JPH11261308A - Inter-triplet line layer connector - Google Patents

Inter-triplet line layer connector

Info

Publication number
JPH11261308A
JPH11261308A JP10061838A JP6183898A JPH11261308A JP H11261308 A JPH11261308 A JP H11261308A JP 10061838 A JP10061838 A JP 10061838A JP 6183898 A JP6183898 A JP 6183898A JP H11261308 A JPH11261308 A JP H11261308A
Authority
JP
Japan
Prior art keywords
line
dielectric
patch pattern
power supply
shield spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10061838A
Other languages
Japanese (ja)
Other versions
JP3965762B2 (en
Inventor
Masahiko Ota
雅彦 太田
Mitsuru Hirao
充 平尾
Hisayoshi Mizugaki
久良 水柿
Takehisa Dousaka
岳央 道坂
Kiichi Kanamaru
喜一 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP06183898A priority Critical patent/JP3965762B2/en
Publication of JPH11261308A publication Critical patent/JPH11261308A/en
Application granted granted Critical
Publication of JP3965762B2 publication Critical patent/JP3965762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connector which excellently suppresses loss and is easy to assemble. SOLUTION: This is an electric connector for a 1st triplet line comprising a 1st ground conductor 1, a 1st dielectric 4a, a 1st feed substrate 6, a 2nd dielectric 4b, and a 2nd ground conductor 2 and a 2nd triplet line consisting of a 2nd ground conductor 2, a 3rd dielectric 7a, a 2nd feed substrate 9, a 4th dielectric 7b, and a 3rd ground conductor 3. Patch patterns are formed at the connection termination parts of the respective feed lines, two shield spacers having hollow parts are provided at their peripheral parts, and further a 1st slot 13 is formed at the connection place between two triplet lines of the 2nd ground conductor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ミリ波帯における
トリプレート線路の層間接続構造に関する。
The present invention relates to an interlayer connection structure of a triplate line in a millimeter wave band.

【0002】[0002]

【従来の技術】従来のトリプレート線路の層間接続構造
は、図6に示すように、第1の地導体1と第2の地導体
2の略中間に、第1の誘電体4a及び第2の誘電体4b
に挟んだ第1の給電線路5を形成した第1の給電基板6
を配置した第1のトリプレート線路と、第2の地導体2
と第3の地導体3の略中間に、第3の誘電体7a及び第
4の誘電体7bに挟んだ第2の給電線路8を形成した第
2の給電基板9を配置した第2のトリプレート線路と
を、前記第2の地導体2に形成された第2のスロット1
4を介して電磁結合している。
2. Description of the Related Art As shown in FIG. 6, a conventional interlayer connection structure of a triplate line has a first dielectric 4a and a second dielectric 4a substantially in the middle of a first ground conductor 1 and a second ground conductor 2. Dielectric 4b
First power supply substrate 6 having first power supply line 5 sandwiched between
And a second ground conductor 2
And a second power supply board 9 having a second power supply line 8 sandwiched between a third dielectric 7a and a fourth dielectric 7b, and a second power supply board 9 disposed substantially in the middle of the third ground conductor 3 and the third ground conductor 3. A second slot 1 formed in the second ground conductor 2 with a plate line;
4 via electromagnetic coupling.

【0003】通常、第1の誘電体4a、第2の誘電体4
b、第3の誘電体7a、及び第4の誘電体7bには、給
電線路の損失を抑えるため、比誘電率ε1≒1の低誘電
率材料が用いられる。また、第1の地導体1と第2の地
導体2の間隔、及び第2の地導体2と第3の地導体3の
間隔は、使用する周波数において線路に高次モードが発
生することを避けるため、使用する周波数の線路実効波
長(線路実効波長=自由空間波長/誘電体の比誘電率の
平方根)の略5分の1以下に設定される。
Usually, a first dielectric 4a, a second dielectric 4
For b, the third dielectric 7a, and the fourth dielectric 7b, a low dielectric constant material having a relative dielectric constant of ε 1 ≒ 1 is used in order to suppress the loss of the feed line. Further, the distance between the first ground conductor 1 and the second ground conductor 2 and the distance between the second ground conductor 2 and the third ground conductor 3 are such that a higher-order mode is generated in the line at the used frequency. In order to avoid this, it is set to be approximately one-fifth or less of the effective line wavelength (effective line wavelength = free space wavelength / square root of the dielectric constant of the dielectric) of the frequency to be used.

【0004】また、第1の給電線路5と第2の給電線路
8とを、第2のスロット14を介して良好に電磁結合さ
せるためには、第2のスロット14を使用する周波数で
共振させる必要があるため、図7に示すように、第2の
スロット14の共振器長L8を使用する周波数の線路実
効波長の略2分の1に設定すると共に、第1の給電線路
5の接続終端部と、前記第2の給電線路8の接続終端部
から、使用する周波数の線路実効波長の略4分の1とな
る線路長L7の位置に、第2のスロット14が位置する
ように配置する必要がある。また、第2のスロット14
の幅は、おおむね使用する周波数の線路実効波長の略1
0分の1程度とされている。
In order to make the first power supply line 5 and the second power supply line 8 to be electromagnetically coupled to each other through the second slot 14, the first power supply line 5 and the second power supply line 8 are resonated at a frequency at which the second slot 14 is used. Therefore, as shown in FIG. 7, the resonator length L8 of the second slot 14 is set to approximately one half of the line effective wavelength of the frequency to be used, and the connection termination of the first feed line 5 is set. And the second slot 14 is arranged at a position of a line length L7 that is approximately one-fourth of the effective line wavelength of the frequency to be used from the connection end of the second power supply line 8 to the second slot 14. There is a need. Also, the second slot 14
Is approximately 1 times the effective line wavelength of the frequency used.
It is about 1/0.

【0005】このように、第2のスロット14の共振器
長L8を使用する周波数の線路実効波長の略2分の1に
設定することにより、第2のスロット14が使用する周
波数で共振し、かつ、第1の給電線路5及び第2の給電
線路8の接続終端部からの第2のスロット14の設定位
置L7を、使用する周波数の線路実効波長の略4分の1
に設定することにより、給電線路から第2のスロット1
4を見込んだインピーダンス整合が確保されて電力が反
射することなく伝送される。
As described above, by setting the resonator length L8 of the second slot 14 to approximately one half of the effective line wavelength of the used frequency, resonance occurs at the frequency used by the second slot 14, In addition, the setting position L7 of the second slot 14 from the connection end portion of the first power supply line 5 and the second power supply line 8 is set to approximately one quarter of the line effective wavelength of the frequency to be used.
To the second slot 1 from the feed line.
4 is ensured, and power is transmitted without reflection.

【0006】[0006]

【発明が解決しようとする課題】しかし、図6に示す、
従来のトリプレート線路の層間接続構造では、第2のス
ロット14の共振器長L8の長さの誤差に対する周波数
変化が大きく、かつ、第1の給電線路5及び第2の給電
線路8の接続終端部からの第2のスロット14の設定位
置L7の誤差に対する給電線路から第2のスロット14
を見込んだインピーダンスの変化が大きいので、周波数
特性が狭帯域となるという課題があった。
However, as shown in FIG.
In the conventional interlayer connection structure of the triplate line, the frequency change with respect to the error of the length L8 of the resonator of the second slot 14 is large, and the connection termination of the first feed line 5 and the second feed line 8 is performed. From the feed line to the error of the set position L7 of the second slot 14 from the
However, there is a problem that the frequency characteristic becomes narrower because the impedance changes in anticipation of the impedance change is large.

【0007】また、第1の給電線路5及び第2の給電線
路8と第2のスロット14の電磁結合に伴い、第1の地
導体1と第2の地導体2の間、及び第3の地導体3と第
2の地導体2の間を横方向へ伝搬するパラレルプレート
成分が発生し、損失が増加するという課題があった。
[0007] With the electromagnetic coupling between the first feed line 5 and the second feed line 8 and the second slot 14, between the first ground conductor 1 and the second ground conductor 2, and There is a problem that a parallel plate component that propagates between the ground conductor 3 and the second ground conductor 2 in the lateral direction is generated, and the loss increases.

【0008】更に、例えば使用する周波数が76.5G
Hz帯のように、極めて高い周波数帯で、従来のトリプ
レート線路層間接続構造を実現しようとする場合、図7
に示した第2のスロット14の共振器長L8は、略2m
m程度で、幅は0.4mm程度以下と極めて微細な寸法
になるため、第2のスロット14は、機械プレス加工等
で形成することが難しくなると共に、組立時に、第1の
給電線路5及び第2の給電線路8の接続終端部からの第
2のスロット14の設定位置L7を、略1mm程度に高
精度で設定する必要がある等、精度の高い加工方法や組
立構造の選択が不可欠であり、コストが高くなるという
課題があった。
Further, for example, when the frequency used is 76.5 G
In order to realize a conventional triplate line interlayer connection structure in an extremely high frequency band such as the Hz band, FIG.
The resonator length L8 of the second slot 14 shown in FIG.
m, the width is extremely small, about 0.4 mm or less. Therefore, it is difficult to form the second slot 14 by mechanical pressing or the like, and the first feed line 5 and the The setting position L7 of the second slot 14 from the connection terminating end of the second power supply line 8 needs to be set with high accuracy to about 1 mm, and selection of a high-precision processing method and assembly structure is indispensable. There was a problem that the cost was high.

【0009】本発明は、損失の抑制に優れ、かつ、組立
の容易なトリプレート線路層間接続器を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a triplate line interlayer connector which is excellent in suppressing loss and easy to assemble.

【0010】[0010]

【課題を解決するための手段】本発明のトリプレート線
路層間接続器は、図1に示すように、第1の地導体1と
第2の地導体2の略中間に、第1の誘電体4a及び第2
の誘電体4bに挟んだ、第1の給電線路5を形成した第
1の給電基板6を配置した第1のトリプレート線路と、
第2の地導体2と第3の地導体3の略中間に、第3の誘
電体7a及び第4の誘電体7bに挟んだ、第2の給電線
路8を形成した第2の給電基板9を配置した第2のトリ
プレート線路との電気的接続器であって、前記第1の給
電基板6の第1の給電線路5の接続終端部と、前記第2
の給電基板9の第2の給電線路8の接続終端部とに、そ
れぞれ第1のパッチパターン12a、第2のパッチパタ
ーン12bを形成し、その第1のパッチパターン12a
の周辺部の第1の誘電体4a及び第2の誘電体4bを削
除すると共に、その削除した箇所に第1のパッチパター
ン12aとそれに接続した第1の給電線路5の形状より
も大きめのくりぬき部を有する第1のシールドスペーサ
10a及び第2のシールドスペーサ10bを設け、か
つ、前記第2のパッチパターン12bの周辺部の第3の
誘電体7a及び第4の誘電体7bを削除すると共に、そ
の削除した箇所に第2のパッチパターン12bとそれに
接続した第2の給電線路8の形状よりも大きめのくりぬ
き部を有する第3のシールドスペーサ11a及び第4の
シールドスペーサ11bを設け、さらに前記第1のパッ
チパターン12a及び第2のパッチパターン12bの中
間に位置する部分の前記第2の地導体2に、第1のスロ
ット13を形成したことを特徴とする。
As shown in FIG. 1, a triplate line interlayer connector according to the present invention comprises a first dielectric 1 4a and 2nd
A first triplate line, on which a first power supply substrate 6 having a first power supply line 5 formed therebetween is interposed between dielectrics 4b of
A second power supply substrate 9 having a second power supply line 8 sandwiched between a third dielectric 7a and a fourth dielectric 7b substantially in the middle of the second ground conductor 2 and the third ground conductor 3. An electrical connection with a second triplate line in which a connection termination portion of the first power supply line 5 of the first power supply board 6 is provided.
A first patch pattern 12a and a second patch pattern 12b are respectively formed at the connection end of the second power supply line 8 of the power supply substrate 9 of the first power supply board 9 and the first patch pattern 12a.
Of the first dielectric 4a and the second dielectric 4b at the peripheral portion of the first patch pattern 12a and a hollow portion larger than the shape of the first patch pattern 12a and the first feeder line 5 connected to the first dielectric pattern 4a. A first shield spacer 10a and a second shield spacer 10b having a portion are provided, and the third and fourth dielectrics 7a and 7b around the second patch pattern 12b are deleted. A third shield spacer 11a and a fourth shield spacer 11b each having a hollow portion larger than the shape of the second patch pattern 12b and the second power supply line 8 connected to the second patch pattern 12b are provided at the removed portion. A first slot 13 is formed in a portion of the second ground conductor 2 located in the middle between the first patch pattern 12a and the second patch pattern 12b. And wherein the door.

【0011】また、本発明のトリプレート線路層間接続
器は、図2に示すように、第1のパッチパターン12a
及び第2のパッチパターン12bの、線路接続方向の長
さL1を使用する周波数の自由空間波長λ0の略0.3
8倍とし、かつ第1のシールドスペーサ10a、第2の
シールドスペーサ10b、第3のシールドスペーサ11
a、及び第4のシールドスペーサ11bのくりぬき部の
パッチ周辺部の線路接続方向における寸法L2及び第1
のスロット13の線路接続方向における寸法L3を使用
する周波数の自由空間波長λ0の略0.6倍とすること
ができる。
As shown in FIG. 2, the triplate line interlayer connector according to the present invention has a first patch pattern 12a.
And approximately 0.3 of the free space wavelength λ 0 of the frequency using the length L1 of the second patch pattern 12b in the line connection direction.
8 times, and the first shield spacer 10a, the second shield spacer 10b, and the third shield spacer 11
a and the dimension L2 and the first dimension L2 in the line connection direction around the patch of the hollow portion of the fourth shield spacer 11b.
The dimension L3 of the slot 13 in the line connection direction can be set to approximately 0.6 times the free space wavelength λ 0 of the frequency to be used.

【0012】さらに、本発明のトリプレート線路層間接
続器は、図3に示すように、第1のパッチパターン12
a及び第2のパッチパターン12bの形状を円形とし、
その直径L4を、使用する周波数の自由空間波長λ0
略0.38倍とし、かつ第1のシールドスペーサ10
a、第2のシールドスペーサ10b、第3のシールドス
ペーサ11a、及び第4のシールドスペーサ11bのく
りぬき部のパッチ周辺部の形状を円形としその直径L5
を使用する周波数の自由空間波長λ0の略0.6倍と
し、かつ、第1のスロット13の形状を円形としその直
径L6を使用する周波数の自由空間波長λ0の略0.6
倍とすることもできる。
Further, the triplate line interlayer connector of the present invention, as shown in FIG.
a and the shape of the second patch pattern 12b are circular,
The diameter L4 is set to approximately 0.38 times the free space wavelength λ 0 of the frequency to be used, and the first shield spacer 10
a, the shape of the periphery of the patch at the hollow portion of the second shield spacer 10b, the third shield spacer 11a, and the fourth shield spacer 11b is circular, and the diameter L5
Is approximately 0.6 times the free space wavelength λ 0 of the frequency used, and the shape of the first slot 13 is circular, and approximately 0.6 of the free space wavelength λ 0 of the frequency using the diameter L6 is used.
It can be doubled.

【0013】(作用)本発明のトリプレート線路層間接
続器において、図1に示す、第1のパッチパターン12
a及び第2のパッチパターン12bは、使用する周波数
で相互に電磁結合して1つの共振器を構成する。そし
て、第1のパッチパターン12a及び第2のパッチパタ
ーン12bは、従来構造の共振器と比較して非常に広帯
域な特性を確保することができる。
(Operation) In the triplate line interlayer connector according to the present invention, the first patch pattern 12 shown in FIG.
a and the second patch pattern 12b are electromagnetically coupled to each other at a frequency to be used to form one resonator. The first patch pattern 12a and the second patch pattern 12b can secure a very wide band characteristic as compared with a resonator having a conventional structure.

【0014】第1のスロット13は、このパッチ相互の
電磁結合を妨げることなく、電力が第1の給電線路5か
ら第2の給電線路8に伝送されるための窓として機能
し、従来構造のスロットのように共振するものではない
ので、第1のスロット13の線路接続方向における共振
器長L3の長さの誤差に対する周波数変化は小さく、前
記のパッチパターンによる共振器の広帯域な特性と相ま
って、周波数特性の安定したトリプレート線路層間接続
器が構成できる。
The first slot 13 functions as a window for transmitting power from the first feeder line 5 to the second feeder line 8 without hindering the electromagnetic coupling between the patches. Since it does not resonate like a slot, the frequency change with respect to the error of the length of the resonator L3 in the line connection direction of the first slot 13 is small, and in combination with the wide-band characteristics of the resonator due to the patch pattern, A triplate line interlayer connector having stable frequency characteristics can be configured.

【0015】第1のシールドスペーサ10a、第2のシ
ールドスペーサ10b、第3のシールドスペーサ11a
及び第4のシールドスペーサ11bは、第1のパッチパ
ターン12a及び第2のパッチパターン12bの周囲
に、距離を隔てて金属壁を形成するもので、パラレルプ
レート成分が発生することなく、第1のパッチパターン
12aの電力が全て第2のパッチパターン12bに伝送
され、低損失特性が実現できる。
First shield spacer 10a, second shield spacer 10b, third shield spacer 11a
The fourth shield spacer 11b forms a metal wall around the first patch pattern 12a and the second patch pattern 12b at a distance, and the first shield spacer 11b does not generate a parallel plate component. All the power of the patch pattern 12a is transmitted to the second patch pattern 12b, and low loss characteristics can be realized.

【0016】また、第1のシールドスペーサ10a、、
第2のシールドスペーサ10b、第3のシールドスペー
サ11a及び第4のシールドスペーサ11bは、第1の
給電基板6及び第2の給電基板9を、それぞれ第1の地
導体1と第2の地導体2及び第2の地導体2と第3の地
導体3の略中間に安定に保持するスペーサとして機能
し、第1のパッチパターン12a及び第2のパッチパタ
ーン12b相互の距離を安定に維持することでパッチ相
互の電磁結合を常に安定に保つことができる。
Also, the first shield spacers 10a,.
The second shield spacer 10b, the third shield spacer 11a, and the fourth shield spacer 11b connect the first power supply substrate 6 and the second power supply substrate 9 to the first ground conductor 1 and the second ground conductor, respectively. The first and second patch patterns 12a and 12b function as spacers for stably holding them substantially at the middle between the second and third ground conductors 2 and 3, and maintain a stable distance between the first patch pattern 12a and the second patch pattern 12b. Thus, the electromagnetic coupling between the patches can always be kept stable.

【0017】第1のパッチパターン12a、第2のパッ
チパターン12b及び第1のスロット13の形状は、図
2に示すように正方形であるのが一般的であるが、幅方
向の寸法は、共振周波数に対する影響が小さいため、必
要に応じて長方形であっても良く、また、図3に示すよ
うに円形であっても同様に作用する。また、例えば第1
のパッチパターン12aと第1の給電線路5の接続部
は、第1のパッチパターン12aの端部のインピーダン
スと第1の給電線路5のインピーダンスを整合させるた
めに、図4(a)に示すように、使用する周波数の線路
実効波長の略4分の1の線路長のトランス線路101で
接続するのが一般的であるが、図4(b)に示すよう
に、パッチ内部の整合点102で直接整合させる給電
や、図4(c)に示すように、僅かなギャップ103を
介して容量結合させることもできる。
The first patch pattern 12a, the second patch pattern 12b, and the first slot 13 generally have a square shape as shown in FIG. Since the influence on the frequency is small, a rectangular shape may be used if necessary, and a circular shape as shown in FIG. Also, for example, the first
FIG. 4A shows the connection between the patch pattern 12a and the first feed line 5 in order to match the impedance of the end of the first patch pattern 12a with the impedance of the first feed line 5. In general, connection is made with a transformer line 101 having a line length approximately one-fourth the line effective wavelength of the frequency to be used. However, as shown in FIG. Power supply for direct matching or capacitive coupling via a small gap 103 as shown in FIG.

【0018】[0018]

【実施例】実施例1 第1の地導体1及び第3の地導体3には、厚さ1mmの
アルミ板を用い、第1の誘電体4a、第2の誘電体4
b、第3の誘電体7a、及び第4の誘電体7bには、厚
さ0.3mmで比誘電率約1.1の発泡ポリエチレンフ
ォームを用い、第1の給電基板6には、ポリイミドフィ
ルムに銅箔を貼り合わせたフレキシブル基板を用い、不
要な銅箔をエッチングで除去して、第1の給電線路5と
第1のパッチパターン12aを形成したものを用い、第
2の給電基板9にも第1の給電基板と同じ、ポリイミド
フィルムに銅箔を貼り合わせたフレキシブル基板を用
い、不要な銅箔をエッチングで除去して、第2の給電線
路8と第2のパッチパターン12bを形成したものを用
い、第2の地導体2には、厚さ0.7mmのアルミ板に
機械プレスで第1のスロット13を打ち抜き加工したも
のを用い、第1のシールドスペーサ10a、第2のシー
ルドスペーサ10b、第3のシールドスペーサ11a、
及び第4のシールドスペーサ11bには、厚さ0.3m
mのアルミ板を機械プレスで打ち抜き加工したものを用
いた。第1のパッチパターン12a及び第2のパッチパ
ターン12bにおいては、図2(b)に示すL1が、使
用する周波数76GHzの自由空間波長(λ0=3.9
5mm)の約0.38倍となる1.5mmとし、形状を
正方形とした。また、第1のスロット13の寸法L3
は、使用する周波数76GHzの自由空間波長(λ0
3.95mm)の約0.58倍となる2.3mmとし、
形状を正方形とした。第1のシールドスペーサ10a、
第2のシールドスペーサ10b、第3のシールドスペー
サ11a、及び第4のシールドスペーサ11bの寸法L
2は、第1のスロット13の寸法L3と同じ寸法とし
た。さらに、第1の給電線路5と第1のパッチパターン
12aの接続部には、使用する周波数76GHzの自由
空間波長(λ0=3.95mm)の約0.24倍の長さ
のトランス線路101を形成し、第2の給電線路8と第
2のパッチパターン12bの接続部にも同じトランス線
路101を形成して整合させた。以上の各部材を図2
(a)に示すように、順次重ねてトリプレート線路層間
接続器を構成し、第1の給電線路5及び第2の給電線路
8に計測器を接続して電力を給電すると共に、第1の給
電線路5の端部における反射損失及び第1の給電線路5
から第2の給電線路8の端面へ電力が通過する際の通過
損失を測定した結果、図5に示すように76GHzを中
心に、±2GHzの範囲で反射損失−15dB以下で、
通過損失も1dB以下という、良好な特性が実現でき
た。
EXAMPLE 1 An aluminum plate having a thickness of 1 mm was used for a first ground conductor 1 and a third ground conductor 3, and a first dielectric 4a and a second dielectric 4 were used.
b, a foamed polyethylene foam having a thickness of 0.3 mm and a relative dielectric constant of about 1.1 is used for the third dielectric 7a and the fourth dielectric 7b, and a polyimide film is used for the first power supply substrate 6. Using a flexible substrate in which a copper foil is adhered to the first power supply line 9 and a first power supply line 5 and a first patch pattern 12a formed by removing unnecessary copper foil by etching, The second power supply line 8 and the second patch pattern 12b were formed by using the same flexible substrate as the first power supply substrate, in which a copper foil was bonded to a polyimide film, and unnecessary copper foil was removed by etching. For the second ground conductor 2, an aluminum plate having a thickness of 0.7 mm and a first slot 13 punched out by a mechanical press is used, and a first shield spacer 10a and a second shield spacer are used. 10b Third shield spacer 11a,
And the fourth shield spacer 11b has a thickness of 0.3 m.
An aluminum plate of m m was punched out by a mechanical press. In the first patch pattern 12a and the second patch pattern 12b, L1 shown in FIG. 2B is a free space wavelength (λ 0 = 3.9) at a frequency of 76 GHz to be used.
5 mm), which is 1.5 mm, which is about 0.38 times the size, and a square shape. Also, the dimension L3 of the first slot 13
Is the free space wavelength (λ 0 =
2.35 mm, which is approximately 0.58 times 3.95 mm)
The shape was square. A first shield spacer 10a,
Dimension L of second shield spacer 10b, third shield spacer 11a, and fourth shield spacer 11b
2 has the same size as the size L3 of the first slot 13. Further, a connecting portion between the first feeding line 5 and the first patch pattern 12a has a transformer line 101 having a length of about 0.24 times the free space wavelength (λ 0 = 3.95 mm) of a frequency of 76 GHz to be used. Was formed, and the same transformer line 101 was also formed at the connection between the second power supply line 8 and the second patch pattern 12b for matching. Fig. 2
As shown in (a), a triplate line interlayer connection device is sequentially superposed, a measuring instrument is connected to the first feed line 5 and the second feed line 8 to supply power, and the first feed line 5 and the second feed line 8 are fed with power. Reflection Loss at End of Feeding Line 5 and First Feeding Line 5
As a result, as shown in FIG. 5, the reflection loss was −15 dB or less in a range of ± 2 GHz around 76 GHz as shown in FIG.
Good characteristics such as a passing loss of 1 dB or less were realized.

【0019】実施例2 実施例1と同様に、第1の地導体1及び第3の地導体3
には、厚さ1mmのアルミ板を用い、第1の誘電体4
a、第2の誘電体4b、第3の誘電体7a、及び第4の
誘電体7bには、厚さ0.3mmで比誘電率約1.1の
発泡ポリエチレンフォームを用い、第1の給電基板6に
は、ポリイミドフィルムに銅箔を貼り合わせたフレキシ
ブル基板を用い、不要な銅箔をエッチングで除去して、
第1の給電線路5と第1のパッチパターン12aを形成
したものを用い、第2の給電基板にも、第1の給電基板
と同様に、ポリイミドフィルムに銅箔を貼り合わせたフ
レキシブル基板を用い、不要な銅箔をエッチングで除去
して、第2の給電線路8と第2のパッチパターン12b
を形成したものを用い、第2の地導体2には、厚さ0.
7mmのアルミ板に機械プレスで第1のスロット13を
打ち抜き加工したものを用い、第1のシールドスペーサ
10a、第2のシールドスペーサ10b、第3のシール
ドスペーサ11a、及び第4のシールドスペーサ11b
には、厚さ0.3mmのアルミ板を機械プレスで打ち抜
き加工したものを用いた。第1のパッチパターン12a
及び第2のパッチパターン12bにおいては、図3
(b)に示す直径L4が、使用する周波数76GHzの
自由空間波長(λ0=3.95mm)の約0.38倍と
なる1.5mmとし、形状を円形とした。また、スロッ
ト寸法L6は、使用する周波数76GHzの自由空間波
長(λ0=3.95mm)の約0.58倍となる直径
2.3mmとし、形状を円形とし、第1のシールドスペ
ーサ10a、第2のシールドスペーサ10b、第3のシ
ールドスペーサ11a、及び第4のシールドスペーサ1
1bの寸法L5は、スロット寸法と同じ寸法とし、形状
を円形とした。さらに、第1の給電線路5と第1のパッ
チパターン12aの接続部に、使用する周波数76GH
zの自由空間波長(λ0=3.95mm)の約0.24
倍の長さのトランス線路101を形成し、第2の給電線
路8と第2のパッチパターン12bの接続部も同じトラ
ンス線路101を形成して整合させた。以上の各部材を
図3(a)に示すように、順次重ねてトリプレート線路
層間接続器を構成し、第1の給電線路5及び第2の給電
線路8に計測器を接続して電力を給電すると共に、第1
の給電線路5の端部における反射損失及び第1の給電線
路5から第2の給電線路8の端面へ電力が通過する際の
通過損失を測定した結果、実施例1と同等の良好な特性
が実現できた。
Embodiment 2 As in Embodiment 1, a first ground conductor 1 and a third ground conductor 3
1 mm thick aluminum plate, the first dielectric 4
a, a foamed polyethylene foam having a thickness of 0.3 mm and a relative dielectric constant of about 1.1 is used for the second dielectric 4b, the third dielectric 7a, and the fourth dielectric 7b. For the substrate 6, using a flexible substrate in which a copper foil is bonded to a polyimide film, unnecessary copper foil is removed by etching,
The first power supply line 5 and the first patch pattern 12a are used, and a flexible substrate in which a copper foil is bonded to a polyimide film is used for the second power supply substrate, similarly to the first power supply substrate. The unnecessary copper foil is removed by etching, and the second feed line 8 and the second patch pattern 12b are removed.
Is formed, and the second ground conductor 2 has a thickness of 0.1 mm.
The first shield spacer 10a, the second shield spacer 10b, the third shield spacer 11a, and the fourth shield spacer 11b are obtained by punching a first slot 13 by mechanical press into a 7 mm aluminum plate.
Was used in which a 0.3 mm thick aluminum plate was punched by a mechanical press. First patch pattern 12a
And the second patch pattern 12b, FIG.
The diameter L4 shown in (b) is 1.5 mm, which is about 0.38 times the free space wavelength (λ 0 = 3.95 mm) of the used frequency of 76 GHz, and the shape is circular. The slot dimension L6 is 2.3 mm in diameter, which is about 0.58 times the free space wavelength (λ 0 = 3.95 mm) of the used frequency of 76 GHz, the shape is circular, the first shield spacer 10a, 2nd shield spacer 10b, 3rd shield spacer 11a, and 4th shield spacer 1
The dimension L5 of 1b was the same as the slot dimension, and the shape was circular. Further, the connecting portion between the first power supply line 5 and the first patch pattern 12a has a frequency of 76 GHz used.
about 0.24 of the free-space wavelength of z (λ 0 = 3.95 mm)
The transformer line 101 having twice the length was formed, and the connection between the second feed line 8 and the second patch pattern 12b was also formed by the same transformer line 101 and matched. As shown in FIG. 3A, the above members are sequentially stacked to form a triplate line interlayer connector, and a measuring instrument is connected to the first feed line 5 and the second feed line 8 to supply electric power. Power and the first
As a result of measuring the reflection loss at the end of the feed line 5 and the passing loss when power passes from the first feed line 5 to the end face of the second feed line 8, good characteristics equivalent to those of the first embodiment are obtained. I realized it.

【0020】[0020]

【発明の効果】以上に説明したように、本発明のトリプ
レート線路層間接続器によって、広帯域で周波数特性の
安定した低損失なトリプレート線路層間接続器が構成で
き、かつ、組立誤差による特性変化も少ない安価なトリ
プレート線路層間接続器を提供することができる。
As described above, the triplate line interlayer connector of the present invention can form a low loss triplate line interlayer connector having stable frequency characteristics over a wide band, and a characteristic change due to an assembly error. It is also possible to provide an inexpensive triplate line interlayer connector with a small number.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す分解斜視図である。FIG. 1 is an exploded perspective view showing one embodiment of the present invention.

【図2】(a)は本発明の一実施例を示す断面図であ
り、(b)は本発明の一実施例の要部平面図であり、
(c)は本発明の一実施例の他の要部平面図である。
FIG. 2A is a cross-sectional view illustrating an embodiment of the present invention, and FIG. 2B is a plan view of a main part of the embodiment of the present invention;
(C) is another main part plan view of an embodiment of the present invention.

【図3】(a)は本発明の他の実施例を示す断面図であ
り、(b)は本発明の他の実施例の要部平面図であり、
(c)は本発明の他の実施例の他の要部平面図である。
FIG. 3A is a cross-sectional view illustrating another embodiment of the present invention, and FIG. 3B is a plan view of a main part of another embodiment of the present invention;
(C) is another main part plan view of another embodiment of the present invention.

【図4】(a)、(b)及び(c)はそれぞれ本発明の
実施例に用いたパッチパターンと給電線路の接続形態を
示す平面図である。
FIGS. 4A, 4B, and 4C are plan views each showing a connection pattern between a patch pattern and a feed line used in an embodiment of the present invention.

【図5】本発明の一実施例の反射損失と通過損失の周波
数特性を示す線図である。
FIG. 5 is a diagram showing frequency characteristics of reflection loss and passage loss according to one embodiment of the present invention.

【図6】従来例を示す分解斜視図である。FIG. 6 is an exploded perspective view showing a conventional example.

【図7】従来例の課題を説明するための平面図である。FIG. 7 is a plan view for explaining a problem of a conventional example.

【符号の説明】[Explanation of symbols]

1.第1の地導体 2.第2の地導
体 3.第3の地導体 4a.第1の誘電体 4b.第2の誘
電体 7a.第3の誘電体 7b.第4の誘
電体 5.第1の給電線路 8.第2の給電
線路 6.第1の給電基板 9.第2の給電
基板 10a.第1のシールドスペーサ 10b.第2の
シールドスペーサ 11a.第3のシールドスペーサ 11b.第4の
シールドスペーサ 12a.第1のパッチパターン 12b.第2の
パッチパターン 13.第1のスロット 14.第2のス
ロット 101.トランス線路 102.整合点 103.ギャップ
1. 1. First ground conductor Second ground conductor 3. Third ground conductor 4a. First dielectric 4b. Second dielectric 7a. Third dielectric 7b. Fourth dielectric 5. 7. First feed line Second power supply line 6. First power supply board 9. Second power supply board 10a. First shield spacer 10b. Second shield spacer 11a. Third shield spacer 11b. Fourth shield spacer 12a. First patch pattern 12b. Second patch pattern 13. First slot 14. Second slot 101. Transformer line 102. Match point 103. gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 道坂 岳央 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 金丸 喜一 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takeo Michisaka 1150 Goshomiya, Oaza, Shimodate, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd. Inside the Goshonomiya factory of Hitachi Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1の地導体(1)と第2の地導体(2)
の略中間に、第1の誘電体(4a)及び第2の誘電体
(4b)に挟んだ、第1の給電線路(5)を形成した第
1の給電基板(6)を配置した第1のトリプレート線路
と、第2の地導体(2)と第3の地導体(3)の略中間
に、第3の誘電体(7a)及び第4の誘電体(7b)に
挟んだ、第2の給電線路(8)を形成した第2の給電基
板(9)を配置した第2のトリプレート線路との電気的
接続構造であって、前記第1の給電基板(6)の第1の
給電線路(5)の接続終端部と、前記第2の給電基板
(9)の第2の給電線路(8)の接続終端部とに、それ
ぞれ第1のパッチパターン(12a)、第2のパッチパ
ターン(12b)を形成し、その第1のパッチパターン
(12a)の周辺部の第1の誘電体(4a)及び第2の
誘電体(4b)を削除すると共に、その削除した箇所に
第1のパッチパターン(12a)とそれに接続した第1
の給電線路(5)の形状よりも大きめのくりぬき部を有
する第1のシールドスペーサ(10a)及び第2のシー
ルドスペーサ(10b)を設け、かつ、前記第2のパッ
チパターン(12b)の周辺部の第3の誘電体(7a)
及び第4の誘電体(7b)を削除すると共に、その削除
した箇所に第2のパッチパターン(12b)とそれに接
続した第2の給電線路(8)の形状よりも大きめのくり
ぬき部を有する第3のシールドスペーサ(11a)及び
第4のシールドスペーサ(11b)を設け、さらに前記
第1のパッチパターン(12a)及び第2のパッチパタ
ーン(12b)の中間に位置する部分の前記第2の地導
体(2)に、第1のスロット(13)を形成したことを
特徴とするトリプレート線路層間接続器。
1. A first ground conductor (1) and a second ground conductor (2).
A first power supply substrate (6) having a first power supply line (5) formed between the first dielectric (4a) and the second dielectric (4b) is disposed substantially in the middle of the first power supply substrate (6). , And a third dielectric (7a) and a fourth dielectric (7b) sandwiched between a third dielectric (7a) and a fourth dielectric (7b) approximately in the middle between the second ground conductor (2) and the third ground conductor (3). An electrical connection structure with a second triplate line on which a second power supply board (9) having two power supply lines (8) formed therein is disposed, wherein the first power supply board (6) has a first power supply board (6). A first patch pattern (12a) and a second patch are provided at the connection end of the power supply line (5) and at the connection end of the second power supply line (8) of the second power supply board (9), respectively. A pattern (12b) is formed, and the first dielectric (4a) and the second dielectric (4b) around the first patch pattern (12a) are deleted. Rutotomoni, first connected with its first patch pattern (12a) on the deleted portion
A first shield spacer (10a) and a second shield spacer (10b) each having a hollow portion larger than the shape of the feed line (5), and a peripheral portion of the second patch pattern (12b). Third dielectric (7a)
And the fourth dielectric (7b) having a cut-out portion larger than the shape of the second patch pattern (12b) and the second feeder line (8) connected to the second patch pattern (12b) at the deleted position. A third shield spacer (11a) and a fourth shield spacer (11b), and a portion of the second ground located in the middle between the first patch pattern (12a) and the second patch pattern (12b). A triplate line interlayer connector, wherein a first slot (13) is formed in a conductor (2).
【請求項2】第1のパッチパターン(12a)及び第2
のパッチパターン(12b)の、線路接続方向の長さL
1を使用する周波数の自由空間波長λ0の略0.38倍
とし、かつ第1のシールドスペーサ(10a)、第2の
シールドスペーサ(10b)、第3のシールドスペーサ
(11a)、及び第4のシールドスペーサ(11b)の
くりぬき部のパッチ周辺部の線路接続方向における寸法
L2及び第1のスロット(13)の線路接続方向におけ
る寸法L3を使用する周波数の自由空間波長λ0の略
0.6倍としたことを特徴とする請求項1に記載のトリ
プレート線路層間接続器。
2. A first patch pattern (12a) and a second patch pattern (12a).
L of the patch pattern (12b) in the line connection direction
1 is approximately 0.38 times the free space wavelength λ 0 of the frequency used, and the first shield spacer (10a), the second shield spacer (10b), the third shield spacer (11a), and the fourth Of the free space wavelength λ 0 of the frequency using the dimension L2 in the line connection direction of the periphery of the patch of the hollow portion of the shield spacer (11b) and the dimension L3 in the line connection direction of the first slot (13). 2. The triplate line interlayer connector according to claim 1, wherein the number is doubled.
【請求項3】第1のパッチパターン(12a)及び第2
のパッチパターン(12b)の形状を円形とし、その直
径L4を、使用する周波数の自由空間波長λ0の略0.
38倍とし、かつ第1のシールドスペーサ(10a)、
第2のシールドスペーサ(10b)、第3のシールドス
ペーサ(11a)、及び第4のシールドスペーサ(11
b)のくりぬき部のパッチ周辺部の形状を円形としその
直径L5を使用する周波数の自由空間波長λ0の略0.
6倍とし、かつ、第1のスロット(13)の形状を円形
としその直径L6を使用する周波数の自由空間波長λ0
の略0.6倍としたことを特徴とする請求項1に記載の
トリプレート線路層間接続器。
3. A first patch pattern (12a) and a second patch pattern (12a).
The shape of the patch pattern (12b) is circular, its diameter L4, substantially 0 of the free space wavelength lambda 0 of the frequencies used.
38 times, and a first shield spacer (10a),
The second shield spacer (10b), the third shield spacer (11a), and the fourth shield spacer (11
b) The shape of the periphery of the patch in the hollow portion is circular, and the free space wavelength λ 0 of the frequency using the diameter L5 is approximately 0.
The free space wavelength λ 0 of the frequency using the first slot (13) having a circular shape and the diameter L6 is used.
2. The triplate line interlayer connector according to claim 1, wherein the value is approximately 0.6 times as large as .times.
JP06183898A 1998-03-13 1998-03-13 Triplate line interlayer connector Expired - Fee Related JP3965762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06183898A JP3965762B2 (en) 1998-03-13 1998-03-13 Triplate line interlayer connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06183898A JP3965762B2 (en) 1998-03-13 1998-03-13 Triplate line interlayer connector

Publications (2)

Publication Number Publication Date
JPH11261308A true JPH11261308A (en) 1999-09-24
JP3965762B2 JP3965762B2 (en) 2007-08-29

Family

ID=13182646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06183898A Expired - Fee Related JP3965762B2 (en) 1998-03-13 1998-03-13 Triplate line interlayer connector

Country Status (1)

Country Link
JP (1) JP3965762B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269708A (en) * 1999-03-15 2000-09-29 Sharp Corp Electromagnetic field coupling structure and electric circuit device using the same
US6545572B1 (en) 2000-09-07 2003-04-08 Hitachi Chemical Co., Ltd. Multi-layer line interfacial connector using shielded patch elements
WO2006098054A1 (en) * 2005-03-16 2006-09-21 Hitachi Chemical Co., Ltd. Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
JP2007043643A (en) * 2005-07-06 2007-02-15 Hitachi Chem Co Ltd Connection structure between transmission line layers
US7324049B2 (en) 2004-01-05 2008-01-29 Samsung Electronics Co., Ltd. Miniaturized ultra-wideband microstrip antenna
JP2009153071A (en) * 2007-12-21 2009-07-09 Toyota Central R&D Labs Inc Structure for connecting two microstrip lines and structure for mounting integrated circuit chip on mounting board using case
JP2010068405A (en) * 2008-09-12 2010-03-25 New Japan Radio Co Ltd High-frequency transmission device
JP2011073012A (en) * 2009-09-29 2011-04-14 Hitachi Chem Co Ltd Punching die, punching method, and antenna
JP2011229107A (en) * 2009-08-31 2011-11-10 Hitachi Chem Co Ltd Triplate line interlayer connector and planar array antenna
US8089107B2 (en) 2006-03-14 2012-01-03 Sony Corporation Three-dimensional integrated device
WO2012108084A1 (en) * 2011-02-08 2012-08-16 日立化成工業株式会社 Electromagnetic coupling structure, multilayered transmission line plate, method for producing electromagnetic coupling structure, and method for producing multilayered transmission line plate
JP2013005296A (en) * 2011-06-17 2013-01-07 Hitachi Chem Co Ltd Line interlayer connector, planar array antenna having line interlayer connector and planar array antenna module
JP2018050239A (en) * 2016-09-23 2018-03-29 日本ピラー工業株式会社 Power converter and antenna device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269708A (en) * 1999-03-15 2000-09-29 Sharp Corp Electromagnetic field coupling structure and electric circuit device using the same
US6545572B1 (en) 2000-09-07 2003-04-08 Hitachi Chemical Co., Ltd. Multi-layer line interfacial connector using shielded patch elements
US7324049B2 (en) 2004-01-05 2008-01-29 Samsung Electronics Co., Ltd. Miniaturized ultra-wideband microstrip antenna
JP4803172B2 (en) * 2005-03-16 2011-10-26 日立化成工業株式会社 Planar antenna module, triplate type planar array antenna, and triplate line-waveguide converter
US7411553B2 (en) 2005-03-16 2008-08-12 Hitachi Chemical Co., Ltd. Planar antenna module, triple plate planar, array antenna, and triple plate feeder-waveguide converter
JPWO2006098054A1 (en) * 2005-03-16 2008-08-21 日立化成工業株式会社 Planar antenna module, triplate type planar array antenna, and triplate line-waveguide converter
KR100859638B1 (en) 2005-03-16 2008-09-23 히다치 가세고교 가부시끼가이샤 Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
WO2006098054A1 (en) * 2005-03-16 2006-09-21 Hitachi Chemical Co., Ltd. Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
US8253511B2 (en) 2005-03-16 2012-08-28 Hitachi Chemical Co., Ltd. Triple plate feeder—waveguide converter having a square resonance patch pattern
JP2007043643A (en) * 2005-07-06 2007-02-15 Hitachi Chem Co Ltd Connection structure between transmission line layers
US8089107B2 (en) 2006-03-14 2012-01-03 Sony Corporation Three-dimensional integrated device
JP2009153071A (en) * 2007-12-21 2009-07-09 Toyota Central R&D Labs Inc Structure for connecting two microstrip lines and structure for mounting integrated circuit chip on mounting board using case
JP4737192B2 (en) * 2007-12-21 2011-07-27 トヨタ自動車株式会社 Connection structure of two microstrip lines and mounting structure of integrated circuit chip on mounting board using housing
JP2010068405A (en) * 2008-09-12 2010-03-25 New Japan Radio Co Ltd High-frequency transmission device
JP2011229107A (en) * 2009-08-31 2011-11-10 Hitachi Chem Co Ltd Triplate line interlayer connector and planar array antenna
US8643564B2 (en) 2009-08-31 2014-02-04 Hitachi Chemical Company, Ltd. Triplate line inter-layer connector, and planar array antenna
JP2011073012A (en) * 2009-09-29 2011-04-14 Hitachi Chem Co Ltd Punching die, punching method, and antenna
WO2012108084A1 (en) * 2011-02-08 2012-08-16 日立化成工業株式会社 Electromagnetic coupling structure, multilayered transmission line plate, method for producing electromagnetic coupling structure, and method for producing multilayered transmission line plate
US9397381B2 (en) 2011-02-08 2016-07-19 Hitachi Chemical Company, Ltd. Electromagnetic coupling structure, multilayered transmission line plate, method for producing electromagnetic coupling structure, and method for producing multilayered transmission line plate
JP2013005296A (en) * 2011-06-17 2013-01-07 Hitachi Chem Co Ltd Line interlayer connector, planar array antenna having line interlayer connector and planar array antenna module
JP2018050239A (en) * 2016-09-23 2018-03-29 日本ピラー工業株式会社 Power converter and antenna device

Also Published As

Publication number Publication date
JP3965762B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US6121930A (en) Microstrip antenna and a device including said antenna
US6133880A (en) Short-circuit microstrip antenna and device including that antenna
US6246377B1 (en) Antenna comprising two separate wideband notch regions on one coplanar substrate
US6292153B1 (en) Antenna comprising two wideband notch regions on one coplanar substrate
JP3288059B2 (en) Feeder for radiating element operating with two polarizations
US5453754A (en) Dielectric resonator antenna with wide bandwidth
US4477813A (en) Microstrip antenna system having nonconductively coupled feedline
US6359590B2 (en) Antenna feeder line, and antenna module provided with the antenna feeder line
US6369762B1 (en) Flat antenna for circularly-polarized wave
US5945959A (en) Surface mounting antenna having a dielectric base and a radiating conductor film
US20020003499A1 (en) Antenna with a conductive layer and a two-band transmitter including the antenna
JPH11317615A (en) Multifrequency microstrip antenna and device provided with the same
US6545572B1 (en) Multi-layer line interfacial connector using shielded patch elements
GB2074792A (en) Thin-structure aerial
JP2001094340A (en) Slot array antenna with cavity
KR100404816B1 (en) Double slot array antenna
JPH11261308A (en) Inter-triplet line layer connector
JP2005051331A (en) Coupling structure between microstrip line and dielectric waveguide
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
US6144266A (en) Transition from a microstrip line to a waveguide and use of such transition
JP2000252712A (en) Connection structure between dielectric waveguide line and high frequency line conductor
US10651524B2 (en) Planar orthomode transducer
JPH07226609A (en) Directional coupler
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3263970B2 (en) Planar antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees