JPH11268281A - Fabrication of nozzle plate and method for machining silicon substrate - Google Patents

Fabrication of nozzle plate and method for machining silicon substrate

Info

Publication number
JPH11268281A
JPH11268281A JP7102898A JP7102898A JPH11268281A JP H11268281 A JPH11268281 A JP H11268281A JP 7102898 A JP7102898 A JP 7102898A JP 7102898 A JP7102898 A JP 7102898A JP H11268281 A JPH11268281 A JP H11268281A
Authority
JP
Japan
Prior art keywords
type silicon
single crystal
silicon single
crystal substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7102898A
Other languages
Japanese (ja)
Other versions
JP3570209B2 (en
Inventor
Yasushi Karasawa
康史 柄沢
Mitsuaki Atobe
光朗 跡部
Shiyuuichi Shoji
習一 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7102898A priority Critical patent/JP3570209B2/en
Publication of JPH11268281A publication Critical patent/JPH11268281A/en
Application granted granted Critical
Publication of JP3570209B2 publication Critical patent/JP3570209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/162Manufacturing of the nozzle plates

Abstract

PROBLEM TO BE SOLVED: To provide a high quality nozzle plate having highly accurate uniform nozzles at a low price with high productivity. SOLUTION: The method for fabricating a nozzle plate comprises step (a) of forming an etching resistant mask corresponding to a nozzle pattern on one side of an n-type silicon single crystal substrate 11 having crystal orientation (100), step (b) of forming a translucent conductive film on the other side of the substrate 11 step (c) of forming via holes corresponding to the nozzle pattern on one side of the substrate 11 through anisotropic etching by touching it to alkaline aqueous solution, and step (d) of boring the via holes deeper or making through holes through electrolytic etching using the translucent conductive film as an anode by irradiating the other side of the substrate 11 with light while touching one side to a solution containing hydrofluoric acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インクジェット記
録装置に用いられるノズルプレートの製造方法およびシ
リコン基板の加工方法に関する。
The present invention relates to a method for manufacturing a nozzle plate used in an ink jet recording apparatus and a method for processing a silicon substrate.

【0002】[0002]

【従来の技術】近年、インクジェット記録装置には、ま
すます高解像度で高速な印刷が要求されている。この要
求に応えるため、フェイスイジェクト型と呼ばれるヘッ
ド基板の面部に形成されたノズルよりインク滴を吐出す
る形式が考案された。この形式は、構造上ノズルを多数
配設することができるため、高密度化が可能となり、高
解像・高速印刷の要求に応えられるものである。
2. Description of the Related Art In recent years, an ink jet recording apparatus has been required to perform higher-resolution and higher-speed printing. In order to respond to this demand, a type of ejecting ink droplets from nozzles formed on the surface of the head substrate, called a face eject type, has been devised. In this type, since a large number of nozzles can be arranged on the structure, the density can be increased, and the demand for high resolution and high speed printing can be met.

【0003】このフェイスイジェクト型インクジェット
記録装置は、印字品質確保のため、ノズルプレートのノ
ズル内部がノズルプレート面に対して垂直形状であるこ
とが要求される。このため、ノズルプレートとしてシリ
コン基板を用いた場合には、 1)半導体製造の分野で採用されているトレンチドライ
エッチング法や、2)湿式溝加工技術として「Proc
eedings IEEE MEMS1996」の1頁
〜2頁の「FORMATION OF POROUS
SILICON」に開示されているような陽極電解法を
用いることが考えられる。この陽極電解法は、光照射環
境下でn型シリコン基板の一面をふっ酸水溶液中で陽極
電解する方法である。
In this face-ejection type ink jet recording apparatus, the inside of the nozzle of the nozzle plate is required to be perpendicular to the nozzle plate surface in order to ensure print quality. Therefore, when a silicon substrate is used as a nozzle plate, 1) a trench dry etching method used in the field of semiconductor manufacturing, and 2) “Proc” as a wet groove processing technique.
edgings IEEE MEMS 1996 ”, page 1-2,“ FORMATION OF POROUS ”
It is conceivable to use an anodic electrolysis method as disclosed in "SILICON". This anodic electrolysis is a method in which one surface of an n-type silicon substrate is subjected to anodic electrolysis in a hydrofluoric acid aqueous solution under a light irradiation environment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
のうちトレンチドライエッチング法は、次のような2つ
の課題を有している。
However, among these, the trench dry etching method has the following two problems.

【0005】(1)エッチング速度が遅いため、ノズル
穴明けの加工時間が長い。 (2)枚葉処理のため、生産性が低い。
(1) Since the etching rate is low, the processing time for drilling the nozzle is long. (2) Low productivity due to single wafer processing.

【0006】一方、これらのうち陽極電解法は、多数枚
処理が可能なため、ノズルプレートの製造コストダウン
が期待される一方、n型シリコン基板の一面の裏側の面
の一部分に電極を形成して電解するため、多数のノズル
穴を有するノズルプレートでは、シリコン基板の内部抵
抗勾配によって、ノズル穴の加工量がばらつくという課
題を有している。
On the other hand, among these, the anodic electrolysis method is capable of processing a large number of sheets, and thus is expected to reduce the production cost of the nozzle plate. Therefore, in a nozzle plate having a large number of nozzle holes, there is a problem that the processing amount of the nozzle holes varies due to the internal resistance gradient of the silicon substrate.

【0007】本発明は、以上の課題を解決するものでそ
の目的は、高精度でばらつきの少ないノズルを有する高
品質なノズルプレートを生産性よく低価格で提供するこ
とである。また、本発明の別の目的は、シリコン基板に
微細な凹部又は貫通孔を高精度にしかも生産性よく形成
することのできるシリコン基板の加工方法を提供するこ
とである。
An object of the present invention is to provide a high-quality nozzle plate having nozzles with high accuracy and little variation at a low cost with high productivity. Another object of the present invention is to provide a method for processing a silicon substrate, which can form a fine concave portion or a through hole with high accuracy and high productivity in the silicon substrate.

【0008】[0008]

【課題を解決するための手段】請求項1のノズルプレー
トの製造方法は、(a)ノズルプレート用基板として用
いる結晶方位(100)のn型シリコン単結晶基板の一
方の面に、ノズルパターンに対応した耐エッチングマス
クを形成する工程と、(b)前記n型シリコン単結晶基
板の他方の面に、このn型シリコン単結晶基板とオーミ
ック接続が可能な光透過性導電性膜を形成する工程と、
(c)前記n型シリコン単結晶基板の一方の面をアルカ
リ性水溶液に接触させて前記n型シリコン単結晶基板の
異方性エッチングを行い、前記n型シリコン単結晶基板
の一方の面にノズルパターンに対応した未貫通孔を形成
する工程と、(d)前記n型シリコン単結晶基板の一方
の面をふっ酸を含む溶液に接触させた状態で、前記n型
シリコン単結晶基板の他方の面の側から光を照射しなが
ら、前記光透過性導電性膜を陽極として電解エッチング
を行い、前記n型シリコン基板の未貫通孔を更に深い未
貫通孔又は貫通孔にする工程と、を有することを特徴と
する。
According to a first aspect of the present invention, there is provided a method of manufacturing a nozzle plate, comprising: (a) forming a nozzle pattern on one surface of an n-type silicon single crystal substrate having a crystal orientation of (100) used as a nozzle plate substrate; Forming a corresponding etching resistant mask; and (b) forming, on the other surface of the n-type silicon single crystal substrate, a light-transmitting conductive film capable of ohmic connection with the n-type silicon single crystal substrate. When,
(C) anisotropic etching of the n-type silicon single-crystal substrate by bringing one surface of the n-type silicon single-crystal substrate into contact with an alkaline aqueous solution to form a nozzle pattern on one surface of the n-type silicon single-crystal substrate; Forming a non-through hole corresponding to (d), and (d) the other surface of the n-type silicon single crystal substrate while one surface of the n-type silicon single crystal substrate is brought into contact with a solution containing hydrofluoric acid Performing an electrolytic etching using the light-transmitting conductive film as an anode while irradiating light from the side of the substrate to make the non-penetrated holes of the n-type silicon substrate into deeper non-penetrated holes or through-holes. It is characterized by.

【0009】このように、請求項1の発明では、n型シ
リコン単結晶基板の他方の面に光透過性導電性膜を形成
したので、全ノズル穴予定部分に加わる電圧を均一にす
ることができる。このため、ノズル穴加工量のばらつき
が減少し、ノズル穴の精度が向上するとともに、未貫通
のノズル穴数を減少させることができ歩留まりが向上し
た。その結果、高精度なノズルプレートを低価格で生産
することが可能となるという効果がある。
As described above, according to the first aspect of the present invention, since the light-transmitting conductive film is formed on the other surface of the n-type silicon single crystal substrate, it is possible to make the voltage applied to all the planned nozzle holes uniform. it can. For this reason, the variation in the amount of processed nozzle holes is reduced, the accuracy of the nozzle holes is improved, and the number of unpenetrated nozzle holes can be reduced, thereby improving the yield. As a result, there is an effect that a highly accurate nozzle plate can be produced at a low price.

【0010】また、請求項1の発明は、電解エッチング
を行うのに先立ってアルカリ性水溶液を用いて異方性エ
ッチングを行うため、ノズル穴予定部分にエッチングピ
ラミッドが形成される。このため、光照射によって発生
した正孔がこのエッチングピラミッド先端に集中し、そ
の結果、電解エッチングの促進及びノズル穴内部の垂直
性の改善を図ることができるという効果もある。
According to the first aspect of the present invention, since anisotropic etching is performed using an alkaline aqueous solution prior to performing electrolytic etching, an etching pyramid is formed at a portion where a nozzle hole is to be formed. For this reason, the holes generated by the light irradiation are concentrated at the tip of the etching pyramid, and as a result, there is an effect that the electrolytic etching can be promoted and the verticality inside the nozzle hole can be improved.

【0011】請求項1の発明の(b)工程で形成される
光透過性導電性膜とは、n型シリコン単結晶基板に対し
オーミック接合が可能であるとともに光を透過する膜で
あれば良く、例えば酸化錫、インジウム・錫酸化物(I
TO)などが挙げられる。この光透過性導電性膜は、
(d)工程における電界エッチングが均一に行われるよ
うな範囲に形成されるが、工程を単純にする観点からい
えば、n型シリコン単結晶基板の他方の面の実質的に全
面に形成されるのが好ましい。
The light-transmitting conductive film formed in the step (b) of the first aspect of the present invention may be a film that can form an ohmic junction with an n-type silicon single crystal substrate and transmits light. For example, tin oxide, indium tin oxide (I
TO) and the like. This light-transmitting conductive film is
(D) It is formed in a range where the electric field etching in the step is performed uniformly, but from the viewpoint of simplifying the step, it is formed on substantially the entire other surface of the n-type silicon single crystal substrate. Is preferred.

【0012】請求項1の発明の(d)工程で用いる電解
液はふっ酸を含む溶液であるが、エタノール等のアルコ
ールを添加すればさらにノズル穴内部の垂直性が改善さ
れる。
The electrolytic solution used in the step (d) of the first aspect of the present invention is a solution containing hydrofluoric acid. However, if an alcohol such as ethanol is added, the verticality inside the nozzle hole is further improved.

【0013】請求項1の発明の(a)工程で形成する耐
エッチングマスクの材料としては、ふっ酸に対して溶解
しにくい窒化シリコンや有機膜を用いることができる
が、ふっ酸に溶解する性質をもつ酸化シリコンであって
も、十分な膜厚を有するものであれば用いることができ
る。なお、窒化シリコンや酸化シリコンの形成方法は、
熱処理、CVD、スパッタ、蒸着または焼結法などがあ
る。
As a material of the etching resistant mask formed in the step (a) of the first aspect of the present invention, silicon nitride or an organic film which is hardly soluble in hydrofluoric acid can be used. Can be used as long as it has a sufficient film thickness. The method for forming silicon nitride and silicon oxide is as follows.
There are a heat treatment, a CVD, a sputtering, a vapor deposition or a sintering method.

【0014】なお、請求項1の発明のノズルプレートの
製造方法においては、(b)の光透過性導電性膜を形成
する工程を実施した後に(c)の異方性エッチングを行
う工程を実施することもできるし、(c)の異方性エッ
チングを行う工程を実施した後に(b)の光透過性導電
性膜を形成する工程を実施することもできる。
In the method of manufacturing a nozzle plate according to the first aspect of the present invention, the step (b) of forming a light-transmitting conductive film is performed, and then the step (c) of performing anisotropic etching is performed. Alternatively, after the step (c) of performing anisotropic etching, the step (b) of forming a light-transmitting conductive film can be performed.

【0015】請求項1の(d)工程で未貫通孔を形成す
る場合には、必要に応じて、このn型シリコン単結晶基
板全体を他方の面側から薄板化したり、この単結晶基板
のノズル穴予定位置近傍を他方の面側からエッチングし
たりして未貫通孔を貫通させ所望のノズル穴にする。
In the case where a non-through hole is formed in the step (d) of claim 1, if necessary, the entire n-type silicon single crystal substrate may be made thinner from the other surface side, or the single crystal substrate may be formed. The desired nozzle hole is made by penetrating the non-through hole by etching the vicinity of the nozzle hole expected position from the other surface side.

【0016】請求項2のシリコン基板の加工方法は、
(a)結晶方位(100)のn型シリコン単結晶基板の
一方の面に、耐エッチング膜からなるパターンマスクを
形成する工程と、(b)前記n型シリコン単結晶基板の
他方の面に、このn型シリコン単結晶基板とオーミック
接続が可能な光透過性導電性膜を形成する工程と、
(c)前記n型シリコン単結晶基板の一方の面をアルカ
リ性水溶液に接触させて前記n型シリコン単結晶基板の
異方性エッチングを行い、前記n型シリコン単結晶基板
の一方の面に凹部を形成する工程と、(d)前記n型シ
リコン単結晶基板の一方の面をふっ酸を含む溶液に接触
させた状態で、前記n型シリコン単結晶基板の他方の面
の側から光を照射しながら、前記光透過性導電性膜を陽
極として電解エッチングを行い、前記n型シリコン基板
の凹部を更に深い凹部にする工程と、を有することを特
徴とする。
A method for processing a silicon substrate according to claim 2 is as follows.
(A) forming a pattern mask made of an etching-resistant film on one surface of an n-type silicon single crystal substrate having a crystal orientation of (100); and (b) forming a pattern mask on the other surface of the n-type silicon single crystal substrate. Forming a light-transmitting conductive film capable of ohmic connection with the n-type silicon single crystal substrate;
(C) anisotropically etching the n-type silicon single-crystal substrate by bringing one surface of the n-type silicon single-crystal substrate into contact with an alkaline aqueous solution to form a recess on one surface of the n-type silicon single-crystal substrate; Forming; and (d) irradiating light from the other surface side of the n-type silicon single crystal substrate while one surface of the n-type silicon single crystal substrate is in contact with a solution containing hydrofluoric acid. A step of performing electrolytic etching using the light-transmitting conductive film as an anode to make the concave portion of the n-type silicon substrate a deeper concave portion.

【0017】このように構成したので、請求項2のシリ
コン基板の加工方法は、請求項1のノズルプレートの製
造方法と同様に、シリコン基板全面にわたって電界強度
を均一にすることができるので、形成される凹部又は貫
通孔の精度が向上する。その結果、シリコン基板に微細
な凹部又は貫通孔を高精度にしかも生産性よく形成する
ことのできるという効果がある。
With this configuration, the method of processing a silicon substrate according to the second aspect of the present invention can make the electric field intensity uniform over the entire surface of the silicon substrate, similarly to the method of manufacturing the nozzle plate of the first aspect. The accuracy of the recess or through hole to be formed is improved. As a result, there is an effect that fine concave portions or through holes can be formed with high accuracy and high productivity in the silicon substrate.

【0018】また、請求項2の発明は、電解エッチング
を行うのに先立ってアルカリ性水溶液を用いて異方性エ
ッチングを行うため、凹部の部分にはエッチングピラミ
ッドが形成される。このため、光照射によって発生した
正孔がこのエッチングピラミッド先端に集中し、その結
果、電解エッチングの促進及び凹部の垂直性の改善を図
ることができるという効果もある。
According to the second aspect of the present invention, since anisotropic etching is performed using an alkaline aqueous solution prior to performing electrolytic etching, an etching pyramid is formed in a concave portion. For this reason, the holes generated by the light irradiation are concentrated at the tip of the etching pyramid, and as a result, there is an effect that the electrolytic etching can be promoted and the verticality of the concave portion can be improved.

【0019】[0019]

【発明の実施の形態】以下本発明の実施の形態につい
て、詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0020】図1は、本発明におけるノズルプレートを
用いたインクジェット記録装置の斜視図である。このイ
ンクジェット記録装置は、第一プレート1とノズルプレ
ート2とが接合された構造を有している。この第1プレ
ートは、インクの供給部3と、PZTなどの振動により
インクを吐出する圧力室4と、インクが通過する流路5
と、が形成されており、このノズルプレートは、流路5
と垂直方向にノズル穴6が形成されている。インクは、
インク供給管(図示せず)からインク供給部3へ供給さ
れ、最終的にインク滴としてノズル穴6から吐出され
る。
FIG. 1 is a perspective view of an ink jet recording apparatus using a nozzle plate according to the present invention. This ink jet recording apparatus has a structure in which a first plate 1 and a nozzle plate 2 are joined. The first plate includes an ink supply unit 3, a pressure chamber 4 that discharges ink by vibration of PZT or the like, and a flow path 5 through which ink passes.
Are formed, and the nozzle plate is provided with the flow path 5.
The nozzle hole 6 is formed in the vertical direction. The ink is
The ink is supplied from an ink supply pipe (not shown) to the ink supply unit 3, and is finally ejected from the nozzle hole 6 as an ink droplet.

【0021】図2は、本発明におけるノズルプレートの
製造工程別断面図である。まず、ノズルプレートとなる
板厚200μmの(100)面方位のn型単結晶シリコ
ン基板11に、耐エッチング被膜として0.3μm厚の
窒化シリコン膜13、14をCVD装置で形成する(図
2(a))。ついで、窒化シリコン膜14をドライエッ
チング法によって除去後、窒化シリコン膜13にフォト
エッチングを施し、直径20μmのノズル穴に対応する
部分12の窒化シリコン膜を200ヶ所エッチングした
(図2(b))。次に、窒化シリコン膜13をマスクと
して、水酸化カリウム水溶液を用いた異方性エッチング
法によって、n型単結晶シリコン基板11へV溝形状の
エッチングピラミッド15を加工し、窒化シリコン膜1
3が形成された面の裏側へインジウム・錫酸化膜(IT
O膜)16を約0.2μm形成した(図2(c))。続
いて、上記窒化シリコン膜13が形成された面が電解液
に接するように電解セルを組み立て、表1の条件で窒化
シリコン膜13が形成された面の裏側より光を照射しな
がら、200μmの深さのノズル穴17を加工した(図
2(d))。
FIG. 2 is a cross-sectional view of the nozzle plate according to the present invention in each manufacturing process. First, 0.3 μm-thick silicon nitride films 13 and 14 having a thickness of 0.3 μm are formed as an etching-resistant film on a 200 μm-thick (100) plane n-type single crystal silicon substrate 11 serving as a nozzle plate by a CVD apparatus (FIG. a)). Next, after removing the silicon nitride film 14 by a dry etching method, the silicon nitride film 13 was subjected to photoetching, and the silicon nitride film in the portion 12 corresponding to the nozzle hole having a diameter of 20 μm was etched at 200 places (FIG. 2B). . Next, using the silicon nitride film 13 as a mask, a V-groove-shaped etching pyramid 15 is formed on the n-type single-crystal silicon substrate 11 by an anisotropic etching method using an aqueous potassium hydroxide solution.
Indium tin oxide film (IT
An O film 16 was formed to a thickness of about 0.2 μm (FIG. 2C). Subsequently, the electrolytic cell was assembled so that the surface on which the silicon nitride film 13 was formed was in contact with the electrolytic solution, and while being irradiated with light from the back side of the surface on which the silicon nitride film 13 was formed under the conditions shown in Table 1, a 200 μm The nozzle hole 17 having a depth was machined (FIG. 2D).

【0022】[0022]

【表1】 [Table 1]

【0023】最後に、窒化シリコン膜13及びインジウ
ム・錫酸化膜16を研磨法によって除去し(図2
(e))、ノズルプレートの形状に切断した。
Finally, the silicon nitride film 13 and the indium / tin oxide film 16 are removed by a polishing method (FIG. 2).
(E)), cut into the shape of a nozzle plate.

【0024】比較例1として、ノズル穴の加工をドライ
エッチングによって行った。この比較例1の場合、エッ
チング速度が1時間当たり約1μmであるため、200
μm加工に200時間を要した。得られた資料を比較試
料1とした。
As Comparative Example 1, the processing of the nozzle hole was performed by dry etching. In the case of Comparative Example 1, the etching rate was about 1 μm per hour,
It took 200 hours for μm processing. The obtained data was used as Comparative Sample 1.

【0025】また、比較例2として、シリコン基板の裏
側外周の一部部分に金属膜を0.1μm形成し、試料1
の陽極処理条件と同様の条件でノズル穴の加工を行っ
た。得られた試料を比較試料2とした。
As Comparative Example 2, a metal film was formed to a thickness of 0.1 μm on a part of the outer periphery on the back side of the silicon substrate.
Nozzle holes were machined under the same conditions as in the anodizing process. The obtained sample was used as Comparative Sample 2.

【0026】以上のようにして製造されたノズルプレー
トを用いて、フェースイジェクト型インクジェット記録
装置を製造した。表2は、試料1〜6及び比較試料1〜
2のノズルプレートにおいて、ノズル穴の貫通性および
ノズル穴の垂直性を評価した結果である。ノズル穴の貫
通性の「良好」は全ノズル貫通、「不良」は1ノズル以
上未貫通であり、ノズル穴断面の垂直性の「良好」は、
ノズル面と断面の成す角度が90±1度未満、「不良」
はノズル面と断面の成す角度が90±1度以上、「最
良」はノズル面と断面の成す角度が90±0.5度以内
である。
Using the nozzle plate manufactured as described above, a face eject type ink jet recording apparatus was manufactured. Table 2 shows samples 1 to 6 and comparative samples 1 to
2 shows the results of evaluating the penetrability of the nozzle holes and the perpendicularity of the nozzle holes in the second nozzle plate. “Good” for the nozzle hole penetration is “no good” for all nozzles, “poor” for one or more nozzles, and “good” for the perpendicularity of the nozzle hole cross-section.
The angle between the nozzle surface and the cross section is less than 90 ± 1 degree, "bad"
Indicates that the angle formed between the nozzle surface and the cross section is 90 ± 1 ° or more, and “Best” indicates that the angle formed between the nozzle surface and the cross section is within 90 ± 0.5 degrees.

【0027】[0027]

【表2】 [Table 2]

【0028】この表の通り、本発明の試料1から試料6
及び比較試料1のノズルプレートは、ノズル穴の貫通性
および垂直性が良好で、中でも試料2の陽極処理条件
が、ノズル穴の垂直性が最良であった。またノズルプレ
ートの製造コストでは、本発明の試料1〜試料6が、複
数の基板を同時に処理可能なため、200時間を要した
比較試料1に比べ製造コストを低減することができた。
As shown in the table, Samples 1 to 6 of the present invention were used.
The nozzle plate of Comparative Sample 1 had good penetration and verticality of the nozzle hole, and particularly, the anodizing condition of Sample 2 was the best in the verticality of the nozzle hole. In the manufacturing cost of the nozzle plate, since the samples 1 to 6 of the present invention can simultaneously process a plurality of substrates, the manufacturing cost could be reduced as compared with the comparative sample 1 which required 200 hours.

【0029】一方、比較試料2はノズル穴の加工ばらつ
きが発生したため、インク吐出可能な200個のノズル
穴を有するインクジェット記録装置を製造することがで
きなかった。
On the other hand, since the processing variation of the nozzle holes occurred in Comparative Sample 2, an ink jet recording apparatus having 200 nozzle holes capable of discharging ink could not be manufactured.

【0030】なお、試料1〜6は本発明の一部であり、
濃度、電圧等陽極処理条件が本試料範囲外においても、
印字特性は良好であった。さらに本実施の形態ではイン
クジェット装置のノズルプレートについて説明をした
が、シリコン基材であれば垂直性の良好な穴の加工が可
能であった。
Samples 1 to 6 are part of the present invention,
Even when the anodizing conditions such as concentration and voltage are out of the range of this sample,
The printing characteristics were good. Further, in the present embodiment, the nozzle plate of the ink jet device has been described, but a hole with good perpendicularity can be formed by using a silicon base material.

【0031】[0031]

【発明の効果】以上のように、本発明のノズルプレート
の製造方法は、高精度でばらつきの少ないノズルを有す
る高品質なノズルプレートを生産性よく低価格で提供す
ることができる。また、本発明のシリコン基板の製造方
法は、シリコン基板に微細な凹部又は貫通孔を高精度に
しかも生産性よく形成することができる。
As described above, the method of manufacturing a nozzle plate according to the present invention can provide a high-quality nozzle plate having nozzles with high precision and little variation at high productivity and at a low price. Further, according to the method for manufacturing a silicon substrate of the present invention, fine concave portions or through holes can be formed on a silicon substrate with high accuracy and high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明におけるインクジェット記録装置の斜
視図。
FIG. 1 is a perspective view of an ink jet recording apparatus according to the present invention.

【図2】 本発明におけるノズルプレートの製造工程別
断面図。
FIG. 2 is a cross-sectional view of the nozzle plate according to the present invention in each manufacturing process.

【符号の説明】[Explanation of symbols]

1 第一プレート 2 ノズルプレート 3 供給部 4 圧力室 5 流路 6 ノズル穴 11 n型単結晶シリコン基板 12 ノズル穴に対応する部分 13 窒化シリコン膜 14 窒化シリコン膜 15 エッチングピラミッド 16 インジウム・錫酸化物 17 ノズル穴 DESCRIPTION OF SYMBOLS 1 1st plate 2 nozzle plate 3 supply part 4 pressure chamber 5 flow path 6 nozzle hole 11 n-type single crystal silicon substrate 12 part corresponding to a nozzle hole 13 silicon nitride film 14 silicon nitride film 15 etching pyramid 16 indium tin oxide 17 Nozzle hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)ノズルプレート用基板として用いる
結晶方位(100)のn型シリコン単結晶基板の一方の
面に、ノズルパターンに対応した耐エッチングマスクを
形成する工程と、 (b)前記n型シリコン単結晶基板の他方の面に、この
n型シリコン単結晶基板とオーミック接続が可能な光透
過性導電性膜を形成する工程と、 (c)前記n型シリコン単結晶基板の一方の面をアルカ
リ性水溶液に接触させて前記n型シリコン単結晶基板の
異方性エッチングを行い、前記n型シリコン単結晶基板
の一方の面にノズルパターンに対応した未貫通孔を形成
する工程と、 (d)前記n型シリコン単結晶基板の一方の面をふっ酸
を含む溶液に接触させた状態で、前記n型シリコン単結
晶基板の他方の面の側から光を照射しながら、前記光透
過性導電性膜を陽極として電解エッチングを行い、前記
n型シリコン基板の未貫通孔を更に深い未貫通孔又は貫
通孔にする工程と、を有することを特徴とするノズルプ
レートの製造方法。
(A) forming an etching-resistant mask corresponding to a nozzle pattern on one surface of an n-type silicon single crystal substrate having a crystal orientation of (100) used as a nozzle plate substrate; forming a light-transmitting conductive film capable of ohmic connection with the n-type silicon single crystal substrate on the other surface of the n-type silicon single crystal substrate; and (c) one of the n-type silicon single crystal substrates. Contacting the surface with an alkaline aqueous solution to perform anisotropic etching of the n-type silicon single crystal substrate to form a non-through hole corresponding to a nozzle pattern on one surface of the n-type silicon single crystal substrate; d) While irradiating light from the other surface of the n-type silicon single crystal substrate with one surface of the n-type silicon single crystal substrate in contact with a solution containing hydrofluoric acid, Guidance Sex film subjected to electrolytic etching as an anode, the manufacturing method of the nozzle plate, characterized in that and a step of the deeper blind holes or through-holes of the non-through hole of the n-type silicon substrate.
【請求項2】(a)結晶方位(100)のn型シリコン
単結晶基板の一方の面に、耐エッチング膜からなるパタ
ーンマスクを形成する工程と、 (b)前記n型シリコン単結晶基板の他方の面に、この
n型シリコン単結晶基板とオーミック接続が可能な光透
過性導電性膜を形成する工程と、 (c)前記n型シリコン単結晶基板の一方の面をアルカ
リ性水溶液に接触させて前記n型シリコン単結晶基板の
異方性エッチングを行い、前記n型シリコン単結晶基板
の一方の面に凹部を形成する工程と、 (d)前記n型シリコン単結晶基板の一方の面をふっ酸
を含む溶液に接触させた状態で、前記n型シリコン単結
晶基板の他方の面の側から光を照射しながら、前記光透
過性導電性膜を陽極として電解エッチングを行い、前記
n型シリコン基板の凹部を更に深い凹部又は貫通孔にす
る工程と、を有することを特徴とするシリコン基板の加
工方法。
2. A step of (a) forming a pattern mask made of an etching resistant film on one surface of an n-type silicon single crystal substrate having a crystal orientation of (100); and (b) forming a pattern mask of the n-type silicon single crystal substrate. Forming a light-transmitting conductive film capable of ohmic connection with the n-type silicon single crystal substrate on the other surface; and (c) bringing one surface of the n-type silicon single crystal substrate into contact with an alkaline aqueous solution. Performing anisotropic etching of the n-type silicon single crystal substrate to form a concave portion on one surface of the n-type silicon single crystal substrate, and (d) removing one surface of the n-type silicon single crystal substrate. While in contact with a solution containing hydrofluoric acid, while irradiating light from the other surface side of the n-type silicon single crystal substrate, electrolytic etching is performed using the light-transmitting conductive film as an anode, and the n-type Silicon substrate recess Method for processing a silicon substrate, characterized in that and a step of the deeper recesses or through-holes.
JP7102898A 1998-03-19 1998-03-19 Nozzle plate manufacturing method and silicon substrate processing method Expired - Fee Related JP3570209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102898A JP3570209B2 (en) 1998-03-19 1998-03-19 Nozzle plate manufacturing method and silicon substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102898A JP3570209B2 (en) 1998-03-19 1998-03-19 Nozzle plate manufacturing method and silicon substrate processing method

Publications (2)

Publication Number Publication Date
JPH11268281A true JPH11268281A (en) 1999-10-05
JP3570209B2 JP3570209B2 (en) 2004-09-29

Family

ID=13448673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102898A Expired - Fee Related JP3570209B2 (en) 1998-03-19 1998-03-19 Nozzle plate manufacturing method and silicon substrate processing method

Country Status (1)

Country Link
JP (1) JP3570209B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086591A (en) * 2001-09-12 2003-03-20 Fujikura Ltd Method for manufacturing through electrode and the electrode
US7718254B2 (en) 2004-11-09 2010-05-18 Sharp Kabushiki Kaisha Method of forming pores in crystal substrate, and crystal substrate containing pores formed by the same
EP2439766A1 (en) 2010-10-08 2012-04-11 Wakom Semiconductor Corporation Method of forming micro-pore structures or trench structures on surface of silicon wafer substrate
KR101972665B1 (en) * 2017-10-31 2019-04-25 인하대학교 산학협력단 Metal foil hole processing method using electrolytic processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086591A (en) * 2001-09-12 2003-03-20 Fujikura Ltd Method for manufacturing through electrode and the electrode
JP4717290B2 (en) * 2001-09-12 2011-07-06 株式会社フジクラ Manufacturing method of through electrode
US7718254B2 (en) 2004-11-09 2010-05-18 Sharp Kabushiki Kaisha Method of forming pores in crystal substrate, and crystal substrate containing pores formed by the same
EP2439766A1 (en) 2010-10-08 2012-04-11 Wakom Semiconductor Corporation Method of forming micro-pore structures or trench structures on surface of silicon wafer substrate
KR101972665B1 (en) * 2017-10-31 2019-04-25 인하대학교 산학협력단 Metal foil hole processing method using electrolytic processing

Also Published As

Publication number Publication date
JP3570209B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
EP0764533B1 (en) Fabrication of ink feed slots in a silicon substrate of a thermal ink jet printer
US5459501A (en) Solid-state ink-jet print head
US4961821A (en) Ode through holes and butt edges without edge dicing
KR100955963B1 (en) Ink jet print head and method of manufacturing ink jet print head
JP2604065B2 (en) Method for forming an opening in a wafer
JP2002144583A (en) Method for producing orifice plate for print head
JP4656670B2 (en) Liquid discharge head and method of manufacturing liquid discharge head
WO2002057084A2 (en) Improved ink jet printheads and methods therefor
CN1314248A (en) Ink jet print head with improved pressure cavity and its producing method
EP1311395B1 (en) Monolithic printhead with self-aligned groove and relative manufacturing process
JP4967777B2 (en) Inkjet head manufacturing method
TW530007B (en) Slotted substrates and techniques for forming same
JPH09216368A (en) Ink jet nozzle plate and its production
JPH11268281A (en) Fabrication of nozzle plate and method for machining silicon substrate
JP3570210B2 (en) Nozzle plate manufacturing method and silicon substrate processing method
JPH11268282A (en) Fabrication of nozzle plate and method for machining silicon substrate
JP4217434B2 (en) Through-hole forming method and inkjet head using the same
EP2473354A1 (en) Method of manufacturing substrate for liquid discharge head
JP2001179987A (en) Nozzle plate and method for manufacturing the plate
JP2007253373A (en) Liquid droplet discharge head, liquid droplet discharge apparatus, method for manufacturing liquid droplet discharge head, and method for manufacturing liquid droplet discharge apparatus
JPH111000A (en) Manufacture of nozzle plate, ink jet head, nozzle plate, and ink jet recorder
JP3473664B2 (en) Method of manufacturing flow path forming substrate for ink jet recording head
US20230364907A1 (en) Single crystal silicon substrate, liquid discharge head, and method for manufacturing single crystal silicon substrate
US20230364910A1 (en) Single crystal silicon substrate, liquid discharge head, and method for manufacturing single crystal silicon substrate
JP2003080715A (en) Method for boring nozzle hole and method for fabricating semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees