JPH11265829A - Magnetic shielding device for stationary induction electrical apparatus - Google Patents

Magnetic shielding device for stationary induction electrical apparatus

Info

Publication number
JPH11265829A
JPH11265829A JP6645798A JP6645798A JPH11265829A JP H11265829 A JPH11265829 A JP H11265829A JP 6645798 A JP6645798 A JP 6645798A JP 6645798 A JP6645798 A JP 6645798A JP H11265829 A JPH11265829 A JP H11265829A
Authority
JP
Japan
Prior art keywords
tank
magnetic
shield
shields
stationary induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6645798A
Other languages
Japanese (ja)
Inventor
Yoshio Hamadate
良夫 浜館
Masakazu Yokoyama
雅一 横山
Shoichi Yamamoto
正一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6645798A priority Critical patent/JPH11265829A/en
Publication of JPH11265829A publication Critical patent/JPH11265829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent local overheat in magnetic material shields and a tank and the thermal degradation of insulators protecting the shields or the like, by a method wherein insulators are respectively provided vertically between the shields and the inside of the tank in the height direction of the tank to form cooling flow paths. SOLUTION: Magnetic material shields 8 formed by laminating silicon steel plates of a thin plate thickness in a width W are provided side by side at the positions opposing to inside and outside winding wires 4 and 5 on the inside of a tank 7 housed with a transformer body, comprising a main leg 1, side legs 2, upper yoke parts 3 and the inside and outside winding wires 4 and 5, via prescribed gap parts in the lateral directions, in such a way that the longitudinal directions of the shields 8 are made perpendicular and the shields 8 are respectively provided with press metal fittings. Insulators are provided for protecting the shields 8, and insulators 10 are respectively provided vertical between the insulators and the inside of the tank 7 in the height direction of the tank to form cooling flow paths 11. As a result, local overheating in the shields 8 and the tank 7 and the thermal degradation of the insulators for protecting the shields 8 can be prevented from being caused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧器やリアクトル
等の静止誘導電器の磁気遮蔽装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shielding device for stationary induction devices such as transformers and reactors.

【0002】[0002]

【従来の技術】一般に変圧器やリアクトル等のタンクに
は、巻線及びリード線からの漏れ磁束の侵入によってう
ず電流が流れ損失を発生する。この損失は大容量化する
ほど大きくなるので、通常は損失を低減するためにタン
クに磁気遮蔽装置が設けられるが、この磁気遮蔽装置と
しては銅,アルミニウム等の非磁性体や珪素鋼板等を積
層した磁性体シールドが使用されている。
2. Description of the Related Art Generally, an eddy current flows into a tank such as a transformer or a reactor due to invasion of leakage magnetic flux from a winding and a lead wire, thereby causing a loss. Since this loss increases as the capacity increases, a magnetic shielding device is usually provided in the tank to reduce the loss. As this magnetic shielding device, a nonmagnetic material such as copper or aluminum or a silicon steel plate is laminated. Magnetic shields are used.

【0003】図9,図10に従来の磁性体シールド8を
用いた静止誘導電器の磁気遮蔽装置を示すが、図9から
分かるように内側巻線4及び外側巻線5からの漏れ磁束
40は磁性体シールド8中を通過して内側巻線4,外側
巻線5へ帰る磁気回路を形成する。
FIGS. 9 and 10 show a conventional magnetic shield device of a static induction device using a magnetic shield 8. As can be seen from FIG. 9, the leakage magnetic flux 40 from the inner winding 4 and the outer winding 5 is reduced. A magnetic circuit is formed which passes through the magnetic shield 8 and returns to the inner winding 4 and the outer winding 5.

【0004】そのため、内側巻線4及び外側巻線5と対
向するタンク7の内側に幅Wで板厚の薄い珪素鋼板を積
層してなる磁性体シールド8の長手方向を垂直にして押
え金具(図示せず)を設けて横方向に並べており、しか
も図10に示すように磁性体シールド8は磁性体シール
ド8を保護するために絶縁物9を設けた一体化構造とな
っている。
[0004] Therefore, the magnetic shield 8 is formed by laminating a silicon steel sheet having a width W and a small thickness inside the tank 7 facing the inner winding 4 and the outer winding 5, and the longitudinal direction of the magnetic shield 8 is set to be vertical so that the presser fitting ( (Not shown) and are arranged in the horizontal direction. Further, as shown in FIG. 10, the magnetic shield 8 has an integrated structure provided with an insulator 9 to protect the magnetic shield 8.

【0005】ところが、従来の磁性体シールド8を用い
た磁気遮蔽装置では内側巻線4及び外側巻線5からの漏
れ磁束40が磁性体シールド8の表面へ垂直に侵入する
際に磁性体シールド8の表面をうず電流が流れ、そのう
ず電流で発生する損失の発熱を図中矢印で示すように変
圧器油50で片面冷却しかできないために磁性体シール
ド8自身やタンク7が局部過熱したり、磁性体シールド
8を保護している絶縁物9等が熱劣化を引き起こしてし
まう欠点があった。
However, in the conventional magnetic shielding device using the magnetic shield 8, when the leakage magnetic flux 40 from the inner winding 4 and the outer winding 5 vertically enters the surface of the magnetic shield 8, The eddy current flows on the surface of the eddy current, and the heat generated by the loss generated by the eddy current can only be cooled on one side by the transformer oil 50 as shown by the arrow in the figure, so that the magnetic material shield 8 itself and the tank 7 locally overheat, There is a disadvantage that the insulator 9 protecting the magnetic shield 8 causes thermal deterioration.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術の静止誘
導電器の磁気遮蔽装置では巻線からの漏れ磁束が磁性体
シールド表面へ垂直に侵入する際に磁性体シールド表面
をうず電流が流れ、そのうず電流による損失で磁性体シ
ールドに発生する発熱によって、磁性体シールドを保護
している絶縁物の熱劣化に対する配慮がされていないた
めに、磁性体シールド自身やタンクでの局部過熱の他に
磁性体シールドを保護している絶縁物等の熱劣化を防止
する構造について解決すべき課題があった。
In the above-mentioned prior art magnetic shielding apparatus for a static induction device, eddy current flows on the magnetic shield surface when leakage magnetic flux from the winding vertically penetrates into the magnetic shield surface. Due to the heat generated in the magnetic shield due to the loss due to the eddy current, consideration has not been given to thermal degradation of the insulator protecting the magnetic shield. There is a problem to be solved about a structure for preventing thermal deterioration of an insulator or the like protecting a body shield.

【0007】本発明の目的は、このような従来技術の課
題を有効に解決するもので、磁性体シールドとタンク内
側との間へ垂直に絶縁物をタンク高さ方向に設けて冷却
流路を形成して磁性体シールドやタンクでの局部過熱,
磁性体シールドを保護している絶縁物等の熱劣化を防止
する静止誘導電器の磁気遮蔽装置を提供することにあ
る。
An object of the present invention is to effectively solve such problems of the prior art, and an insulating material is provided vertically between a magnetic shield and the inside of a tank in a tank height direction to form a cooling flow path. Local overheating in the magnetic shield and tank,
An object of the present invention is to provide a magnetic shielding device for a stationary induction device that prevents thermal deterioration of an insulator or the like that protects a magnetic shield.

【0008】[0008]

【課題を解決するための手段】本発明は鉄心及び巻線を
有する誘導電器本体を収納するタンクの内側に磁性体を
積層してなる磁性体シールドを取り付けた静止誘導電器
の遮蔽装置において、前記磁性体シールドとタンク内側
との間ヘ垂直に絶縁物をタンク高さ方向に設けて冷却流
路を形成したことを特徴とする静止誘導電器の磁気遮蔽
装置。
According to the present invention, there is provided a shielding device for a stationary induction electric machine in which a magnetic shield formed by laminating a magnetic material is mounted inside a tank accommodating an induction electric body having an iron core and a winding. A magnetic shielding device for a static induction device, wherein a cooling passage is formed by providing an insulating material vertically in a tank height direction between a magnetic material shield and the inside of a tank.

【0009】即ち、本発明の静止誘導電器の磁気遮蔽装
置によれば、磁性体シールドとタンク内側との間ヘ垂直
に絶縁物をタンク高さ方向に設けて冷却流路を形成し、
その冷却流路に変圧器油を流すことにより、巻線からの
漏れ磁束が磁性体シールド表面へ垂直に侵入する際に磁
性体シールド表面を流れるうず電流によって発生する磁
性体シールド,タンク等の局部過熱や磁性体シールドを
保護している絶縁物の熱劣化も防止することが可能とな
る。
That is, according to the magnetic shielding apparatus for a stationary induction device of the present invention, a cooling flow path is formed by vertically providing an insulator between the magnetic shield and the inside of the tank in the tank height direction,
By flowing transformer oil through the cooling flow path, local magnetic fields such as magnetic shields and tanks are generated by eddy currents flowing through the magnetic shield surface when magnetic flux leaking from the windings enters the magnetic shield surface perpendicularly. It is also possible to prevent overheating and thermal degradation of the insulator protecting the magnetic shield.

【0010】[0010]

【発明の実施の形態】以下本発明の一実施例を図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は単相センタコア変圧器で磁性体シー
ルドの構成を示す平面図、図2が図1での磁性体シール
ドの要部断面図をそれぞれ示している。図1において、
主脚1及び側脚2,上部継鉄部3と内側巻線4,外側巻
線5からなる変圧器本体を収納したタンク7の内側で内
側巻線4,外側巻線5に対向した位置へ幅Wで板厚の薄
い珪素鋼板を積層してなる磁性体シールド8の長手方向
を垂直にして押え金具(図示せず)を設けて横方向に所
定の間隙部を介して並べられており、しかも図2に示す
ように磁性体シールド8を保護するために絶縁物9が設
けられ、その絶縁物9とタンク7内側との間ヘ垂直に絶
縁物10をタンク高さ方向に設けて冷却流路11を形成
した構成となっている。
FIG. 1 is a plan view showing the structure of a magnetic shield in a single-phase center core transformer, and FIG. 2 is a sectional view of a main part of the magnetic shield in FIG. In FIG.
To the position facing the inner winding 4 and the outer winding 5 inside the tank 7 housing the transformer body including the main leg 1 and the side legs 2, the upper yoke 3, the inner winding 4, and the outer winding 5. The magnetic shields 8 formed by laminating silicon steel sheets having a width W and a small thickness are provided with holding metal fittings (not shown) with the longitudinal direction being vertical, and are arranged laterally with a predetermined gap therebetween. In addition, as shown in FIG. 2, an insulating material 9 is provided to protect the magnetic shield 8, and an insulating material 10 is provided vertically between the insulating material 9 and the inside of the tank 7 in the tank height direction so that the cooling flow is prevented. The configuration is such that a road 11 is formed.

【0012】かかる構成法によれば、内側巻線4及び外
側巻線5からの漏れ磁束40が矢印で示す如く、磁性体
シールド8へ垂直に侵入する際に磁性体シールド8の表
面をうず電流が流れ、そのうず電流で磁性体シールド8
が発熱しても絶縁物9とタンク7内側との間ヘ垂直に絶
縁物10をタンク高さ方向に設けて冷却流路11が形成
されているため、図中矢印で示すように磁性体シールド
8の表面と冷却流路11中を変圧器油50が流れて両面
冷却が可能となるために、局部過熱や熱劣化を防止する
ことができる。
According to this configuration, when the leakage flux 40 from the inner winding 4 and the outer winding 5 penetrates perpendicularly into the magnetic shield 8 as indicated by the arrow, the eddy current flows through the surface of the magnetic shield 8. Flows, and the eddy current causes the magnetic shield 8
Even if heat is generated, the cooling passage 11 is formed by providing the insulator 10 vertically between the insulator 9 and the inside of the tank 7 in the tank height direction. Since the transformer oil 50 flows on the surface of the cooling water flow path 8 and in the cooling flow path 11 to enable cooling on both sides, local overheating and thermal deterioration can be prevented.

【0013】また、変圧器が大容量化したり、輸送条件
などで小型化したことにより磁性体シールド8へ垂直に
侵入する漏れ磁束40が増大して磁性体シールド8が磁
気飽和してタンク7に磁束が漏れて損失が発生しても冷
却路11を変圧器油50が流れるためにタンク7の局部
過熱を防止することができる。なお、絶縁物の材質とし
てはプレスボードが有効である。
Further, as the capacity of the transformer is increased or the transformer is miniaturized due to transportation conditions, etc., the leakage magnetic flux 40 which vertically penetrates into the magnetic shield 8 is increased, and the magnetic shield 8 is magnetically saturated, and Even if the magnetic flux leaks and a loss occurs, the transformer oil 50 flows through the cooling passage 11, so that local overheating of the tank 7 can be prevented. Note that a press board is effective as a material of the insulator.

【0014】図3は磁性体シールドの他の実施例を示
す。図3は磁性体シールド8の構成要素を示す要部断面
図を示している。図から分かるように磁性体シールド8
とタンク7内側との間ヘ垂直に設けられた絶縁物10の
高さ方向の2個所に間隙部60を設けた構成となってい
る。
FIG. 3 shows another embodiment of the magnetic shield. FIG. 3 is a sectional view of a main part showing components of the magnetic shield 8. As can be seen from the figure, the magnetic shield 8
A gap 60 is provided at two places in the height direction of the insulator 10 vertically provided between the insulator 10 and the inside of the tank 7.

【0015】かかる構成法によれば、絶縁物10に設け
られた間隙部60へも変圧器油が流れて冷却面積が拡大
するために冷却効果が向上し、磁性体シールド8やタン
ク7の局部過熱を防止できると共に絶縁物9,10の熱
劣化等も抑制することが可能となる。しかも、磁性体シ
ールド8を流れるうず電流は珪素鋼板の端部を流れるた
め損失が最も大きくなる付近に間隙部60を設けること
により、さらに冷却効果を向上させることが期待でき
る。なお、本発明は絶縁物10に間隙部60を2個所設
けた例で述べているが、複数個の間隙部60を設けるこ
とにより、さらに冷却効果を向上させることができるの
は言うまでもない。
According to this construction method, the transformer oil also flows into the gap 60 provided in the insulator 10 to increase the cooling area, so that the cooling effect is improved, and the magnetic shield 8 and the local portion of the tank 7 are improved. It is possible to prevent overheating and to suppress thermal degradation of the insulators 9 and 10. In addition, since the eddy current flowing through the magnetic shield 8 flows through the end of the silicon steel sheet, the cooling effect can be expected to be further improved by providing the gap 60 near where the loss is greatest. Although the present invention has been described with reference to an example in which two gaps 60 are provided in the insulator 10, it goes without saying that the cooling effect can be further improved by providing a plurality of gaps 60.

【0016】図4は磁性体シールドの他の実施例を示
す。図4は磁性体シールド8の構成要素を示す要部断面
図を示している。図から分かるように磁性体シールド8
とタンク7内側との間ヘ垂直に設けられていた絶縁物1
0をなくし、かつ磁性体シールド8の両側でコ字型形状
に分割された絶縁物9を配置した構成となっている。
FIG. 4 shows another embodiment of the magnetic shield. FIG. 4 is a sectional view of a main part showing components of the magnetic shield 8. As can be seen from the figure, the magnetic shield 8
Insulator 1 provided vertically between the tank and the inside of the tank 7
0 is eliminated, and insulators 9 divided into a U-shape on both sides of the magnetic shield 8 are arranged.

【0017】かかる構成法によれば、磁性体シールド8
の損失で発生する発熱を磁性体シールド8の表面と冷却
流路11の両面から変圧器油(図示せず)により効果的
に冷却できるため、磁性体シールド8やタンク7の局部
過熱を防止すると共に絶縁物9の熱劣化等も抑制するこ
とが可能となる。また、絶縁物10をなくしているため
に製作部品が少なくなると共に製作工数も低減して安価
な磁性体シールド8を提供することができる。なお、本
発明は単相センタコアの変圧器を例にして述べている
が、単相4脚,3相3脚,3相5脚変圧器についても同
様な効果が期待できるのは言うまでもない。
According to this configuration, the magnetic shield 8
The heat generated due to the loss of heat can be effectively cooled by the transformer oil (not shown) from both the surface of the magnetic shield 8 and both sides of the cooling flow path 11, thereby preventing local overheating of the magnetic shield 8 and the tank 7. At the same time, thermal degradation of the insulator 9 can be suppressed. In addition, since the insulator 10 is eliminated, the number of manufactured parts is reduced, and the number of manufacturing steps is reduced, so that the inexpensive magnetic shield 8 can be provided. Although the present invention has been described using a single-phase center-core transformer as an example, it goes without saying that the same effect can be expected for a single-phase four-leg, three-phase three-leg, and three-phase five-leg transformer.

【0018】図5,図6に他の実施例を示す。図5は変
圧器タンク7の屈曲部に沿うように磁性体曲げシールド
70を配置した縦断面図、図6が変圧器タンク7の屈曲
部の内側に設けられる磁性体曲げシールド70で磁性体
曲げシールド70を保護している絶縁物9とタンク7内
側との間へ垂直に絶縁物10をタンク高さ方向に設けて
冷却流路11を形成した構成をそれぞれ示している。
FIGS. 5 and 6 show another embodiment. FIG. 5 is a longitudinal sectional view in which a magnetic material bending shield 70 is arranged along the bending portion of the transformer tank 7. FIG. 6 is a magnetic material bending shield 70 provided inside the bending portion of the transformer tank 7. The configuration in which an insulating material 10 is provided vertically in the tank height direction between the insulating material 9 protecting the shield 70 and the inside of the tank 7 to form a cooling flow channel 11 is shown.

【0019】かかる構成法によれば、内側巻線4及び外
側巻線5と対向する磁性体曲げシールド70とタンク7
内側との間へ垂直に絶縁物9をタンク高さ方向に設けて
冷却流路11を形成しているために内側巻線4及び外側
巻線5からの漏れ磁束40が矢印で示す如く、磁性体曲
げシールド70の直線部へ垂直に侵入しても磁性体曲げ
シールド70での損失により、発生する発熱を冷却流路
11中を流れる変圧器油(図示せず)で効果的に冷却さ
れるために、磁性体曲げシールド70やタンク7の局部
過熱を防止できると共に、磁性体曲げシールド70を保
護するために設けられている絶縁物9の熱劣化等も抑制
することが可能となる。
According to this configuration, the magnetic material bending shield 70 facing the inner winding 4 and the outer winding 5 and the tank 7
Since an insulating material 9 is provided vertically to the inside in the tank height direction to form the cooling channel 11, the leakage flux 40 from the inner winding 4 and the outer winding 5 is magnetic as shown by the arrow. Even if the magnetic material enters the straight portion of the body bending shield 70 vertically, the generated heat is effectively cooled by transformer oil (not shown) flowing through the cooling flow channel 11 due to the loss in the magnetic body bending shield 70. Therefore, local overheating of the magnetic material bending shield 70 and the tank 7 can be prevented, and thermal degradation of the insulator 9 provided for protecting the magnetic material bending shield 70 can be suppressed.

【0020】また、本発明は磁性体曲げシールド70を
保護するために設けられている絶縁物9とタンク7内側
との間ヘ垂直に絶縁物10をタンク高さ方向設けて冷却
流路11を形成した例で述べているが、図3,図4に示
した構造でも同様な効果が期待できるのは言うまでもな
い。
Further, according to the present invention, an insulating material 10 is provided vertically between the insulator 9 provided for protecting the magnetic material bending shield 70 and the inside of the tank 7 in the tank height direction to form the cooling passage 11. Although described in the example of formation, it is needless to say that the same effects can be expected with the structures shown in FIGS.

【0021】図7,図8に他の実施例を示す。図7は輸
送制限の関係から変圧器タンク7が内側巻線4及び外側
巻線5の上下端でタンク7の一部が外側巻線5に近く、
中央部で外側巻線5と遠くなったタンク7の屈曲部に沿
うように磁性体曲げシールド80を配置した縦断面図、
図8が変圧器タンク7の屈曲部の内側に沿って設けられ
る磁性体曲げシールド80で磁性体曲げシールド80を
保護している絶縁物9とタンク7内側との間ヘ垂直に絶
縁物10をタンク高さ方向に設けて冷却流路11形成し
た構成をそれぞれ示している。
FIGS. 7 and 8 show another embodiment. FIG. 7 shows that the transformer tank 7 has upper and lower ends of the inner winding 4 and the outer winding 5 and a part of the tank 7 is closer to the outer winding 5,
A longitudinal sectional view in which a magnetic material bending shield 80 is arranged along a bent portion of the tank 7 distant from the outer winding 5 at the center;
FIG. 8 shows that the insulating material 10 protecting the magnetic material bending shield 80 with the magnetic material bending shield 80 provided along the inside of the bent portion of the transformer tank 7 and the insulating material 10 vertically to the inside of the tank 7. The configuration in which the cooling channel 11 is formed in the tank height direction is shown.

【0022】かかる構成法によれば、内側巻線4及び外
側巻線5の上下端部と対向する磁性体曲げシールド80
が近くなる位置で最も損失が大きくなるが、磁性体曲げ
シールド80とタンク7内側との間ヘ垂直に絶縁物10
をタンク高さ方向に設けて冷却流路11を形成している
ために内側巻線4及び外側巻線5からの漏れ磁束40が
矢印で示す如く、磁性体曲げシールド80へ垂直に侵入
しても磁性体曲げシールド80での損失により発生する
発熱を冷却流路11中を流れる変圧器油(図示せず)で
効果的に冷却されるために磁性体曲げシールド80やタ
ンク7の局部過熱を防止できると共に磁性体曲げシール
ド80を保護するために設けられている絶縁物9の熱劣
化等も抑制することが可能となる。
According to this configuration, the magnetic material bending shield 80 facing the upper and lower ends of the inner winding 4 and the outer winding 5.
The loss is greatest at a position where the distance between the magnetic material bending shield 80 and the inside of the tank 7 is vertical.
Is provided in the tank height direction to form the cooling flow path 11, so that the leakage flux 40 from the inner winding 4 and the outer winding 5 vertically enters the magnetic bending shield 80 as shown by the arrow. Since the heat generated by the loss in the magnetic material bending shield 80 is effectively cooled by the transformer oil (not shown) flowing in the cooling passage 11, the local overheating of the magnetic material bending shield 80 and the tank 7 is reduced. It is possible to prevent the insulator 9 provided for protecting the magnetic material bending shield 80 from being thermally degraded and the like.

【0023】また、磁性体曲げシールド80とタンク7
内側との間ヘ垂直に絶縁物10をタンク高さ方向に設け
て冷却流路11を形成することにより、磁性体曲げシー
ルド80やタンク7の局部過熱や絶縁物9の熱劣化等も
抑制することができるために、内側巻線4及び外側巻線
5と磁性体曲げシールド80との距離を縮めることが可
能となり変圧器の小型化も図れる。なお、磁性体曲げシ
ールド80をタンク7の屈曲部に沿うように形成するに
は専用の治具を用いることにより容易に製作することが
可能である。
The magnetic material bending shield 80 and the tank 7
By providing the insulating material 10 vertically to the inside in the tank height direction to form the cooling flow path 11, local overheating of the magnetic material bending shield 80 and the tank 7 and thermal deterioration of the insulating material 9 are also suppressed. Therefore, the distance between the inner winding 4 and the outer winding 5 and the magnetic material bending shield 80 can be reduced, and the size of the transformer can be reduced. In order to form the magnetic bending shield 80 along the bent portion of the tank 7, it can be easily manufactured by using a dedicated jig.

【0024】本発明は変圧器の冷却媒体が変圧器油を例
にして述べているが、SF6 ガスやパーフロロカーボン
等にした場合も同様な効果が期待できる。なお、図1〜
図10は変圧器を対象に説明してきたが、リアクトルに
も適用でき、その効果はこれまで述べてきた変圧器と同
様に期待できるものである。
Although the present invention has been described by taking the transformer cooling medium as an example, the same effect can be expected when SF 6 gas, perfluorocarbon, or the like is used. In addition, FIG.
Although FIG. 10 has been described for a transformer, the present invention can be applied to a reactor, and the effect can be expected similarly to the transformer described above.

【0025】[0025]

【発明の効果】以下、本発明の静止誘導電器の磁気遮蔽
装置によれば、磁性体シールドとタンク内側との間へ垂
直に絶縁物をタンク高さ方向に設けて冷却流路を形成す
ることにより、磁性体シールドやタンクでの局部過熱及
び磁性体シールドを保護している絶縁物などの熱劣化を
防止することが可能となる。
According to the magnetic shielding device for a stationary induction device of the present invention, a cooling passage is formed by vertically providing an insulator between the magnetic shield and the inside of the tank in the tank height direction. Accordingly, it is possible to prevent local overheating in the magnetic shield and the tank and thermal deterioration of the insulator protecting the magnetic shield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の平面図。
FIG. 1 is a plan view of a magnetic shielding device of a stationary induction device showing one embodiment of the present invention.

【図2】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部斜視図。
FIG. 2 is a perspective view of a main part of a magnetic shielding device for a stationary induction device, showing one embodiment of the present invention.

【図3】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部斜視図。
FIG. 3 is a perspective view of a main part of a magnetic shielding device for a stationary induction device, showing one embodiment of the present invention.

【図4】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部斜視図。
FIG. 4 is a perspective view of a main part of a magnetic shielding device for a stationary induction device, showing one embodiment of the present invention.

【図5】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の縦断面図。
FIG. 5 is a longitudinal sectional view of a magnetic shielding device of a stationary induction device showing one embodiment of the present invention.

【図6】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部斜視図。
FIG. 6 is a perspective view of a main part of a magnetic shielding device for a stationary induction device, showing one embodiment of the present invention.

【図7】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の縦断面図。
FIG. 7 is a longitudinal sectional view of a magnetic shielding device for a stationary induction device showing one embodiment of the present invention.

【図8】本発明の一実施例を示す静止誘導電器の磁気遮
蔽装置の要部斜視図。
FIG. 8 is a perspective view of a main part of a magnetic shielding device of a stationary induction device showing one embodiment of the present invention.

【図9】従来の実施例を示す静止誘導電器の磁気遮蔽装
置の平面図。
FIG. 9 is a plan view of a magnetic shielding device of a stationary induction device showing a conventional example.

【図10】従来の実施例を示す静止誘導電器の磁気遮蔽
装置の要部斜視図。
FIG. 10 is a perspective view of a main part of a magnetic shielding device of a stationary induction device showing a conventional example.

【符号の説明】[Explanation of symbols]

1…主脚、2…側脚、3…上部継鉄部、4…内側巻線、
5…外側巻線、6,7…タンク、8…磁性体シールド、
9,10…絶縁物、11…冷却流路、40…漏れ磁束、
60…間隙部、70,80…磁性体曲げシールド。
DESCRIPTION OF SYMBOLS 1 ... Main leg, 2 ... Side leg, 3 ... Upper yoke part, 4 ... Inner winding,
5 ... Outer winding, 6,7 ... Tank, 8 ... Magnetic shield,
9, 10: insulator, 11: cooling channel, 40: magnetic flux leakage,
60: gap, 70, 80: magnetic bending shield.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】鉄心及び巻線を有する誘導電器本体を収納
するタンクの内側に磁性体を積層してなる磁性体シール
ドを取り付けた静止誘導電器の遮蔽装置において、前記
磁性体シールドとタンク内側との間に絶縁物をタンク高
さ方向ヘ垂直に設けて冷却流路を形成したことを特徴と
する静止誘導電器の磁気遮蔽装置。
1. A stationary induction machine shielding apparatus in which a magnetic shield formed by laminating a magnetic material is mounted inside a tank accommodating an induction electric machine main body having an iron core and a winding. A magnetic shielding device for a stationary induction device, characterized in that an insulating material is provided vertically to a tank height direction to form a cooling channel.
【請求項2】磁性体シールドとタンク内側との間ヘ垂直
に設けた絶縁物で磁性体シールド中央部に加えて両端部
にも冷却流路を設けたことを特徴とする請求項1記載の
静止誘導電器の磁気遮蔽装置。
2. A cooling passage is provided at both ends in addition to a center portion of the magnetic shield with an insulator vertically provided between the magnetic shield and the inside of the tank. Magnetic shielding device for stationary induction equipment.
【請求項3】磁性体シールドとタンク内側との間ヘ垂直
に設けた絶縁物を高さ方向に分割したことを特徴とする
請求項1記載の静止誘導電器の磁気遮蔽装置。
3. The magnetic shielding device for a stationary induction device according to claim 1, wherein an insulator vertically provided between the magnetic material shield and the inside of the tank is divided in a height direction.
【請求項4】磁性体シールドを保護するために設けられ
ている絶縁物をコ字型形状に分割して磁性体シールドの
両側に設けたことを特徴とする請求項1記載の静止誘導
電器の磁気遮蔽装置。
4. The stationary induction device according to claim 1, wherein an insulator provided for protecting the magnetic shield is divided into a U-shape and provided on both sides of the magnetic shield. Magnetic shielding device.
【請求項5】磁性体シールドとタンク内側との間ヘ垂直
に設けられる絶縁物の材質は例えばプレボードとしたこ
とを特徴とする請求項1記載の静止誘導電器の磁気遮蔽
装置。
5. The magnetic shielding device for a stationary induction electric device according to claim 1, wherein the material of the insulator provided vertically between the magnetic material shield and the inside of the tank is, for example, a pre-board.
【請求項6】鉄心及び巻線を有する誘導電器本体を収納
するタンク屈曲部の内側に沿うように磁性体を積層して
なる磁性体曲げシールドを取り付けた静止誘導電器の遮
蔽装置において、前記磁性体曲げシールドとタンク内側
との間ヘ垂直に絶縁物をタンク高さ方向に設けて冷却流
路を形成したことを特徴とする静止誘導電器の磁気遮蔽
装置。
6. A shielding device for a stationary induction device to which a magnetic material bending shield formed by laminating magnetic materials along the inside of a bent portion of a tank accommodating an induction device main body having an iron core and a winding is provided. A magnetic shielding device for a stationary induction device, wherein an insulating material is provided vertically between a body bending shield and the inside of a tank in a tank height direction to form a cooling channel.
JP6645798A 1998-03-17 1998-03-17 Magnetic shielding device for stationary induction electrical apparatus Pending JPH11265829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6645798A JPH11265829A (en) 1998-03-17 1998-03-17 Magnetic shielding device for stationary induction electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6645798A JPH11265829A (en) 1998-03-17 1998-03-17 Magnetic shielding device for stationary induction electrical apparatus

Publications (1)

Publication Number Publication Date
JPH11265829A true JPH11265829A (en) 1999-09-28

Family

ID=13316329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6645798A Pending JPH11265829A (en) 1998-03-17 1998-03-17 Magnetic shielding device for stationary induction electrical apparatus

Country Status (1)

Country Link
JP (1) JPH11265829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018957A1 (en) * 2009-08-12 2011-02-17 株式会社 日立メディコ High voltage generating device, and x-ray ct device using the same
JP2013065701A (en) * 2011-09-16 2013-04-11 Hitachi Industrial Equipment Systems Co Ltd Static apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018957A1 (en) * 2009-08-12 2011-02-17 株式会社 日立メディコ High voltage generating device, and x-ray ct device using the same
JPWO2011018957A1 (en) * 2009-08-12 2013-01-17 株式会社日立メディコ High voltage generator and X-ray CT apparatus using the same
JP5694168B2 (en) * 2009-08-12 2015-04-01 株式会社日立メディコ High voltage generator and X-ray CT apparatus using the same
JP2013065701A (en) * 2011-09-16 2013-04-11 Hitachi Industrial Equipment Systems Co Ltd Static apparatus

Similar Documents

Publication Publication Date Title
TWI595517B (en) Ground induction electrical appliances
JP3646595B2 (en) Static induction machine
JP2010171313A (en) Stationary induction electrical apparatus
JP2011023488A (en) Stationary induction apparatus
JPH11265829A (en) Magnetic shielding device for stationary induction electrical apparatus
JP2008177325A (en) Stationary induction apparatus
JP3713172B2 (en) Static induction machine
JP3589012B2 (en) Stationary induction appliance
JP2008041929A (en) Stationary induction electric appliance
JP3525732B2 (en) Stationary induction appliance
JP3638998B2 (en) Static induction machine
JPH11340057A (en) Stationary induction electric apparatus
JPH08124767A (en) Stationary induction electric apparatus
JPH07335454A (en) Stationary induction electrical equipment
JP2000348953A (en) Magnetic shield for stationary induction apparatus
JP2942448B2 (en) Stationary induction device
JP2002075751A (en) Stationary induction apparatus
JP2009272522A (en) Three-phase transformer
JP2008103416A (en) Stationary inductive electric apparatus
JP4282123B2 (en) Magnetic shield type static induction machine
JPH0722257A (en) Stationary induction machine
JPH07297041A (en) Stationary induction electric apparatus
JP3638972B2 (en) Static induction machine
JPH0342809A (en) Stationary induction electrical device
JP2001035733A (en) Magnetic shield device for stationary induction electrical apparatus