℃)しても下降
(−20℃)しても中心周波数が低下する。いわゆる二
次特性となっている。
FIG. 3 is a graph showing an example of the temperature characteristics of the center frequency of the SAW filter, and shows how the center frequency f 0 of the SAW filter changes with temperature. The vertical axis represents Δf / f 0 . As can be seen from this example, the center frequency decreases regardless of whether the ambient temperature rises (60 ° C.) or falls (−20 ° C.) from room temperature (20 ° C.). This is a so-called secondary characteristic.

【0010】図4はSAWフィルタの高温側の温度特性
例図であり、常温(25℃)の時と高温(50℃)の時
の減衰特性例である。希望波をf0 とし周波数の低い側
の隣接チャネルをf0 −1chとすると、常温(25
℃)では40dB確保できる減衰量も、周囲温度が50
℃の時は減衰特性が周波数の低い方にずれるため減衰量
は10dBしか得られない。このため、保証できる減衰
量は常温での実力値では40dBでも実際は10dBし
か保証できない。
FIG. 4 is a graph showing temperature characteristics on the high temperature side of the SAW filter, showing examples of attenuation characteristics at normal temperature (25 ° C.) and at high temperature (50 ° C.). When the lower side adjacent channel frequencies to the desired wave and f 0 and f 0 -1Ch, room temperature (25
° C), the amount of attenuation that can be secured at 40 dB is 50
In the case of ° C., the attenuation characteristic shifts to a lower frequency, so that only an attenuation of 10 dB can be obtained. For this reason, even if the amount of attenuation that can be guaranteed is 40 dB in the actual value at room temperature, only 10 dB can actually be guaranteed.

【0011】この場合、実際の装置の使用温度範囲のす
べてにわたって減衰量を常温と同じだけ保証しようとす
ると、それだけ帯域を狭くするか、次数を増やして減衰
傾度を急峻にするか、いずれにしても狭帯域で次数の多
いフィルタを選定することになる。しかし、そうする
と、遅延時間偏差,絶対遅延量ともに増加して所要の規
格を満たすことができなくなる。
In this case, in order to ensure the same amount of attenuation as at room temperature over the entire operating temperature range of the actual device, either the band is narrowed or the order is increased to make the attenuation gradient steep. Therefore, a filter having a narrow band and a large number of orders is selected. However, in this case, both the delay time deviation and the absolute delay amount increase, and the required standard cannot be satisfied.

【0012】[0012]

【発明が解決しようとする課題】このように、周波数選
択形の無線中継増幅装置のIFフィルタとして、温度に
よる中心周波数の変化が大きいフィルタを使用する場
合、遅延時間偏差,絶対遅延時間による信号品質劣化を
生じないようにすると減衰傾度が不足して実際に期待で
きる隣接チャネルの減衰量は常温の値より少なくなりる
という欠点があった。隣接チャネルの減衰量が十分とれ
ない場合、中継装置周辺のエリアで隣接チャネルが使わ
れたとき、妨害波として送出してしまったり、入感有ま
たは干渉ありチャネルとして誤認識し実用上混乱するこ
とがある。
As described above, when a filter having a large change in center frequency due to temperature is used as an IF filter of a frequency-selective wireless relay amplifier, signal quality due to delay time deviation and absolute delay time is used. If the deterioration is not caused, there is a disadvantage that the attenuation gradient becomes insufficient and the amount of attenuation of the adjacent channel that can be actually expected becomes smaller than the value at room temperature. If the adjacent channel is not sufficiently attenuated, if the adjacent channel is used in the area around the repeater, it may be transmitted as an interfering wave or may be misrecognized as a channel with intrusion or interference, causing confusion in practical use. There is.

【0013】本発明の目的は、従来技術の周波数選択形
の無線中継増幅装置のIFフィルタの温度変化による隣
接チャネル減衰量の劣化の問題点を解決し、帯域内の遅
延時間特性を維持しつつ、フィルタ回路構成を変えるこ
となく、周囲温度が変化しても隣接チャネルの減衰量を
維持して、干渉に強くした無線中継増幅装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of deterioration of adjacent channel attenuation due to a temperature change of an IF filter of a conventional frequency-selective wireless relay amplifier, and to maintain delay time characteristics within a band. It is another object of the present invention to provide a wireless relay amplifying apparatus that is resistant to interference by maintaining the attenuation of an adjacent channel even when the ambient temperature changes without changing the filter circuit configuration.

【0014】[0014]

【課題を解決するための手段】本発明の周波数選択形無
線中継増幅装置は、基地局から移動局に対する下り回線
電波を中継増幅するとともに移動局から基地局に対する
上り回線電波を中継増幅する無線中継増幅装置であっ
て、互いに対向する送受信チャネル毎に一定の中間周波
数に周波数変換して選択増幅する複数の周波数変換選択
増幅回路が備えられ、該複数の周波数変換選択増幅回路
のそれぞれは、下り系選択増幅部と上り系選択増幅部と
が設けられ、該下り/上り選択増幅部のそれぞれは、入
力高周波信号を入力側ミキサに入力して周波数シンセサ
イザ構成の入力側局部発振器からの局発信号によって前
記中間周波数に変換し、IFフィルタが備えられたIF
選択増幅段で当該送受信チャネルの信号を選択増幅した
後、出力側ミキサに入力して出力側局部発振器からの局
発信号によってもとの高周波信号に変換して出力するよ
うに構成された周波数選択形無線中継増幅装置におい
て、前記IFフィルタは、SAWフィルタで構成され、
前記入力側および出力側局部発振器のそれぞれは、基準
信号を供給する基準発振器と該基準信号が入力され帰還
信号が入力されて位相同期をとるパルススワロー形PL
L回路と該PLL回路からの制御電圧が入力される電圧
制御発振器と該電圧制御発振器の出力をバッファ回路を
介して前記ミキサに与えるとともに前記PLL回路に前
記帰還信号として与える分配器とが備えられ、前記SA
Wフィルタの温度を検出する温度センサと、前記SAW
フィルタの温度に対する中心周波数の偏差を使用温度範
囲にわたって予め記憶させたメモリと、前記温度センサ
によって検出した温度に対応する前記SAWフィルタの
中心周波数の偏差を前記メモリから読み出し、前記局部
発振器の周波数を制御して前記中間周波数を温度によっ
て変化する前記SAWフィルタの中心周波に一致させる
制御回路とが備えられたことを特徴とするものである。
SUMMARY OF THE INVENTION A frequency selective wireless relay amplifier according to the present invention relays and amplifies downlink radio waves from a base station to a mobile station, and relays and amplifies uplink radio waves from a mobile station to a base station. An amplification device, comprising: a plurality of frequency conversion selection amplifier circuits for frequency-converting and selectively amplifying a transmission / reception channel facing each other by converting the frequency to a constant intermediate frequency; A selection amplification unit and an up system selection amplification unit are provided. Each of the down / up selection amplification units inputs an input high-frequency signal to an input-side mixer and receives a local oscillator signal from an input-side local oscillator having a frequency synthesizer configuration. IF converted to the intermediate frequency and provided with an IF filter
A frequency selector configured to selectively amplify a signal of the transmission / reception channel in a selective amplification stage, input the signal to an output mixer, convert the signal into an original high-frequency signal by a local signal from an output local oscillator, and output the signal. In the type wireless relay amplifier, the IF filter is constituted by a SAW filter,
Each of the input-side and output-side local oscillators includes a reference oscillator for supplying a reference signal, and a pulse swallow type PL for receiving the reference signal and receiving a feedback signal to achieve phase synchronization.
An L circuit, a voltage-controlled oscillator to which a control voltage from the PLL circuit is input, and a distributor for providing an output of the voltage-controlled oscillator to the mixer via a buffer circuit and for providing the PLL circuit as the feedback signal. , The SA
A temperature sensor for detecting the temperature of the W filter, and the SAW
A memory in which the deviation of the center frequency with respect to the temperature of the filter is stored in advance over the operating temperature range, and the deviation of the center frequency of the SAW filter corresponding to the temperature detected by the temperature sensor is read from the memory, and the frequency of the local oscillator is calculated. And a control circuit for controlling the intermediate frequency to coincide with the center frequency of the SAW filter that changes with temperature.

【0015】[0015]

【発明の実施の形態】上述のように、本発明では、IF
フィルタとしてSAWフィルタを使用し、SAWフィル
タの二次特性的温度特性に着目し、温度に対する中心周
波数の偏差を予めメモリに記憶させ、SAWフィルタの
温度を検出し、その検出温度に対応する周波数偏差をメ
モリから読み出してその偏差を相殺するように局部発振
周波数を変化させ、変換したIF周波数が常にSAWフ
ィルタの中心周波数になるように構成した。
DETAILED DESCRIPTION OF THE INVENTION As described above, in the present invention, IF
Using a SAW filter as a filter, focusing on the secondary characteristic temperature characteristics of the SAW filter, storing the deviation of the center frequency with respect to the temperature in a memory in advance, detecting the temperature of the SAW filter, and detecting the frequency deviation corresponding to the detected temperature Was read from the memory and the local oscillation frequency was changed so as to cancel the deviation, so that the converted IF frequency was always the center frequency of the SAW filter.

【0016】前述のように、IFフィルタの環境温度に
よる特性の変化を考える際、特に、SAWフィルタの場
合、温度による特性変化の傾向を分析すると、中心周波
数は温度によって変化するが、変化した中心周波数を中
心とする帯域内特性及び減衰傾度はほとんど変化しな
い。図5の例で説明する。図において、f0 は常温にお
けるフィルタの中心周波数、破線は常温の減衰特性、B
は常温におけるフィルタ帯域とする。常温時の信号は、
中心周波数f0 を中心に変調された信号としてスペクト
ルを広げ、帯域Bの一部を占有する。その際のフィルタ
を通過する信号の品質劣化は、帯域Bの遅延時間偏差等
の特性に左右される。次に、常温から+T℃だけ変化し
たときの特性は、中心周波数がf0 ’に移動するが、こ
のf0 ’を中心に見れば、減衰特性も帯域B’の特性も
常温の特性とほとんど変わらないという性質がある。そ
こで、常温時のIF周波数と、常温+T℃時のIF周波
数を、フィルタの中心周波数になるようにオフセットさ
せてやれば、周囲温度が変化しても常温のフィルタ特性
の実力を維持した周波数選択が実現でき、従来と同じフ
ィルタ構成でありながら、温度が変化しても常温と同じ
フィルタの実力を維持でき、隣接チャネルの減衰量,帯
域内の特性とも良好に保つことができる。
As described above, when considering the characteristic change due to the environmental temperature of the IF filter, especially in the case of the SAW filter, analyzing the tendency of the characteristic change due to the temperature, the center frequency changes with the temperature. The in-band characteristics centered on the frequency and the attenuation gradient hardly change. This will be described with reference to the example of FIG. In the figure, f 0 is the center frequency of the filter at room temperature, the broken line is the attenuation characteristic at room temperature, B
Is the filter band at room temperature. The signal at normal temperature is
The spectrum is expanded as a signal modulated around the center frequency f 0 , and occupies a part of the band B. The quality degradation of the signal passing through the filter at that time depends on characteristics such as the delay time deviation of the band B. Then, characteristics when the changes by + T ° C. from room temperature, 'but moves to, the f 0' center frequency f 0 if you look around the characteristics of the damping characteristics bandwidth B 'almost normal temperature properties There is a property that does not change. Therefore, if the IF frequency at normal temperature and the IF frequency at normal temperature + T ° C. are offset so as to be the center frequency of the filter, a frequency selection that maintains the ability of the filter characteristics at normal temperature even if the ambient temperature changes. Thus, even though the filter configuration is the same as that of the related art, even if the temperature changes, the same ability of the filter as at room temperature can be maintained, and the attenuation amount of the adjacent channel and the characteristics within the band can be maintained well.

【0017】[0017]

【実施例】実際に周波数をオフセットする本発明の実施
例について説明する。図1は本発明の実施例の要部を示
す周波数変換選択増幅回路のブロック図である。この周
波数変換選択増幅回路は、通話チャネル毎に設けられ
る。図の上側は基地局から移動局への下り回線系選択増
幅部であり、下側は上り回線系選択増幅部である。図に
おいて、まず、下り系において、31,35はミキサ、
32,34はIFフィルタ(SAWフィルタ)、33は
増幅器、36,46はパルススワロー形のPLL回路、
37,47は電圧制御形発振器(VCO:Voltage Cont
roled Oscillator) 、38,48は分配器、39,49
はバッファ回路、40はPLL回路36,46に基準信
号を入力する基準発振器、41はメモリ、42は温度セ
ンサ、43は制御回路である。
An embodiment of the present invention for actually offsetting the frequency will be described. FIG. 1 is a block diagram of a frequency conversion selective amplifier circuit showing a main part of an embodiment of the present invention. This frequency conversion selection amplifier circuit is provided for each communication channel. The upper part of the figure is a downlink selective amplifying unit from the base station to the mobile station, and the lower part is an uplink selective amplifying unit. In the figure, first, in the downstream system, 31 and 35 are mixers,
32 and 34 are IF filters (SAW filters), 33 is an amplifier, 36 and 46 are pulse swallow PLL circuits,
37, 47 are voltage controlled oscillators (VCO: Voltage Cont.)
roled Oscillator), 38, 48 are distributors, 39, 49
Is a buffer circuit, 40 is a reference oscillator for inputting a reference signal to the PLL circuits 36 and 46, 41 is a memory, 42 is a temperature sensor, and 43 is a control circuit.

【0018】上り系については、上記の下り系と構成が
同じであり、ミキサ51,55、IFフィルタ52,5
4、増幅器53、PLL回路56,66、VCO57,
67、分配器58,68、バッファ回路59,69、基
準発振器60によって構成され、メモリ41,温度セン
サ42,制御回路43は下り系と共用するように構成さ
れている。
The upstream system has the same configuration as the above-described downstream system, and includes mixers 51 and 55 and IF filters 52 and 5.
4. Amplifier 53, PLL circuits 56 and 66, VCO 57,
67, distributors 58 and 68, buffer circuits 59 and 69, and a reference oscillator 60. The memory 41, the temperature sensor 42, and the control circuit 43 are configured to be shared with a downstream system.

【0019】4つのPLL回路36,46,56,66
は、それぞれVCO37,47,57,67に電圧制御
の帰還をかけ、局発信号の周波数を安定化している。こ
れらのループで構成される局部発振回路は、従来は、シ
ステム内のチャネルを選択するために機能し、局発信号
の可変ステップはチャネル間隔と一致しており、VCO
で発振した信号の−部を、分配器でPLL回路にフィー
ドバックし、PLL回路の内部の分周器により基準発振
器からの周波数と比較可能な周波数に分周するように構
成されている。通常、この比較周波数のことを突き合わ
せ周波数と称しているが、従来のパルススワロー形PL
L回路では、この突き合わせ周波数=チャネル間隔とな
っている。しかし、本発明では、局発信号の可変ステッ
プをシステムのチャネル間隔よりもっと狭い、例えば1
/16の間隔の周波数を突き合わせ周波数にすることに
より、SAWフィルタの中心周波数の温度による偏差を
補償するため微少周波数ステップで可変できるようにし
た。
Four PLL circuits 36, 46, 56, 66
Applies voltage control feedback to the VCOs 37, 47, 57, and 67 to stabilize the frequency of the local oscillation signal. Conventionally, the local oscillation circuit constituted by these loops functions to select a channel in the system, and the variable step of the local oscillation signal matches the channel interval.
The negative part of the signal oscillated in step (1) is fed back to the PLL circuit by the divider, and is divided by the divider inside the PLL circuit to a frequency that can be compared with the frequency from the reference oscillator. Normally, this comparison frequency is called a matching frequency, but the conventional pulse swallow type PL
In the L circuit, this matching frequency = channel interval. However, in the present invention, the variable step of the local signal is set to be smaller than the channel spacing of the system, for example, 1 step.
By setting the frequency at the interval of / 16 as the matching frequency, the center frequency of the SAW filter can be varied in small frequency steps to compensate for the deviation due to temperature.

【0020】実際の例として、図3のような温度特性を
もつSAWフィルタを使った場合の例を示す。このフィ
ルタ特性は、20℃の中心周波数に対する各温度の周波
数偏差を示しており、−20℃では−60ppm 、−10
℃では−30ppm 、45℃では−30ppm 、60℃では
−60ppm である。この特性をテーブルとしてメモリ4
1に記憶させ、温度センサ42からの温度情報を読み込
み、対応するデータを読み出して、制御回路43からP
LL回路36,46,56,66に、局発信号の周波数
を図3の特性の逆特性となるような制御信号を与える。
実験では、突き合わせ周波数を1.5625kHz 、IF
周波数を156MHz 、チャネルスペーシング(間隔)を
25kHz として行った。
As an actual example, an example in which a SAW filter having a temperature characteristic as shown in FIG. 3 is used will be described. This filter characteristic shows the frequency deviation of each temperature with respect to the center frequency of 20 ° C. At −20 ° C., −60 ppm, −10 ppm
C., -30 ppm, 45.degree. C., -30 ppm, and 60.degree. C., -60 ppm. This characteristic is stored in the memory 4 as a table.
1, the temperature information from the temperature sensor 42 is read, and the corresponding data is read.
A control signal is supplied to the LL circuits 36, 46, 56, and 66 so that the frequency of the local oscillation signal has a characteristic opposite to the characteristic shown in FIG.
In the experiment, the matching frequency was 1.5625 kHz, IF
The frequency was 156 MHz, and the channel spacing (interval) was 25 kHz.

【0021】その結果、表1のとおり、1.56kHz 間
隔(ステップ)で、必要なオフセット量だけ、局発信号
でIF周波数をずらすことができるため、−20℃〜+
60℃の全域で常温とほぼ同じフィルタ特性を維持する
ことができる。なお、1.5625kHz ステップで変化
させる局発信号を16ステップずらすと隣接チャネルと
なる。
As a result, as shown in Table 1, the IF frequency can be shifted by the required offset amount by the required offset amount at the interval (step) of 1.56 kHz, so that -20.degree.
It is possible to maintain almost the same filter characteristics as at room temperature in the entire region of 60 ° C. If the local oscillation signal changed in 1.5625 kHz steps is shifted by 16 steps, it becomes an adjacent channel.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
り、IFフィルタの次数などの構成を変えないで、温度
に対応してIF周波数をオフセットさせることにより、
従来技術での問題点であったSAWフィルタの温度によ
る中心周波数の変化による減衰特性の劣化を解消し、使
用温度範囲における低遅延時間偏差,低絶対遅延と、隣
接チャネルの減衰量を維持した周波数選択形無線中継増
幅装置を実現することができるので実用上極めて大きい
効果がある。
As described in detail above, according to the present invention, the IF frequency can be offset in accordance with the temperature without changing the configuration of the IF filter and the like.
The problem of the prior art, in which the deterioration of the attenuation characteristic due to the change of the center frequency due to the temperature of the SAW filter is solved, the low delay time deviation and the low absolute delay in the operating temperature range, and the frequency maintaining the attenuation of the adjacent channel are maintained. Since a selective wireless relay amplifier can be realized, there is an extremely large effect in practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の要部を示すブロック図であ
る。
FIG. 1 is a block diagram showing a main part of an embodiment of the present invention.

【図2】従来の中継増幅装置のブロック図である。FIG. 2 is a block diagram of a conventional relay amplifying device.

【図3】SAWフィルタの中心周波数の温度特性例図で
ある。
FIG. 3 is an example of a temperature characteristic of a center frequency of a SAW filter.

【図4】SAWフィルタの温度特性例図である。FIG. 4 is a diagram showing an example of temperature characteristics of a SAW filter.

【図5】SAWフィルタの温度特性例図である。FIG. 5 is an example of a temperature characteristic of a SAW filter.

【符号の説明】[Explanation of symbols]

1,13 アンテナ 2,12 共用器 3,14 LNA 4,15 分配器 5,7,16,18 ミキサ 6,17 IFフィルタ 8,9,16,18 局部発振器 10,21 合成器 11,22 電力増幅器 30 周波数変換選択増幅回路 31,35,51,55 ミキサ 32,34,52,54 IFフィルタ 33,53 増幅器 36,46,56,66 PLL回路 37,47,57,67 VCO 38,48,58,68 分配器 39,49,59,69 バッファ回路 40,60 基準発振器 41 メモリ 42 温度センサ 43 制御回路 1,13 Antenna 2,12 Duplexer 3,14 LNA 4,15 Divider 5,7,16,18 Mixer 6,17 IF Filter 8,9,16,18 Local Oscillator 10,21 Combiner 11,22 Power Amplifier 30 frequency conversion selective amplifier circuit 31, 35, 51, 55 mixer 32, 34, 52, 54 IF filter 33, 53 amplifier 36, 46, 56, 66 PLL circuit 37, 47, 57, 67 VCO 38, 48, 58, 68 Distributor 39, 49, 59, 69 Buffer circuit 40, 60 Reference oscillator 41 Memory 42 Temperature sensor 43 Control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 寛 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 (72)発明者 横手 隆司 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 (72)発明者 山崎 正勝 東京都港区虎ノ門二丁目10番1号 エヌ・ ティ・ティ移動通信網株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Suzuki 3-14-20 Higashinakano, Nakano-ku, Tokyo Kokusai Electric Co., Ltd. (72) Takashi Yokote 3-14-20 Higashinakano, Nakano-ku, Tokyo Kokusai Electric (72) Inventor Masakatsu Yamazaki Inside NTT Mobile Communication Network Co., Ltd. 2-1-1 Toranomon, Minato-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基地局と移動局の間の上り/下り回線電
波を双方向中継増幅する中継増幅装置であって、互いに
対向する送受信チャネル毎に入力高周波信号を一定の中
間周波数に周波数変換して選択増幅したのち再度高周波
信号に周波数変換して送出する周波数選択形無線中継増
幅装置において、 前記中間周波数で選択増幅するために用いられるIFフ
ィルタの温度による中心周波数の偏差を使用温度範囲に
わたって予め記憶させたメモリと、 前記IFフィルタの温度を検出する温度センサと、 該温度センサによって検出した温度に対応する前記IF
フィルタの中心周波数の偏差を前記メモリから読み出
し、前記周波数変換するための局発信号の周波数を制御
して前記中間周波数を温度によって変化する前記IFフ
ィルタの中心周波数に一致させる制御手段とを備えたこ
とを特徴とする周波数選択形無線中継増幅装置。
1. A relay amplifying apparatus for bidirectionally relaying and amplifying uplink / downlink radio waves between a base station and a mobile station, and converts an input high-frequency signal into a constant intermediate frequency for each of transmission / reception channels facing each other. In the frequency selective type wireless relay amplifying device which frequency-converts the signal to a high-frequency signal again and sends it out, the deviation of the center frequency due to the temperature of the IF filter used for selective amplification at the intermediate frequency is determined in advance over the operating temperature range. A stored memory; a temperature sensor for detecting a temperature of the IF filter; and the IF corresponding to a temperature detected by the temperature sensor.
Control means for reading the deviation of the center frequency of the filter from the memory, controlling the frequency of a local oscillation signal for the frequency conversion, and making the intermediate frequency coincide with the center frequency of the IF filter which changes with temperature. A frequency-selective wireless relay amplifying device, characterized in that:
【請求項2】 基地局から移動局に対する下り回線電波
を中継増幅するとともに移動局から基地局に対する上り
回線電波を中継増幅する無線中継増幅装置であって、互
いに対向する送受信チャネル毎に一定の中間周波数に周
波数変換して選択増幅する複数の周波数変換選択増幅回
路が備えられ、 該複数の周波数変換選択増幅回路のそれぞれは、下り系
選択増幅部と上り系選択増幅部とが設けられ、該下り/
上り選択増幅部のそれぞれは、入力高周波信号を入力側
ミキサに入力して周波数シンセサイザ構成の入力側局部
発振器からの局発信号によって前記中間周波数に変換
し、IFフィルタが備えられたIF選択増幅段で当該送
受信チャネルの信号を選択増幅した後、出力側ミキサに
入力して出力側局部発振器からの局発信号によってもと
の高周波信号に変換して出力するように構成された周波
数選択形無線中継増幅装置において、 前記IFフィルタは、SAWフィルタで構成され、 前記入力側および出力側局部発振器のそれぞれは、基準
信号を供給する基準発振器と該基準信号が入力され帰還
信号が入力されて位相同期をとるパルススワロー形PL
L回路と該PLL回路からの制御電圧が入力される電圧
制御発振器と該電圧制御発振器の出力をバッファ回路を
介して前記ミキサに与えるとともに前記PLL回路に前
記帰還信号として与える分配器とが備えられ、 前記SAWフィルタの温度を検出する温度センサと、 前記SAWフィルタの温度に対する中心周波数の偏差を
使用温度範囲にわたって予め記憶させたメモリと、 前記温度センサによって検出した温度に対応する前記S
AWフィルタの中心周波数の偏差を前記メモリから読み
出し、前記局部発振器の周波数を制御して前記中間周波
数を温度によって変化する前記SAWフィルタの中心周
波に一致させる制御回路とが備えられたことを特徴とす
る周波数選択形無線中継増幅装置。
2. A radio relay amplifying device for relay-amplifying downlink radio waves from a base station to a mobile station and relay-amplifying uplink radio waves from a mobile station to a base station, wherein a fixed intermediate level is set for each of transmission and reception channels facing each other. A plurality of frequency conversion selection amplifier circuits for frequency-converting and selectively amplifying the frequency are provided, and each of the plurality of frequency conversion selection amplifier circuits is provided with a down-system selection amplification unit and an up-system selection amplification unit. /
Each of the up-selection amplification sections inputs an input high-frequency signal to an input-side mixer, converts the input high-frequency signal into the intermediate frequency by a local oscillation signal from an input-side local oscillator having a frequency synthesizer configuration, and provides an IF selection amplification stage having an IF filter. A frequency-selective wireless relay configured to selectively amplify the signal of the transmission / reception channel, input the signal to the output-side mixer, convert the signal to the original high-frequency signal with a local signal from the output-side local oscillator, and output the signal. In the amplifying device, the IF filter is configured by a SAW filter. Each of the input-side and output-side local oscillators includes a reference oscillator that supplies a reference signal, a reference signal input thereto, a feedback signal input thereto, and a phase synchronization. Pulse swallow type PL
An L circuit, a voltage-controlled oscillator to which a control voltage from the PLL circuit is input, and a distributor for providing an output of the voltage-controlled oscillator to the mixer via a buffer circuit and for providing the PLL circuit as the feedback signal. A temperature sensor for detecting a temperature of the SAW filter; a memory in which a deviation of a center frequency with respect to the temperature of the SAW filter is stored in advance over a use temperature range; and a S corresponding to a temperature detected by the temperature sensor.
A control circuit that reads a deviation of the center frequency of the AW filter from the memory, controls a frequency of the local oscillator, and matches the intermediate frequency with a center frequency of the SAW filter that changes with temperature. Frequency-selective wireless relay amplifier.
JP19522397A 1997-07-07 1997-07-07 Frequency selective type wireless relay amplifier Expired - Lifetime JP3587962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19522397A JP3587962B2 (en) 1997-07-07 1997-07-07 Frequency selective type wireless relay amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19522397A JP3587962B2 (en) 1997-07-07 1997-07-07 Frequency selective type wireless relay amplifier

Publications (2)

Publication Number Publication Date
JPH1127172A true JPH1127172A (en) 1999-01-29
JP3587962B2 JP3587962B2 (en) 2004-11-10

Family

ID=16337521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19522397A Expired - Lifetime JP3587962B2 (en) 1997-07-07 1997-07-07 Frequency selective type wireless relay amplifier

Country Status (1)

Country Link
JP (1) JP3587962B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031804A1 (en) * 1999-10-25 2001-05-03 Sk Telecom Co., Ltd. Apparatus for relaying a transmission signal
JP2003509965A (en) * 1999-09-16 2003-03-11 テレフオンアクチーボラゲツト エル エム エリクソン Communications system
JP2003513570A (en) * 1999-10-29 2003-04-08 クゥアルコム・インコーポレイテッド Radio frequency coverage in buildings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509965A (en) * 1999-09-16 2003-03-11 テレフオンアクチーボラゲツト エル エム エリクソン Communications system
WO2001031804A1 (en) * 1999-10-25 2001-05-03 Sk Telecom Co., Ltd. Apparatus for relaying a transmission signal
JP2003513570A (en) * 1999-10-29 2003-04-08 クゥアルコム・インコーポレイテッド Radio frequency coverage in buildings

Also Published As

Publication number Publication date
JP3587962B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP4986314B2 (en) Wireless communication transceiver
US6836671B2 (en) Amplifier circuitry
JPH09135223A (en) Channeled plural carrier signal processor
JP2006211454A (en) Multimode communication system
US7272366B2 (en) Method and apparatus for reducing RF filter induced distortion in a wide bandwidth wireless system by the use of channel-dependent RF filter compensation
US5678213A (en) Radio receiver for processing a multi-carrier signal with a large dynamic range
JP2001523431A (en) Integrated circuit for processing the frequency of a radio transceiver operating in the UHF range, for example a cordless telephone
JP3174412B2 (en) Method and apparatus for adjusting the bandwidth of a wireless telephone
US6917803B2 (en) Wireless communications equipment
US7054600B2 (en) Channel-selective amplifier with tunable filter
KR100896172B1 (en) Method and apparatus for transforming and relaying radio frequency
JP3587962B2 (en) Frequency selective type wireless relay amplifier
JPH11112402A (en) Radio relay amplifier
KR100232066B1 (en) Method and apparatus for hopping digital packet data signal and device thereof
US6829469B1 (en) Method and a device for producing a signal
WO2008085305A1 (en) Base station architecture using decentralized duplexers
US7068745B2 (en) Feedforward amplitude cancellation topology for multi-carrier applications
JP2009055378A (en) Radio equipment and distortion compensation method for the radio equipment
KR100466490B1 (en) Apparatus for up converting/down converting frequency with modulation quality using ocxo
KR100639707B1 (en) RF repeater and method for controlling variable frequency and bandwidth
JPH05199141A (en) Frequency converter and transmitter/receiver
JP2002198857A (en) Radiotelephone
KR19990076125A (en) Bandwidth Variable Filtering Device
JPH1127194A (en) Frequency conversion type radio relay amplifier system
JPH09214411A (en) Radio transmitter-receiver of non-regenerative relay system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term