JPH11271412A - Method and device for detecting magnetism - Google Patents

Method and device for detecting magnetism

Info

Publication number
JPH11271412A
JPH11271412A JP10071116A JP7111698A JPH11271412A JP H11271412 A JPH11271412 A JP H11271412A JP 10071116 A JP10071116 A JP 10071116A JP 7111698 A JP7111698 A JP 7111698A JP H11271412 A JPH11271412 A JP H11271412A
Authority
JP
Japan
Prior art keywords
semiconductor
magnetic field
light
magnetic
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10071116A
Other languages
Japanese (ja)
Inventor
Atsushi Takeuchi
淳 竹内
Osamu Wada
修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10071116A priority Critical patent/JPH11271412A/en
Publication of JPH11271412A publication Critical patent/JPH11271412A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring magnetism wherein changes in magnetic field is measured at high time-resolution while hard to be affected by noise under external electromagnetic induction. SOLUTION: On one side of a semiconductor 10 for measuring magnetic field, an optical excitation light source 12 for radiating light to the semiconductor 10, and an optical pulse light source 14 for radiating pulse beam to the semiconductor 10, are provided, and, on the other side of the semiconductor 10, photo-detector 16 for detecting the pulse beam which transmits is provided. An external magnetic field caused Zeeman splitting at the semiconductor 10, resulting in difference between upward numbers and downward numbers of carrier spin caused by circularly polarized excitation light. When the pulse beam of linearly polarized light transmits in the direction parallel to the external magnetic field, its spin polarization generates difference between clockwise component and counterclockwise component of the circularly polarized light. The photo-detector 16 detects difference between clockwise component and counterclockwise component of the pulse beam, for measuring intensity of the magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気検出方法及び装
置に係り、特に、高い時間分解能で磁場を検出すること
が可能な磁気検出方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field detecting method and apparatus, and more particularly, to a magnetic field detecting method and apparatus capable of detecting a magnetic field with high time resolution.

【0002】[0002]

【従来の技術】従来から、磁気を測定する装置として、
コイルを用いたものや、ホール素子を用いたものなど様
々な磁気測定装置が提案されている。これら磁気測定装
置は、磁界の強さを電気信号に変換するために何らかの
磁気電気効果が用いられており、測定された信号を電気
回路により増幅等の処理を行っている。
2. Description of the Related Art Conventionally, as an apparatus for measuring magnetism,
Various magnetometers such as those using coils and those using Hall elements have been proposed. In these magnetism measuring devices, some kind of magnetoelectric effect is used to convert the strength of a magnetic field into an electric signal, and the measured signal is subjected to a process such as amplification by an electric circuit.

【0003】[0003]

【発明が解決しようとする課題】このように、従来の磁
気測定装置では、何らかの磁気電気効果を用い、電気回
路により信号処理を行っているため、CR時定数や電気
回路を構成する電気素子の動作遅延による信号遅延が発
生し、高い時間分解能による磁気測定ができないという
問題があった。
As described above, in the conventional magnetometer, signal processing is performed by an electric circuit using some magneto-electric effect. Therefore, the CR time constant and the electric element constituting the electric circuit are not used. There is a problem that a signal delay due to an operation delay occurs and a magnetic measurement with a high time resolution cannot be performed.

【0004】また、従来の磁気測定装置では、外部から
の電磁誘導による雑音の影響を受けやすく、測定値の信
頼性が低いという問題があった。本発明の目的は、高い
時間分解能で磁場の変化を測定でき、外部からの電磁誘
導による雑音の影響を受けにくい磁気測定方法及び装置
を提供することにある。
Further, the conventional magnetic measuring apparatus has a problem that it is easily affected by noise due to electromagnetic induction from the outside, and the reliability of measured values is low. An object of the present invention is to provide a magnetic measurement method and apparatus which can measure a change in a magnetic field with high time resolution and are not easily affected by noise due to external electromagnetic induction.

【0005】[0005]

【課題を解決するための手段】上記目的は、光励起され
た半導体にパルス光を照射し、前記半導体を透過又は反
射するパルス光から前記半導体に生じたスピン分極を検
出し、検出されたスピン分極に基づいて磁場を測定する
ことを特徴とする磁気検出方法によって達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to irradiate a light-excited semiconductor with pulsed light, detect spin polarization generated in the semiconductor from pulsed light transmitted or reflected by the semiconductor, and detect the detected spin polarization. The magnetic detection method is characterized by measuring a magnetic field based on

【0006】上述した磁気検出方法において、前記半導
体は、量子井戸構造でもよいし、量子細線構造でもよい
し、量子箱構造でもよい。また、上記目的は、半導体
と、前記半導体を光励起する光励起光源と、前記半導体
にパルス光を照射する光パルス光源と、前記半導体を透
過又は反射するパルス光から前記半導体に生じたスピン
分極を検出する光検出手段とを有し、前記光検出手段に
より検出されたスピン分極により磁場を測定することを
特徴とする磁気検出装置によって達成される。
In the above-described magnetic detection method, the semiconductor may have a quantum well structure, a quantum wire structure, or a quantum box structure. Further, the object is to detect a semiconductor, an optical excitation light source for optically exciting the semiconductor, an optical pulse light source for irradiating the semiconductor with pulsed light, and detecting spin polarization generated in the semiconductor from the pulsed light transmitted or reflected by the semiconductor. And a magnetic detection device for measuring a magnetic field by the spin polarization detected by the light detection device.

【0007】上述した磁気検出装置において、前記半導
体は、量子井戸構造でもよいし、量子細線構造でもよい
し、量子箱構造でもよい。
In the above-described magnetic detection device, the semiconductor may have a quantum well structure, a quantum wire structure, or a quantum box structure.

【0008】[0008]

【発明の実施の形態】本発明の第1実施形態による磁気
測定装置について図1乃至図3を用いて説明する。図1
及び図2は本実施形態による磁気測定装置の原理の説明
図であり、図3は本実施形態による磁気測定装置による
測定結果を示すグラフである。本実施形態の磁気測定装
置には、磁場測定用の半導体10が設けられ、半導体1
0の一方の側に、半導体10に励起光を照射する光励起
光源12と、半導体10にパルス光を照射する光パルス
光源14とが設けられ、半導体10の他方の側に、透過
するパルス光を検出する光検出器16が設けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic measuring device according to a first embodiment of the present invention will be described with reference to FIGS. FIG.
2 is an explanatory diagram of the principle of the magnetic measurement device according to the present embodiment, and FIG. 3 is a graph showing measurement results by the magnetic measurement device according to the present embodiment. In the magnetic measurement apparatus of the present embodiment, a semiconductor 10 for measuring a magnetic field is provided.
A light excitation light source 12 for irradiating the semiconductor 10 with excitation light and a light pulse light source 14 for irradiating the semiconductor 10 with pulse light are provided on one side of the semiconductor 10. A photodetector 16 for detection is provided.

【0009】外部磁場により半導体10にゼーマン***
が起こり、円偏光の励起光によって生じるキャリアスピ
ンの上向きの数と下向きの数との間に差が生ずる。この
とき、直線偏光のパルス光が外部磁場に平行な方向に透
過すると、このスピン分極により、円偏光の右回り成分
と左周り成分に差が発生する。光検出器16は、透過し
たパルス光の右回り成分と左回り成分との差を検出し
て、スピン分極の大きさを検出して、磁場の強さを測定
する。
An external magnetic field causes Zeeman splitting in the semiconductor 10, which causes a difference between the upward and downward numbers of carrier spins generated by the circularly polarized excitation light. At this time, when the pulse light of the linearly polarized light is transmitted in a direction parallel to the external magnetic field, a difference occurs between the clockwise component and the counterclockwise component of the circularly polarized light due to the spin polarization. The photodetector 16 detects the difference between the clockwise component and the counterclockwise component of the transmitted pulse light, detects the magnitude of spin polarization, and measures the strength of the magnetic field.

【0010】本実施形態では、半導体10としてGaA
sが用いられ、光励起光源12として半導体レーザが用
いられ、光パルス光源14としてチタンサファイアレー
ザが用いられている。図2(a)に示すように変化する
磁場を測定する場合について説明する。半導体10を測
定しようとする外部磁場中に載置し、図2(b)に示す
ように、光励起光源12から円偏光の励起光を半導体1
0に連続的に照射して半導体10を励起する。図2
(c)に示すように、磁場を測定しようとするタイミン
グで光パルス光源14から直線偏光のパルス光を半導体
10に照射する。光検出器16は、光パルスの透過光の
円偏光の右回り成分と左回り成分との差を検出して磁場
の強さを測定する。測定された磁場の強さは、図2
(d)に示すように、図2(a)に示す磁場の変化に応
じた値となる。
In this embodiment, GaAs is used as the semiconductor 10.
s is used, a semiconductor laser is used as the light excitation light source 12, and a titanium sapphire laser is used as the light pulse light source 14. A case where a changing magnetic field is measured as shown in FIG. 2A will be described. The semiconductor 10 is placed in an external magnetic field to be measured, and as shown in FIG.
The semiconductor 10 is excited by continuously irradiating zero. FIG.
As shown in (c), the semiconductor 10 is irradiated with linearly polarized pulse light from the optical pulse light source 14 at the timing when the magnetic field is to be measured. The photodetector 16 detects the difference between the clockwise component and the counterclockwise component of the circularly polarized light of the transmitted light of the light pulse, and measures the strength of the magnetic field. Figure 2 shows the measured magnetic field strength.
As shown in FIG. 2D, the value is in accordance with the change in the magnetic field shown in FIG.

【0011】本実施形態の磁気測定装置の時間分解能
は、光パルス光源14による光パルスのパルス幅による
が、電気パルスでは実現不可能なパルス幅による高時間
分解能の測定が可能である。例えば、本実施形態では1
00フェムト秒のパルス幅の光パルスにより測定するこ
とができた。また、光パルスのパルス幅を短くすれば、
光パルスのピーク値を大きくすることができ、信号感度
を大幅に上昇させることができる。
Although the time resolution of the magnetic measuring apparatus of the present embodiment depends on the pulse width of the light pulse from the light pulse light source 14, a high time resolution can be measured by a pulse width which cannot be realized by an electric pulse. For example, in this embodiment, 1
The measurement could be performed with an optical pulse having a pulse width of 00 femtoseconds. Also, if the pulse width of the light pulse is shortened,
The peak value of the light pulse can be increased, and the signal sensitivity can be greatly increased.

【0012】なお、光励起光源12からの励起光として
は、半導体10を光励起することができれば、連続光で
はなくパルス光でもよい。図3を用いて、本実施形態の
磁気測定装置の時間分解能について説明する。本実施形
態の磁気測定装置では、磁場測定用の半導体10の材料
により応答速度が異なる。図3に半導体10の材料に対
するスピン緩和時間の変化を示す。図3(a)に示すよ
うに、測定される磁場の強さが1(任意単位)から0に
変化した場合、半導体10の材料により、図3(b)〜
(e)に示すように、スピン緩和時間が異なる。
The excitation light from the light excitation light source 12 may be pulsed light instead of continuous light as long as the semiconductor 10 can be optically excited. The time resolution of the magnetometer according to the present embodiment will be described with reference to FIG. In the magnetic measurement device of the present embodiment, the response speed differs depending on the material of the semiconductor 10 for measuring the magnetic field. FIG. 3 shows a change in spin relaxation time for the material of the semiconductor 10. As shown in FIG. 3A, when the intensity of the measured magnetic field changes from 1 (arbitrary unit) to 0, depending on the material of the semiconductor 10, FIGS.
As shown in (e), the spin relaxation times are different.

【0013】図3(b)は、上述したように、半導体1
0としてバルクのGaAs基板を用いた場合である。図
3(b)に示すように、スピン緩和時間は約50〜80
ピコ秒であった。図3(c)は、半導体10として量子
井戸構造の半導体材料、具体的には、InGaAs/I
nP量子井戸構造の半導体材料を用いた場合である。I
nP基板上にMOCVD法によりInP層とInGaA
s層を交互に3回積層して、InGaAs/InP量子
井戸構造を作成した。図3(c)に示すように、スピン
緩和時間は約10ピコ秒であった。
FIG. 3B shows the semiconductor 1 as described above.
0 is a case where a bulk GaAs substrate is used. As shown in FIG. 3B, the spin relaxation time is about 50 to 80.
Picoseconds. FIG. 3C shows a semiconductor material having a quantum well structure as the semiconductor 10, specifically, InGaAs / I
This is a case where a semiconductor material having an nP quantum well structure is used. I
InP layer and InGaAs on nP substrate by MOCVD
The s layer was alternately stacked three times to form an InGaAs / InP quantum well structure. As shown in FIG. 3C, the spin relaxation time was about 10 picoseconds.

【0014】図3(d)は、半導体10として量子細線
構造の半導体材料を用いた場合である。GaAs基板上
に、分子線エピタキシー法(MBE法)により量子細線
構造を形成した。(001)2度オフGaAs基板上
に、AlGaAsスペーサー層を成長する。続いて、
(AlGaAs)1/2(GaAs)1/2分数層の超格子を
成長し、その後、AlGaAs層を成長することによ
り、量子細線構造を埋め込んだ。この量子細線構造の製
造を3回繰り返した後、再び、AlGaAsバッファ層
を成長し、更に、その上にAlGaAsスペーサー層、
GaAsキャップ層を成長した。図3(d)に示すよう
に、スピン緩和時間は約25ピコ秒であった。
FIG. 3D shows a case where a semiconductor material having a quantum wire structure is used as the semiconductor 10. A quantum wire structure was formed on a GaAs substrate by molecular beam epitaxy (MBE). (001) An AlGaAs spacer layer is grown on the off-GaAs substrate twice. continue,
A quantum wire structure was embedded by growing a (AlGaAs) 1/2 (GaAs) 1/2 fractional layer superlattice and then growing an AlGaAs layer. After repeating the production of the quantum wire structure three times, an AlGaAs buffer layer is grown again, and an AlGaAs spacer layer is further formed thereon.
A GaAs cap layer was grown. As shown in FIG. 3D, the spin relaxation time was about 25 picoseconds.

【0015】図3(e)は、半導体10として量子箱構
造の半導体材料を用いた場合である。GaAs基板上
に、分子線エピタキシー法(MBE法)により量子箱構
造を形成した。GaAs基板上に、AlGaAsスペー
サー層を成長する。続いて、GaAsバッファ層を成長
し、成長を中断した後に表面を平滑化した。次に、In
Asを、成長温度520℃、成長速度90nm/hou
rの条件で2.5原子層成長し、再び成長を中断した。
その後、再びGaAs層を成長して、量子箱構造を埋め
込んだ。この量子箱構造の製造を3回繰り返した後、再
び、GaAsバッファ層を成長し、その上にGaAsキ
ャップ層を成長した。図3(e)に示すように、スピン
緩和時間は約15ピコ秒であった。
FIG. 3E shows a case where a semiconductor material having a quantum box structure is used as the semiconductor 10. A quantum box structure was formed on a GaAs substrate by molecular beam epitaxy (MBE). An AlGaAs spacer layer is grown on a GaAs substrate. Subsequently, a GaAs buffer layer was grown, and after the growth was interrupted, the surface was smoothed. Next, In
As is grown at a growth temperature of 520 ° C. and at a growth rate of 90 nm / hou.
Under the condition of r, a 2.5 atomic layer was grown, and the growth was stopped again.
Thereafter, a GaAs layer was grown again to bury the quantum box structure. After the production of this quantum box structure was repeated three times, a GaAs buffer layer was grown again, and a GaAs cap layer was grown thereon. As shown in FIG. 3E, the spin relaxation time was about 15 picoseconds.

【0016】このように、磁場測定用の半導体材料を選
択することにより、より高速のスピン緩和が実現でき、
更に高い時間分解能の磁気測定が可能である。本発明の
第2実施形態による磁気測定装置について図4を用いて
説明する。図4は本実施形態による磁気測定装置の原理
の説明図である。図1に示す第1実施形態の磁気測定装
置と同一又は同種の構成要素には同一の符号を用いて説
明を省略する。
As described above, by selecting a semiconductor material for magnetic field measurement, higher-speed spin relaxation can be realized,
Magnetic measurement with higher time resolution is possible. A magnetometer according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is an explanatory diagram of the principle of the magnetometer according to the present embodiment. Components that are the same as or similar to those of the magnetic measurement device of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0017】本実施形態の磁気測定装置は、パルス光の
透過光ではなく反射光を用いて磁場を測定している点に
特徴がある。磁場測定用の半導体10の下面には反射膜
10aが形成されている。半導体10の上方に、半導体
10に励起光を照射する光励起光源12と、半導体10
にパルス光を照射する光パルス光源14とが設けられ、
同じく半導体10の上方に、反射するパルス光を検出す
る光検出器16が設けられている。その他の構成は第1
実施形態と同様である。
The magnetic measuring apparatus of this embodiment is characterized in that the magnetic field is measured using reflected light instead of transmitted light of pulsed light. A reflection film 10a is formed on the lower surface of the semiconductor 10 for magnetic field measurement. A light excitation light source 12 for irradiating the semiconductor 10 with excitation light;
And a light pulse light source 14 for irradiating pulse light to
Similarly, above the semiconductor 10, a photodetector 16 for detecting reflected pulse light is provided. Other configurations are first
This is the same as the embodiment.

【0018】磁場を測定する場合には、半導体10を測
定しようとする外部磁場中に載置し、光励起光源12か
ら円偏光の励起光を半導体10に連続的に照射して半導
体10を励起する。磁場を測定しようとするタイミング
で光パルス光源14から直線偏光のパルス光を半導体1
0に照射する。光検出器16は、光パルスの反射光の円
偏光の右回り成分と左回り成分との差を検出して磁場の
強さを測定する。
When measuring the magnetic field, the semiconductor 10 is placed in an external magnetic field to be measured, and the semiconductor 10 is excited by continuously irradiating the semiconductor 10 with circularly polarized excitation light from the light excitation light source 12. . At the timing when the magnetic field is to be measured, linearly polarized pulsed light is
Irradiate to zero. The photodetector 16 detects the difference between the clockwise and counterclockwise components of the circularly polarized light of the reflected light of the light pulse, and measures the strength of the magnetic field.

【0019】このように本実施形態によれば、磁場測定
用の半導体の一方の側にのみ測定用部材を設け、他方の
側には測定用部材を設ける必要がないので、磁場を発生
している測定対象に半導体を近接することができる。例
えば、本実施形態の磁気測定装置を磁気ヘッドとして用
いる場合には、磁気測定用の半導体を磁気ディスクに近
接することができ、測定感度を向上することができる。
As described above, according to the present embodiment, a measuring member is provided only on one side of the semiconductor for measuring a magnetic field, and it is not necessary to provide a measuring member on the other side. The semiconductor can be brought close to the object to be measured. For example, when the magnetic measurement device of the present embodiment is used as a magnetic head, the semiconductor for magnetic measurement can be brought close to the magnetic disk, and the measurement sensitivity can be improved.

【0020】本発明の第3実施形態による磁気測定装置
を図5及び図6を用いて説明する。図5は本実施形態の
磁気測定装置の構成図であり、図6は本実施形態の磁気
測定装置による測定結果を示すグラフである。本実施形
態の磁気測定装置は、書き込み用の磁気ヘッドが発生す
る磁場変化をモニターするものである。ハードディスク
装置の記憶容量の増大に伴い、書き込み用の磁気ヘッド
の高速化がはかられている。磁気ヘッドの高速化に伴
い、磁気ヘッドにより実際に生じる磁界の時間変化の測
定が困難であり、磁気ヘッドの開発段階でのデータが得
られず、最適な設計が行えないことがある。本実施形態
の磁気測定装置によれば、非常に高い時間分解能での磁
場の測定が可能であるため、磁気ヘッドによる高速の磁
界変化や磁界の微小なノイズ成分や振動成分を精度よく
測定することができる。
A magnetometer according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a configuration diagram of the magnetic measurement device of the present embodiment, and FIG. 6 is a graph showing measurement results by the magnetic measurement device of the present embodiment. The magnetic measurement device according to the present embodiment monitors a magnetic field change generated by a write magnetic head. With the increase in the storage capacity of the hard disk device, the speed of the magnetic head for writing has been increased. With the speeding up of the magnetic head, it is difficult to measure the time change of the magnetic field actually generated by the magnetic head, and data cannot be obtained in the development stage of the magnetic head, so that an optimal design may not be performed. According to the magnetic measurement device of the present embodiment, it is possible to measure a magnetic field with a very high time resolution, and therefore it is necessary to accurately measure a high-speed magnetic field change by a magnetic head and minute noise components and vibration components of the magnetic field. Can be.

【0021】磁場測定される磁気ヘッド20は磁気ヘッ
ド駆動装置22により駆動される。磁気ヘッド駆動装置
22は、パターンジェネレータ24により、図6(a)
に示すように、100MHzの周期Tで繰り返す一定の
パターンの磁場を発生するように、磁気ヘッド20を駆
動する。パターンジェネレータ24は、トリガー回路2
6から出力されるトリガーパルスに同期して磁場のパタ
ーンを出力する。
The magnetic head 20 whose magnetic field is to be measured is driven by a magnetic head driving device 22. The magnetic head driving device 22 is driven by the pattern generator 24 as shown in FIG.
As shown in (1), the magnetic head 20 is driven so as to generate a magnetic field having a constant pattern that repeats at a period T of 100 MHz. The pattern generator 24 includes the trigger circuit 2
The pattern of the magnetic field is output in synchronization with the trigger pulse output from 6.

【0022】磁気測定用の半導体30は、磁気ヘッド2
0直下に位置させる。円偏光発生装置32は連続的に円
偏光を発生し、半導体30の下面から照射して光励起す
る。光パルス発生装置34は、パルス幅が100フェム
ト秒の光パルスを発生し、半導体30の上面から照射す
る。光パルス発生装置34が光パルスを発生するタイミ
ングは、図6(b)に示すように、時間遅延回路36に
よりトリガーパルスからΔtだけ遅延したタイミングで
ある。半導体30を透過した光パルスは、4分の1波長
板38を透過し、偏光子40により縦偏光成分と横偏光
成分に分離され、それぞれ光検出器42a、42bによ
り検出される。差分アンプ44は、光検出器42a、4
2bにより検出された縦偏光成分(A)と横偏光成分
(B)の差分(A−B)を検出する。この差分の値が測
定された磁場の強度となる。
The semiconductor 30 for magnetic measurement includes the magnetic head 2
It is located just below 0. The circularly polarized light generator 32 continuously generates circularly polarized light and irradiates it from the lower surface of the semiconductor 30 to excite light. The optical pulse generator 34 generates an optical pulse having a pulse width of 100 femtoseconds and irradiates it from the upper surface of the semiconductor 30. The timing at which the optical pulse generator 34 generates an optical pulse is a timing delayed by Δt from the trigger pulse by the time delay circuit 36, as shown in FIG. 6B. The light pulse transmitted through the semiconductor 30 is transmitted through a quarter-wave plate 38, separated into a vertically polarized light component and a horizontally polarized light component by a polarizer 40, and detected by photodetectors 42a and 42b, respectively. The difference amplifier 44 includes the photodetectors 42a,
The difference (A−B) between the vertically polarized light component (A) and the horizontally polarized light component (B) detected by 2b is detected. The value of this difference is the measured magnetic field strength.

【0023】時間遅延回路36による遅延時間Δtを0
からTまで変化させて、磁場の強さを測定すると、図6
(c)に示すような磁場の測定結果が得られる。このよ
うに本実施形態によれば非常に高い時間分解能により磁
場測定が可能であり、磁気ヘッドによる高速の磁界変化
や磁界の微小なノイズ成分や振動成分を精度よく測定す
ることができる。
The delay time Δt by the time delay circuit 36 is set to 0
When the strength of the magnetic field is measured while changing from T to T, FIG.
The measurement result of the magnetic field as shown in (c) is obtained. As described above, according to the present embodiment, the magnetic field can be measured with a very high time resolution, and a high-speed magnetic field change by the magnetic head and a minute noise component and a vibration component of the magnetic field can be accurately measured.

【0024】本発明の第4実施形態による磁気測定装置
を図7及び図8を用いて説明する。図7は本実施形態の
磁気測定装置の構成図であり、図8は本実施形態の磁気
測定装置による測定結果を示すグラフである。図7に示
す第3実施形態の磁気測定装置と同一又は同種の構成要
素には同一の符号を用いて説明を省略する。本実施形態
の磁気測定装置は、パルス光の出力タイミングを遅延さ
せるのに、電気的な時間遅延回路ではなく光学的手段を
用いている点に特徴がある。光学的手段を用いることに
より電気回路のCR時定数等の原因により発生する信号
遅延を回避しようとしている。
A magnetometer according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a configuration diagram of the magnetometer according to the present embodiment, and FIG. 8 is a graph showing measurement results by the magnetometer of the present embodiment. Components that are the same as or similar to those of the magnetic measurement apparatus of the third embodiment shown in FIG. 7 are denoted by the same reference numerals, and description thereof is omitted. The magnetic measuring apparatus according to the present embodiment is characterized in that an optical means is used instead of an electric time delay circuit to delay the output timing of the pulse light. An attempt is made to avoid a signal delay caused by a CR time constant or the like of an electric circuit by using optical means.

【0025】光パルス発生装置34と半導体30の間
に、半導体30への光路長を変化する光学的時間遅延手
段46を設けている。光学的時間遅延手段46は、光路
長を変化させることにより遅延時間を変化する。磁気ヘ
ッド20と磁気ヘッド駆動回路22の間に、光パルスに
より駆動する光導電スイッチ48を設けている。光パル
ス発生装置34から発生した光パルスがビームスプリッ
タ50により分離され、光導電スイッチ48に入力す
る。
An optical time delay means 46 for changing the optical path length to the semiconductor 30 is provided between the optical pulse generator 34 and the semiconductor 30. The optical time delay means 46 changes the delay time by changing the optical path length. A photoconductive switch 48 driven by an optical pulse is provided between the magnetic head 20 and the magnetic head drive circuit 22. The light pulse generated from the light pulse generator 34 is split by the beam splitter 50 and input to the photoconductive switch 48.

【0026】光パルス発生装置34から図8(a)に示
すような光パルスが発生すると、光導電スイッチ48
は、図8(b)に示すように応答する。このため、磁気
ヘッド20からは図8(c)のような磁場が発生する。
プローブ用の光パルスは、図8(c)に示すように、光
学的遅延手段48による遅延時間Δtだけ遅延して、半
導体30に照射される。差分アンプ44からはプローブ
用の光パルスが発生したときの磁場の強さに応じた出力
信号が得られる。光学的時間遅延手段48による遅延時
間Δtを0からTまで変化させて、磁場の強さを測定す
ると、図8(e)に示すような磁場の測定結果が得られ
る。
When the optical pulse generator 34 generates an optical pulse as shown in FIG.
Responds as shown in FIG. 8 (b). Therefore, a magnetic field as shown in FIG. 8C is generated from the magnetic head 20.
As shown in FIG. 8C, the optical pulse for the probe is applied to the semiconductor 30 with a delay of the delay time Δt by the optical delay unit 48. An output signal corresponding to the strength of the magnetic field when the optical pulse for the probe is generated is obtained from the difference amplifier 44. When the intensity of the magnetic field is measured by changing the delay time Δt by the optical time delay means 48 from 0 to T, a measurement result of the magnetic field as shown in FIG. 8E is obtained.

【0027】このように本実施形態によれば、光パルス
の照射時間を光学的手段により遅延したので、原理的に
CR時定数による信号遅延がなく、更に高い時間分解能
の磁場測定が可能である。本発明は上記実施形態に限ら
ず種々の変形が可能である。例えば、上記実施形態で
は、磁気ヘッドの磁場測定に本発明を適用したが、測定
用の半導体は被測定物の近くに置く必要があるが、光励
起光源、光パルス光源、光検出手段等の測定機器は被測
定物の近くに置かなくてもよいので、高圧送電線の作る
磁場中に測定用半導体を設置して遠隔から測定を行うこ
とによる送電線の落雷時サージ電流による磁気の検出
や、その他高温等の過酷な環境における磁気の検出等の
遠隔で行う磁気測定に本発明を適用してもよい。
As described above, according to the present embodiment, since the irradiation time of the light pulse is delayed by the optical means, there is no signal delay due to the CR time constant in principle, and the magnetic field measurement with higher time resolution is possible. . The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the present invention is applied to the magnetic field measurement of the magnetic head. However, the semiconductor for measurement needs to be placed near the object to be measured. Since the equipment does not need to be placed near the DUT, the semiconductor for measurement is installed in the magnetic field created by the high-voltage transmission line and the measurement is performed remotely to detect magnetism due to surge current during lightning of the transmission line, In addition, the present invention may be applied to magnetic measurement performed remotely such as detection of magnetism in a severe environment such as a high temperature.

【0028】[0028]

【発明の効果】以上の通り、本発明によれば、光励起さ
れた半導体にパルス光を照射し、前記半導体を透過又は
反射するパルス光から前記半導体に生じたスピン分極を
検出し、検出されたスピン分極に基づいて磁場を測定す
るようにしたので、外部からの電磁誘導による雑音の影
響を受けることなく、高い時間分解能で、かつ遠隔から
でも磁場変化を測定することができる。
As described above, according to the present invention, the photoexcited semiconductor is irradiated with pulsed light, and the spin polarization generated in the semiconductor is detected from the pulsed light transmitted or reflected by the semiconductor. Since the magnetic field is measured based on the spin polarization, the magnetic field change can be measured with high time resolution and remotely even without being affected by noise due to external electromagnetic induction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態による磁気測定装置を示
す図である。
FIG. 1 is a diagram showing a magnetometer according to a first embodiment of the present invention.

【図2】本発明の第1実施形態による磁気測定装置の磁
気測定を説明するグラフである。
FIG. 2 is a graph illustrating magnetic measurement of the magnetic measurement device according to the first embodiment of the present invention.

【図3】本発明の第1実施形態による磁気測定装置によ
る測定結果を示すグラフである。
FIG. 3 is a graph showing a measurement result obtained by the magnetometer according to the first embodiment of the present invention.

【図4】本発明の第2実施形態による磁気測定装置を示
す図である。
FIG. 4 is a view showing a magnetometer according to a second embodiment of the present invention.

【図5】本発明の第3実施形態による磁気測定装置の構
成図である。
FIG. 5 is a configuration diagram of a magnetic measurement device according to a third embodiment of the present invention.

【図6】本発明の第3実施形態による磁気測定装置によ
る測定結果を示すグラフである。
FIG. 6 is a graph showing measurement results obtained by a magnetometer according to a third embodiment of the present invention.

【図7】本発明の第4実施形態による磁気測定装置の構
成図である。
FIG. 7 is a configuration diagram of a magnetometer according to a fourth embodiment of the present invention.

【図8】本発明の第4実施形態による磁気測定装置によ
る測定結果を示すグラフである。
FIG. 8 is a graph showing measurement results obtained by a magnetometer according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…半導体 10a…反射膜 12…光励起光源 14…光パルス光源 16…光検出器 20…磁気ヘッド 22…磁気ヘッド駆動装置 24…パターンジェネレータ 26…トリガー回路 30…半導体 32…円偏光発生装置 34…光パルス発生装置 36…時間遅延回路 38…4分の1波長板 40…偏光子 42a、42b…光検出器 44…差分アンプ 46…光学的時間遅延手段 48…光導電スイッチ 50…ビームスプリッタ DESCRIPTION OF SYMBOLS 10 ... Semiconductor 10a ... Reflection film 12 ... Optical excitation light source 14 ... Optical pulse light source 16 ... Photodetector 20 ... Magnetic head 22 ... Magnetic head drive 24 ... Pattern generator 26 ... Trigger circuit 30 ... Semiconductor 32 ... Circular polarization generator 34 ... Light pulse generator 36 Time delay circuit 38 Quarter wave plate 40 Polarizer 42a, 42b Photodetector 44 Difference amplifier 46 Optical time delay means 48 Photoconductive switch 50 Beam splitter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光励起された半導体にパルス光を照射
し、前記半導体を透過又は反射するパルス光から前記半
導体に生じたスピン分極を検出し、検出されたスピン分
極に基づいて磁場を測定することを特徴とする磁気検出
方法。
1. A method of irradiating a light-excited semiconductor with pulsed light, detecting spin polarization generated in the semiconductor from pulsed light transmitted or reflected by the semiconductor, and measuring a magnetic field based on the detected spin polarization. A magnetic detection method characterized by the above-mentioned.
【請求項2】 請求項1記載の磁気検出方法において、 前記半導体は、量子井戸構造、量子細線構造、又は量子
箱構造を含むことを特徴とする磁気検出方法。
2. The magnetic detection method according to claim 1, wherein the semiconductor includes a quantum well structure, a quantum wire structure, or a quantum box structure.
【請求項3】 半導体と、 前記半導体を光励起する光励起光源と、 前記半導体にパルス光を照射する光パルス光源と、 前記半導体を透過又は反射するパルス光から前記半導体
に生じたスピン分極を検出する光検出手段とを有し、 前記光検出手段により検出されたスピン分極により磁場
を測定することを特徴とする磁気検出装置。
3. A semiconductor, an optical excitation light source for optically exciting the semiconductor, an optical pulse light source for irradiating the semiconductor with pulsed light, and detecting a spin polarization generated in the semiconductor from the pulsed light transmitted or reflected by the semiconductor. A magnetic detection device comprising: a light detection unit; and measuring a magnetic field by spin polarization detected by the light detection unit.
【請求項4】 請求項3記載の磁気検出装置において、 前記半導体は、量子井戸構造、量子細線構造、又は量子
箱構造を含むことを特徴とする磁気検出装置。
4. The magnetic detection device according to claim 3, wherein the semiconductor includes a quantum well structure, a quantum wire structure, or a quantum box structure.
【請求項5】 請求項3又は4記載の磁気検出装置にお
いて、 前記半導体は、被測定位置に配置され、 前記光励起光源、前記光パルス光源、及び/又は前記光
検出手段は、前記被測定位置から離れて配置されている
ことを特徴とする磁気検出装置。
5. The magnetic detection device according to claim 3, wherein the semiconductor is disposed at a position to be measured, and the light excitation light source, the light pulse light source, and / or the light detection unit is at the position to be measured. A magnetic detection device characterized by being located away from a magnetic field.
JP10071116A 1998-03-20 1998-03-20 Method and device for detecting magnetism Withdrawn JPH11271412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071116A JPH11271412A (en) 1998-03-20 1998-03-20 Method and device for detecting magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071116A JPH11271412A (en) 1998-03-20 1998-03-20 Method and device for detecting magnetism

Publications (1)

Publication Number Publication Date
JPH11271412A true JPH11271412A (en) 1999-10-08

Family

ID=13451282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071116A Withdrawn JPH11271412A (en) 1998-03-20 1998-03-20 Method and device for detecting magnetism

Country Status (1)

Country Link
JP (1) JPH11271412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123023A1 (en) * 2007-03-16 2008-10-16 Keio University Spin relaxation/change method, spin current detection method, and spintronics device utilizing spin relaxation
JP2009014708A (en) * 2007-06-05 2009-01-22 Canon Inc Magnetic sensing method, atomic magnetometric sensor, and magnetic resonance imaging apparatus
JP2011007567A (en) * 2009-06-24 2011-01-13 Seiko Epson Corp Magnetic sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123023A1 (en) * 2007-03-16 2008-10-16 Keio University Spin relaxation/change method, spin current detection method, and spintronics device utilizing spin relaxation
US8564293B2 (en) 2007-03-16 2013-10-22 Tohoku University Method for changing spin relaxation, method for detecting spin current and spintronics device using spin relaxation
JP5397902B2 (en) * 2007-03-16 2014-01-22 国立大学法人東北大学 Spin relaxation variation method, spin current detection method, and spintronic device using spin relaxation
JP2009014708A (en) * 2007-06-05 2009-01-22 Canon Inc Magnetic sensing method, atomic magnetometric sensor, and magnetic resonance imaging apparatus
JP2011007567A (en) * 2009-06-24 2011-01-13 Seiko Epson Corp Magnetic sensor

Similar Documents

Publication Publication Date Title
Kato et al. Current-induced spin polarization in strained semiconductors
JP5540607B2 (en) Quantum interference device, atomic oscillator, magnetic sensor, and quantum interference sensor
Crooker et al. Time-resolved Faraday rotation spectroscopy of spin dynamics in digital magnetic heterostructures
JP7297306B2 (en) Terahertz magneto-optical sensor, high-performance non-destructive inspection device and method using the same, and magneto-optical imaging sensor used therefor
Madami et al. Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study
CN104698410A (en) Atomic magnetic sensor for magnetometer and method of removing detection dead zones of magnetometer
WO2012142654A1 (en) Magnetometer
Akimov et al. Orientation of electron spins in hybrid ferromagnet–semiconductor nanostructures
JPWO2006051766A1 (en) Optical measurement evaluation method and optical measurement evaluation apparatus
JP2000121317A (en) Interference phase detecting system for optical interferometer
US20190064553A1 (en) Optical Modulator Using the Spin Hall Effect in Metals
JP2012007962A (en) Magneto-optical property measuring device and magneto-optical property measuring method
NL8403949A (en) METHOD FOR INSPECTING THE PROPERTIES OF A MAGNETIC HEAD.
JPH11271412A (en) Method and device for detecting magnetism
Planken et al. THz radiation from coherent population changes in quantum wells
Kuhlen et al. Unambiguous determination of spin dephasing times in ZnO by time‐resolved magneto‐optical pump–probe experiments
Planken et al. Far-infrared picosecond time-resolved measurement of the free-induction decay in GaAs: Si
JP2656686B2 (en) Optical probe method and apparatus
Wagner et al. Single-beam thermowave analysis of ion implanted and laser annealed semiconductors
JP4909816B2 (en) Electron spin resonance measuring apparatus and electron spin resonance measuring method
JP7465467B2 (en) Magnetic field measuring device and magnetic field measuring method
JPH03176671A (en) Frequency detector for discriminating operation of multiple longitudinal mode laser
JP5665042B2 (en) Reference signal generator and reference signal generation method using phase-preserving Ramsey method
EP3276372B1 (en) Method and apparatus for sensing transparent and/or shining objects
JPH0943324A (en) Magnetic field measuring method and device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607