JPH11270283A - Tunnel boring machine - Google Patents

Tunnel boring machine

Info

Publication number
JPH11270283A
JPH11270283A JP10090880A JP9088098A JPH11270283A JP H11270283 A JPH11270283 A JP H11270283A JP 10090880 A JP10090880 A JP 10090880A JP 9088098 A JP9088098 A JP 9088098A JP H11270283 A JPH11270283 A JP H11270283A
Authority
JP
Japan
Prior art keywords
face
rock
excavation
measured
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10090880A
Other languages
Japanese (ja)
Other versions
JP3511163B2 (en
Inventor
Tomoyuki Aoki
智幸 青木
Shinji Kobayashi
伸次 小林
Etsuro Shioda
悦郎 潮田
Masataka Uchida
正孝 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP9088098A priority Critical patent/JP3511163B2/en
Publication of JPH11270283A publication Critical patent/JPH11270283A/en
Application granted granted Critical
Publication of JP3511163B2 publication Critical patent/JP3511163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tunnel boring machine detecting a fault and a fractured zone during excavation by two-dimensional and three-dimensional measurement and display and capable of preparing optimum measures. SOLUTION: A force working to disk cutters 7 is measured. Places on a facing surface of the disk cutters 7 are measured. Excavation speed during excavation or an excavation distance by the disk cutters 7 is measured. Accordingly, the tunnel boring machine is constituted so that the planar distribution or three-dimensional distribution of the hardness of a bedrock on the cutting face can be displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル掘削機に
関するものである。
TECHNICAL FIELD The present invention relates to a tunnel excavator.

【0002】[0002]

【従来の技術】<イ>TBM(トンネルボーリングマシ
ン)と称する、切羽をディスクカッターで掘削するトン
ネル掘削機では、不良岩盤で切羽面が自立せずに崩れて
きたり、掘削した空洞の天端や側壁が崩れてくると、ト
ンネル掘削機の胴体が締め付けられるなど、掘進が困難
となる可能性がある。このような状況の予兆を早期に把
握し、適切な機械操作や岩盤補強対策を採用することに
より、円滑な掘進を進める必要がある。 <ロ>このような対策のために従来は掘進中のトンネル
掘削機のカッターヘッドの回転トルクや推力、掘進速度
などのデータを測定して分析することのよって、トンネ
ルの進行方向に沿った岩盤の硬さ特性の変化を監視する
方法が開発されている。この方法であると、断層、破砕
帯などの出現に対して臨機に適切な対応をとって施工す
ることができる。
2. Description of the Related Art In a tunnel excavator called a TBM (tunnel boring machine), which excavates a face with a disk cutter, the face of the excavated cavity collapses without standing on a defective rock, or the top of a hollow excavated. If the side wall collapses, excavation may be difficult, for example, the body of the tunnel excavator may be tightened. It is necessary to advance the excavation by grasping the signs of such a situation at an early stage and adopting appropriate mechanical operation and rock reinforcement measures. <B> Conventionally, rock mass along the traveling direction of the tunnel is measured and analyzed by measuring and analyzing data such as the rotational torque, thrust, and excavation speed of the cutter head of the tunnel excavator during excavation. Methods have been developed to monitor changes in hardness properties of steel. According to this method, it is possible to take appropriate measures on the occasion of the emergence of a fault, a crush zone, and the like.

【0003】[0003]

【本発明が解決しようとする課題】しかし前記した従来
のトンネル掘削機にあっては、次のような問題点が存在
する。 <イ>上記したような方法では、トンネルの進行方向に
沿った一次元的な岩盤特性の変化しかとらえることがで
きない。一方、断層、破砕帯はトンネル軸と直角に交わ
るとは限らず、実際には図1に示すようにトンネルの掘
進にともない切羽上に現れる位置が移動する場合が多
い。 <ロ>この場合に断層、破砕帯の出現する位置によって
施工に及ぼす影響は大きく異なり、例えば図1の断面A
の位置では天端が崩落する危険があり、断面Bの位置に
おいてはメイングリッパの反力が取れない危険性が察知
される。 <ハ>したがって一次元的な岩盤特性の変化の情報のみ
では現在の状況が将来どのような分布に展開するのか明
確でないため、断層、破砕帯の出現する位置が施工に及
ぼす影響は大きく異なるにもかかわらず、支保の変更や
補助工法の実施など、大幅な施工変更に踏み切ることは
困難であった。
However, the above-mentioned conventional tunnel excavator has the following problems. <A> With the above-described method, only one-dimensional changes in rock properties along the traveling direction of the tunnel can be detected. On the other hand, faults and shatter zones do not always intersect at right angles with the tunnel axis, and in fact, as shown in FIG. <B> In this case, the effect on the construction greatly differs depending on the position where the fault and the crush zone appear. For example, the section A in FIG.
There is a risk that the top end collapses at the position of, and there is a risk that the reaction force of the main gripper cannot be obtained at the position of the cross section B. <C> Therefore, it is not clear how the current situation will evolve in the future based on only one-dimensional information on changes in rock characteristics, so the location of faults and shatter zones will greatly affect the construction. Nevertheless, it was difficult to make major construction changes, such as changing the support or implementing the auxiliary method.

【0004】本発明は上記したような従来の問題を解決
するためになされたもので、二次元的、三次元的な計
測、表示によって断層、破砕帯を事前に把握して最適な
対応の準備を行うことができる、トンネル掘削機を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. Two-dimensional and three-dimensional measurement and display are used to grasp faults and crush zones in advance and to prepare for an optimal response. It is an object of the present invention to provide a tunnel excavator capable of performing the following.

【0005】[0005]

【課題を解決するための手段】上記のような目的を達成
するために、本発明のトンネル掘削機は、切羽をディス
クカッターで掘削するトンネル掘削機において、ディス
クカッターに作用する力を測定し、かつディスクカッタ
ーの切羽面上の位置を測定し、さらにディスクカッター
で掘進中の掘進速度を測定することによって、切羽面に
おける岩盤の硬さ特性の平面分布を表示することができ
るように構成した、トンネル掘削機を特徴としたもので
ある。
To achieve the above object, a tunnel excavator according to the present invention measures a force acting on a disk cutter in a tunnel excavator for excavating a face with a disk cutter. And, by measuring the position on the face of the disk cutter, and further measuring the digging speed while digging with the disk cutter, it was configured to be able to display the planar distribution of the hardness characteristics of the rock in the face. It features a tunnel excavator.

【0006】[0006]

【本発明の実施の態様】以下図面を参照しながら本発明
にかかわるトンネル掘削機の実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a tunnel excavator according to the present invention will be described below with reference to the drawings.

【0007】<イ>ディスクカッターの構造。 本発明のトンネル掘削機1は前胴2と後胴3とに分割
し、前胴2と後胴3との間を軸方向に伸縮する推進ジャ
ッキ4によって連結してある。後胴3には、円周方向に
張り出すメイングリッパ5を備え、このメイングリッパ
5を張り出して反力を取り、軸方向に伸縮する推進ジャ
ッキ4によって前胴2およびカッターヘッド6を尺取り
虫状に前進させる構成である。そして前端のカッターヘ
ッド6には図5に示すようなディスクカッター7を取り
付ける。すなわち、カッターヘッド6には多数のカッタ
ー7が取り付けてあるが、異なる円周軌道位置の数個の
ディスクカッター7の台座に荷重計71を取り付ける。
その結果、各ディスクカッター7の背分力、主分力を測
定することができる。カッターヘッド6は回転している
から、図4に示すように回転しない掘削機本体1の前胴
2との間にはスリップリング61などの回転接続機構を
設け、ここを介して後方の計測装置62にリード線を配
線する。さらに、カッターヘッド6の台座部に回転角計
を取り付ける。すると、各ディスクカッター7の現在位
置を求めることができる。
<A> Structure of disc cutter The tunnel excavator 1 of the present invention is divided into a front body 2 and a rear body 3 and connected between the front body 2 and the rear body 3 by a propulsion jack 4 that expands and contracts in the axial direction. The rear body 3 is provided with a main gripper 5 that projects in the circumferential direction. The main gripper 5 projects to take a reaction force, and the propulsion jack 4 that expands and contracts in the axial direction takes the front body 2 and the cutter head 6 into an insect-like shape. It is a configuration for moving forward. Then, a disk cutter 7 as shown in FIG. 5 is attached to the cutter head 6 at the front end. That is, although a large number of cutters 7 are attached to the cutter head 6, the load meters 71 are attached to the pedestals of several disk cutters 7 at different circumferential orbital positions.
As a result, the back force and the main force of each disk cutter 7 can be measured. Since the cutter head 6 is rotating, a rotational connection mechanism such as a slip ring 61 is provided between the cutter head 6 and the front body 2 of the non-rotating excavator body 1 as shown in FIG. A lead wire is wired to 62. Further, a rotation angle meter is attached to the base of the cutter head 6. Then, the current position of each disk cutter 7 can be obtained.

【0008】<ロ>岩盤硬さ特性の測定。 カッターヘッド上に配置した1つのディスクカッターに
作用する力を、背分力Fと主分力Tに分ける。(図5) これらの背分力や主分力はそれ自体で岩盤の硬さの度合
いと密接に関係しているので、これら自身が岩盤の硬さ
の指標となる。一方で背分力や主分力は切り込み量(デ
ィスクカッタによる切削深さ)とも関係する。切り込み
量は、トンネル掘削機の操縦者の設定に依存するので、
この影響を取り除いた岩盤の硬さの指標を用いて地山状
況を評価することが望ましい。この目的に合致する岩盤
の硬さ特性として、福井らによる岩盤強度が提案されて
いる。(福井、大久保:TBMの掘削抵抗を利用した岩
盤物性の把握、『トンネルと地下』Vol.28,N
o.2,pp123−131,1997) これによると、岩盤強度Sは、背分力F,主分力Tおよ
び切り込み量Pとの間には、以下の比例関係が存在する
ことがわかっている。
<B> Measurement of rock hardness characteristics. The force acting on one disk cutter disposed on the cutter head is divided into a back component F and a main component T. (FIG. 5) Since these back force and main force are themselves closely related to the degree of hardness of the rock, they themselves are indicators of the hardness of the rock. On the other hand, the back force and the main force are also related to the depth of cut (the cutting depth by the disk cutter). Since the depth of cut depends on the setting of the operator of the tunnel excavator,
It is desirable to evaluate the ground condition using an index of the hardness of the rock mass from which this effect has been removed. Fukui et al. Have proposed rock strength as a hardness characteristic of rock that meets this purpose. (Fukui, Okubo: Understanding rock properties using TBM excavation resistance, Tunnel and Underground, Vol. 28, N.
o. 2, pp 123-131, 1997) According to this, it is known that the following proportional relationship exists between the back component force F, the main component component T, and the cutting depth P of the rock mass strength S.

【0009】S=a・F/P S = a · F / P c

【0010】S=b・T/P S = b · T / P d

【0011】ここでa,bは比例定数である。c,dは
パラメータであり、福井らによる上記論文中の既往研究
のレビューによると(d−c)はほぼ0.5であり、d
は1または1.5とする説がある。切り込み量Pは、カ
ッターヘッド全体の平均的な値(すなわちカッタヘッド
1回転当たりの切削深さ)を用いることとし、この場合
トンネル掘削機の推力ジャッキの変位速度、すなわち純
掘進速度V(例えば1分当たりの掘進長)とカッターヘ
ッド回転数N(例えば1分当たりの回転回数)から、以
下のようにもとめることができる。
Here, a and b are proportional constants. c and d are parameters, and according to a review of previous studies in the above-mentioned paper by Fukui et al., (dc) is approximately 0.5, and d
There is a theory that 1 or 1.5 is set. As the depth of cut P, an average value of the entire cutter head (that is, the cutting depth per rotation of the cutter head) is used. In this case, the displacement speed of the thrust jack of the tunnel excavator, that is, the pure excavation speed V (for example, 1 From the excavation length per minute) and the number of rotations N of the cutter head (for example, the number of rotations per minute), the following can be obtained.

【0012】P=V/NP = V / N

【0013】カッターヘッドの台座部に回転角計を取り
付け、各ディスクカッターの現在位置を求めることがで
きるから、個々のディスクカッターの掘削する部分毎の
切羽の岩盤強度の分布を測定することができる。
A rotary angle meter is attached to the pedestal portion of the cutter head, and the current position of each disk cutter can be obtained. Therefore, it is possible to measure the distribution of the rock strength of the cutting face for each excavated portion of each disk cutter. .

【0014】<ハ>岩盤の硬さ特性の三次元分布。 上記の計測項目と同時に、掘進距離を自動計測する。掘
進距離とは例えば切羽の起点からの距離である。する
と、掘削した岩盤のトンネル横断面上の硬さ特性の分布
データを、掘進距離ごとに配置したデータを作成でき
(図2)、硬さ特性の三次元分布を表示できる。この結
果から、岩盤の断層、破砕帯などの脆弱層の走向、傾斜
など地質構造をとらえることができる。このデータを外
挿することによって、切羽前方の岩盤の状況を推定する
ことができる。この例を図3に示す。
<C> Three-dimensional distribution of hardness characteristics of rock mass. The excavation distance is automatically measured simultaneously with the above measurement items. The excavation distance is, for example, the distance from the starting point of the face. Then, the distribution data of the hardness characteristics on the cross section of the tunnel of the excavated rock can be created as data arranged for each excavation distance (FIG. 2), and the three-dimensional distribution of the hardness characteristics can be displayed. From these results, geological structures such as strike and dip of fragile layers such as rock faults and shatter zones can be captured. By extrapolating this data, the condition of the bedrock in front of the face can be estimated. This example is shown in FIG.

【0015】<ニ>実施例。 仮に3個のディスクカッターによって図1に示すような
地質構造の岩盤を掘削した場合、岩盤強度を測定した結
果の例を図2に示す。図2では切羽面上に区切った各区
間ごとの平均的な岩盤強度を、色が濃い方が低いもの、
すなわち岩盤が柔らかいものとして現してある。また各
切羽で得られた結果を、トンネルの掘進距離ごとに並べ
て図示することにより、三次元的な岩盤強度の分布を求
めることができる。
<D> Embodiment. FIG. 2 shows an example of the results of measuring the rock strength when a rock having a geological structure as shown in FIG. 1 is excavated by three disk cutters. In FIG. 2, the average rock strength of each section divided on the face
In other words, the bedrock appears as soft. By arranging and showing the results obtained for each face for each tunnel excavation distance, a three-dimensional distribution of rock strength can be obtained.

【0016】[0016]

【本発明の効果】本発明のトンネル掘削機は以上説明し
たようになるから次のような効果を得ることができる。 <イ>岩盤の硬さ特性の切羽面上の分布を表示すること
によって、トンネル切羽や側壁での断層、破砕帯の広が
りや出現する位置を事前に把握することができる。 し
たがって掘進に支障を来すか否かを早期に判断すること
ができ、最適な対策を講じることができる。 <ロ>このような表示は、コンピュータを用いた自動計
測、表示システムを採用することによって、掘削中にリ
アルタイムで表示することができる。 <ハ>各切羽で得られた岩盤の硬さ特性の分布とトンネ
ルの距離程によって、三次元的な岩盤の硬さ特性の分布
を求めることができる。したがって三次元的な地質構造
を推定することができ、現在の切羽位置から、将来現れ
る前方の地質状況を外挿的に予測することができる。こ
の例を図3の例で示せば、現在の切羽位置よりも掘削機
の直径分ぐらい前進すると弱層部が天端部に達すること
がわかり、天端崩壊の危険性が生じることを予測でき
る。 <ニ>このような三次元的な表示も、コンピュータを用
いる自動計測、表示システムのよって、掘削時にリアル
タイムで行うことが可能である。
As described above, the tunnel excavator according to the present invention has the following advantages. <B> By displaying the distribution of the hardness characteristics of the rock mass on the face, it is possible to grasp in advance the spread of the fault and the shatter zone on the tunnel face and the side wall and the position where the zone appears. Therefore, it is possible to determine at an early stage whether or not it will hinder excavation, and it is possible to take optimal measures. <B> Such display can be displayed in real time during excavation by employing an automatic measurement and display system using a computer. <C> A three-dimensional distribution of the hardness characteristics of the rock can be obtained from the distribution of the hardness characteristics of the rock obtained at each face and the distance of the tunnel. Therefore, the three-dimensional geological structure can be estimated, and the geological situation ahead appearing in the future can be extrapolated from the current face position. If this example is shown in the example of FIG. 3, it can be seen that the weak layer portion reaches the top end when the excavator advances more than the current face position by the diameter of the excavator, and it can be predicted that the danger of top end collapse will occur. . <D> Such a three-dimensional display can be performed in real time during excavation by an automatic measurement and display system using a computer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】トンネル掘削機と断層の関係の説明図。FIG. 1 is an explanatory diagram of a relationship between a tunnel excavator and a fault.

【図2】岩盤硬さ特性分布の切羽平面上の分布の説明
図。
FIG. 2 is an explanatory diagram of a distribution of rock hardness characteristic distribution on a face plane.

【図3】岩盤硬さ特性分布の三次元分布と切羽前方の推
定の説明図。
FIG. 3 is an explanatory diagram of a three-dimensional distribution of rock hardness characteristic distribution and estimation of a front face of a face.

【図4】トンネル掘削機の実施例の説明図。FIG. 4 is an explanatory view of an embodiment of a tunnel excavator.

【図5】ディスクカッターに作用する力の測定装置の説
明図。
FIG. 5 is an explanatory view of a device for measuring a force acting on a disk cutter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 正孝 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masataka Uchida 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】切羽をディスクカッターで掘削するトンネ
ル掘削機において、 ディスクカッターに作用する力を測定し、 かつディスクカッターの切羽面上の位置を測定し、 さらにディスクカッターで掘進中の掘進速度を測定する
ことによって、 切羽面における岩盤の硬さ特性の平面分布を表示するこ
とができるように構成した、 トンネル掘削機
In a tunnel excavator for excavating a face with a disc cutter, a force acting on the disc cutter is measured, and a position of the disc cutter on a face is measured. A tunnel excavator configured to be able to display the plane distribution of the hardness characteristics of the rock at the face by measuring
【請求項2】切羽をディスクカッターで掘削するトンネ
ル掘削機において、 ディスクカッターに作用する力を測定し、 かつディスクカッターの切羽面上の位置を測定し、 さらにディスクカッターで掘進中の掘進速度、 および掘進距離を測定することによって、 岩盤の硬さ特性の三次元分布を表示することができるよ
うに構成した、 トンネル掘削機
2. In a tunnel excavator for excavating a face with a disk cutter, a force acting on the disk cutter is measured, and a position of the disk cutter on the face is measured. And a tunnel excavator configured to display the three-dimensional distribution of hardness characteristics of rock mass by measuring the excavation distance.
JP9088098A 1998-03-19 1998-03-19 Tunnel excavator and tunnel excavation method using the same Expired - Fee Related JP3511163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9088098A JP3511163B2 (en) 1998-03-19 1998-03-19 Tunnel excavator and tunnel excavation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9088098A JP3511163B2 (en) 1998-03-19 1998-03-19 Tunnel excavator and tunnel excavation method using the same

Publications (2)

Publication Number Publication Date
JPH11270283A true JPH11270283A (en) 1999-10-05
JP3511163B2 JP3511163B2 (en) 2004-03-29

Family

ID=14010779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9088098A Expired - Fee Related JP3511163B2 (en) 1998-03-19 1998-03-19 Tunnel excavator and tunnel excavation method using the same

Country Status (1)

Country Link
JP (1) JP3511163B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087537A1 (en) * 2002-04-17 2003-10-23 Starloy Corporation Disk roller cutter and disk roller cutter monitoring system
EP1632645A1 (en) * 2004-09-07 2006-03-08 Bouygues Travaux Publics Method and device for providing continuous informations to the driver of a tunnelling machine regarding the material in front of the device
JP2016003429A (en) * 2014-06-13 2016-01-12 株式会社奥村組 Discrimination system for soil distribution at pit face of shield machine
JP2016003430A (en) * 2014-06-13 2016-01-12 株式会社奥村組 Discrimination method for soil distribution using shield machine
JP2017179725A (en) * 2016-03-28 2017-10-05 清水建設株式会社 Tunnel natural ground search method
JP2017201074A (en) * 2016-05-02 2017-11-09 大成建設株式会社 Evaluation method of tunnel surrounding ground and tunnel construction method
JP2018084076A (en) * 2016-11-24 2018-05-31 株式会社大林組 Tunnel management system, tunnel management method, and tunnel management program
EP3647533A1 (en) 2018-11-05 2020-05-06 Bouygues Travaux Publics Optimisation of the drilling of a tunnel-boring machine according to land/machine interactions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712548A (en) * 1993-06-21 1995-01-17 Kajima Corp Method and apparatus for detection of gap around shield excavator
JPH0737096A (en) * 1993-07-22 1995-02-07 Kumagai Gumi Co Ltd Line segment extraction method in picture analysis of tunnel working face
JPH1019853A (en) * 1996-07-09 1998-01-23 Okumura Corp Apparatus for judgment of ground

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712548A (en) * 1993-06-21 1995-01-17 Kajima Corp Method and apparatus for detection of gap around shield excavator
JPH0737096A (en) * 1993-07-22 1995-02-07 Kumagai Gumi Co Ltd Line segment extraction method in picture analysis of tunnel working face
JPH1019853A (en) * 1996-07-09 1998-01-23 Okumura Corp Apparatus for judgment of ground

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087537A1 (en) * 2002-04-17 2003-10-23 Starloy Corporation Disk roller cutter and disk roller cutter monitoring system
JP2003307095A (en) * 2002-04-17 2003-10-31 Starloy:Kk Disk-roller cutter and disk-roller cutter monitoring system
EP1632645A1 (en) * 2004-09-07 2006-03-08 Bouygues Travaux Publics Method and device for providing continuous informations to the driver of a tunnelling machine regarding the material in front of the device
FR2874959A1 (en) * 2004-09-07 2006-03-10 Bouygues Travaux Publics Sa METHOD AND DEVICES FOR CONTINUOUSLY INFORMING THE CONDUCTOR OF A TUNNELIER OF THE NATURE OF THE LAND AT THE SIZE BOTTOM
WO2006027497A1 (en) * 2004-09-07 2006-03-16 Bouygues Travaux Publics Method and device for continuously informing the operator of a tunnelling machine on physical features of a ground to be tunnelled
JP2016003429A (en) * 2014-06-13 2016-01-12 株式会社奥村組 Discrimination system for soil distribution at pit face of shield machine
JP2016003430A (en) * 2014-06-13 2016-01-12 株式会社奥村組 Discrimination method for soil distribution using shield machine
JP2017179725A (en) * 2016-03-28 2017-10-05 清水建設株式会社 Tunnel natural ground search method
JP2017201074A (en) * 2016-05-02 2017-11-09 大成建設株式会社 Evaluation method of tunnel surrounding ground and tunnel construction method
JP2018084076A (en) * 2016-11-24 2018-05-31 株式会社大林組 Tunnel management system, tunnel management method, and tunnel management program
EP3647533A1 (en) 2018-11-05 2020-05-06 Bouygues Travaux Publics Optimisation of the drilling of a tunnel-boring machine according to land/machine interactions
FR3088089A1 (en) 2018-11-05 2020-05-08 Bouygues Travaux Publics OPTIMIZATION OF A TUNNEL'S DRILLING BASED ON FIELD / MACHINE INTERACTIONS
US11448068B2 (en) 2018-11-05 2022-09-20 Bouygues Travaux Publics Optimization of boring by a tunnel boring machine as a function of ground/machine interactions

Also Published As

Publication number Publication date
JP3511163B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
CA2916148C (en) Arrangement for controlling percussive drilling process
JP3919172B2 (en) Disc roller cutter and disc roller cutter monitoring system
JP6251128B2 (en) Judgment method of soil distribution by shield machine
US5381690A (en) Method and apparatus for measuring three dimensional stress in rock surrounding a borehole
JPH11270283A (en) Tunnel boring machine
JP3238840B2 (en) Tunnel ground search system
JP3344561B2 (en) Method and apparatus for real-time evaluation of TBM face and surrounding geology
JP6342723B2 (en) Discrimination system of face soil distribution by shield machine
JP2618712B2 (en) Ground strength measuring device
JPH09170398A (en) Geological distribution survey device for excavated face and the surveying and control method for excavation work
JP2005010122A (en) Method and apparatus for measuring stress by overcoring type stress analysis method
JP4017781B2 (en) Property display method of tunnel excavated ground
JP5417232B2 (en) Exploration system, shield machine and shield machine excavation method
JP2873397B2 (en) Land Survey System
JPH109945A (en) Method for monitoring cutter of tbm and device for monitoring
JP3821538B2 (en) Tunneling machine excavation control method
JPH0344197B2 (en)
JP5808687B2 (en) Judgment method of rock excavation method
JPH11101091A (en) Tunnel excavator and excavation method
JP3831904B2 (en) Geological rock mass discrimination method
JPH09228780A (en) Estimation method for tunnel facing earth quality and timbering selecting method, and device therefor
JPH07311133A (en) Method and instrument for measuring hardness of ground
JPS6367319A (en) Hardness index gauge
Kwak et al. Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition
JPH11303583A (en) Bedrock strength estimating method by tunnel excavator

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031216

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees