JPH1126017A - Electrolytic solution for lithium secondary battery - Google Patents

Electrolytic solution for lithium secondary battery

Info

Publication number
JPH1126017A
JPH1126017A JP9182119A JP18211997A JPH1126017A JP H1126017 A JPH1126017 A JP H1126017A JP 9182119 A JP9182119 A JP 9182119A JP 18211997 A JP18211997 A JP 18211997A JP H1126017 A JPH1126017 A JP H1126017A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
compound
electrolytic solution
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182119A
Other languages
Japanese (ja)
Inventor
Shigeki Yasukawa
栄起 安川
Kenmei Ou
献明 王
Kenichi Ishigaki
憲一 石垣
Asao Kominato
あさを 小湊
Kunihisa Shima
邦久 島
Shoichiro Mori
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9182119A priority Critical patent/JPH1126017A/en
Publication of JPH1126017A publication Critical patent/JPH1126017A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic solution for lithium secondary battery containing lithium salt of organic acids, which has a high electrical-conductivity and high lithium cycle efficiency and in which corrosion of a positive electrode aluminum collector is suppressed. SOLUTION: This electrolytic solution uses a solute which is a lithium salt of organic acids as expressed by formula, wherein an organic solvent consists of a mixture of cyclic ether compound and carbonate compound, while the mixing proportion by volume of the cyclic ether compound and the carbonate compound is 97:3 thru 65:35.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
の電解液に関するものである。更に詳しくは、導電率及
び電気化学的安定性等が改良されたリチウム二次電池用
の有機溶媒電解液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery. More specifically, the present invention relates to an organic solvent electrolyte for a lithium secondary battery having improved conductivity and electrochemical stability.

【0002】[0002]

【従来の技術】負極活物質として、リチウムあるいはリ
チウム合金等を用い、正極活物質として、リチウム遷移
金属複合酸化物(LiCoO2 、LiNiO2 、LiM
2 4 )等を用いた電池は、高エネルギー密度を有す
るために注目されており、活発な研究が行なわれてい
る。しかしながら、この種の電池の電圧は4V以上と高
く、特に、リチウム金属を負極に用いるリチウム二次電
池では充放電の際、リチウム負極に発生する樹枝状のリ
チウムのデンドライト等により、電解液中の溶質あるい
は有機溶媒と反応して電解液が劣化していくため良好な
充放電特性を得ることが困難であり、安全性、信頼性に
優れた安定な電解液の開発が望まれている。
2. Description of the Related Art Lithium or lithium is used as a negative electrode active material.
Lithium transition as a positive electrode active material
Metal composite oxide (LiCoOTwo, LiNiOTwo, LiM
nTwoO Four) Etc. have high energy density
And active research is being conducted.
You. However, the voltage of this type of battery is as high as 4 V or more.
In particular, lithium secondary batteries using lithium metal for the negative electrode
In the pond, a dendritic recharge generated on the lithium negative electrode during charging and discharging
The solute or electrolyte in the electrolyte is
Is good because the electrolytic solution deteriorates by reacting with the organic solvent
It is difficult to obtain charge / discharge characteristics, and safety and reliability
The development of an excellent and stable electrolyte is desired.

【0003】近年、溶質としてLiPF6 を用いる有機
電解液を使用したリチウム二次電池が提案されている
が、リチウム金属を負極に用いるリチウム二次電池で
は、充電時の電析リチウム等との反応性が高いため、リ
チウム負極のサイクル効率が低い問題があった。このた
め、より高性能な電池の開発を目的として、電気化学的
安定性及び熱的安定性に優れた溶質として無機のリチウ
ム塩とLiN(SO2 CF 3 )の混合物をプロピレンカ
ーボネートと1,2−ジメトキシエタンの1:1混合し
た有機溶媒に溶解した電解液(特開平5−62690
号)が提案されている。このものでは正極集電体として
用いるアルミニウム又はアルミニウム合金を腐食し、実
用可能な電池容量やサイクル特性が得られず信頼性に欠
けるという問題があった。
In recent years, LiPF has been used as a solute.6Using organic
A lithium secondary battery using an electrolyte has been proposed
Is a lithium secondary battery that uses lithium metal for the negative electrode.
Is highly reactive with electrodeposited lithium during charging,
There was a problem that the cycle efficiency of the negative electrode was low. others
For the development of higher performance batteries
Inorganic lithium as a solute with excellent stability and thermal stability
Salt and LiN (SOTwoCF Three) Mixture of propylene
1: 1 mixture of carbonate and 1,2-dimethoxyethane
Electrolyte dissolved in an organic solvent (Japanese Patent Laid-Open No. 5-62690).
No.) has been proposed. In this case, as a positive electrode current collector
Corrosion of aluminum or aluminum alloy used
Lack of reliability due to lack of usable battery capacity and cycle characteristics
Had the problem of

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0004】本発明者らは、LiN(SO2 CF3 2
の有機酸リチウム塩を環状エーテルと炭酸エステル化合
物との所定比率の混合溶媒に溶解した場合に、良好な電
池容量とサイクル効率及び導電率が向上することを見い
だした。本発明はかかる知見に基づきなされたものであ
って、その目的とするところは、リチウム金属を負極に
用いるリチウム二次電池系に最適な電解液として、導電
率が高く、リチウムサイクル効率、充放電特性に優れ、
安全性、信頼性の向上されたリチウム二次電池用電解液
を提供することにある。
The present inventors have proposed LiN (SO 2 CF 3 ) 2
It was found that when the lithium salt of an organic acid was dissolved in a mixed solvent of a cyclic ether and a carbonate compound in a predetermined ratio, good battery capacity, cycle efficiency and conductivity were improved. The present invention has been made based on such findings, and the object is to use lithium metal as a negative electrode as an optimal electrolyte for a lithium secondary battery system, having high conductivity, high lithium cycle efficiency, and high charge / discharge. Excellent characteristics,
An object of the present invention is to provide an electrolyte for a lithium secondary battery with improved safety and reliability.

【0005】[0005]

【課題を解決するための手段】本発明は、溶質としての
リチウム塩が下記一般式(1)で示される有機酸リチウ
ム塩
According to the present invention, a lithium salt as a solute is an organic acid lithium salt represented by the following general formula (1):

【0006】[0006]

【化2】 Embedded image

【0007】を用い、有機溶媒として、環状エーテル化
合物及び炭酸エステル化合物の混合溶媒を、環状エーテ
ル化合物及び炭酸エステル化合物の体積混合比率が9
9:3〜65:35の割合となるように用いることを特
徴とするリチウム二次電池用電解液を提供するものであ
る。
A mixed solvent of a cyclic ether compound and a carbonate compound is used as an organic solvent, and the cyclic ether compound and the carbonate compound are mixed at a volume ratio of 9
It is intended to provide an electrolyte for a lithium secondary battery, which is used in a ratio of 9: 3 to 65:35.

【0008】[0008]

【作用】溶質として、前記一般式(1)で示される有機
酸リチウム塩(以下、有機酸リチウム塩と略記する。)
を環状エーテル化合物と炭酸エステル化合物との混合溶
媒と組み合わせることによって、良好な充放電特性を有
するリチウム二次電池用電解液が実現できる。特に、負
極活物質として、リチウムあるいはリチウム合金等を用
い、正極活物質として、リチウム遷移金属複合酸化物
(LiCoO2 、LiNiO2 、LiMn2 4 )等を
用いた4V以上の電圧を有する電池に適用した場合にお
いて、導電率が高く、リチウムサイクル効率、充放電特
性、安全性、信頼性の優れた電解液が実現できる。
The organic acid lithium salt represented by the general formula (1) (hereinafter abbreviated as lithium organic acid salt) is used as a solute.
Is combined with a mixed solvent of a cyclic ether compound and a carbonate compound, whereby an electrolyte for a lithium secondary battery having good charge / discharge characteristics can be realized. In particular, a battery having a voltage of 4 V or more using lithium or a lithium alloy or the like as a negative electrode active material and using a lithium transition metal composite oxide (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ) or the like as a positive electrode active material. When applied, an electrolyte having high conductivity, excellent lithium cycle efficiency, charge / discharge characteristics, safety and reliability can be realized.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

溶質:一般式(1)で示される有機酸リチウム塩として
は、LiN(SO2 CF3 2 である。該有機酸リチウ
ム塩は、後述する有機混合溶媒に溶解され、電解液中の
溶質濃度として0.5〜1.5M(モル/リットル)が
使用される。
 Solute: as a lithium salt of an organic acid represented by the general formula (1)
Is LiN (SOTwoCFThree) TwoIt is. The organic acid lithium
The salt is dissolved in an organic mixed solvent described below, and
Solute concentration of 0.5-1.5M (mol / liter)
used.

【0010】有機溶媒:電解液の溶媒としては、導電率
の性能を改善し、アルミニウムの腐食を抑制し、良好な
充放電容量と良好なリチウムサイクル効率を得るため
に、環状エーテル化合物及び炭酸エステル化合物との混
合溶媒を用いる。その混合割合は、環状エーテル化合物
及び炭酸エステル化合物の体積混合比率で97:3〜6
5:35の範囲から選択する必要がある。
Organic solvents: As solvents for the electrolyte, cyclic ether compounds and carbonates are used to improve the performance of electric conductivity, suppress the corrosion of aluminum, and obtain good charge / discharge capacity and good lithium cycle efficiency. A mixed solvent with the compound is used. The mixing ratio is 97: 3 to 6 by volume mixing ratio of the cyclic ether compound and the carbonate compound.
It is necessary to select from the range of 5:35.

【0011】環状エーテル化合物としては、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、3−メチル
テトラヒドロフラン、2,5−ジメチルテトラヒドロフ
ラン、テトラヒドロピラン、2−メチルテトラヒドロピ
ラン、3−メチルテトラヒドロピラン、フラン、2−メ
チルフラン、3−メチルフラン、ピラン、2−メチルピ
ラン、3−メチルピラン等から選ばれた溶媒あるいはこ
れらの複数の混合溶媒が使用される。
Examples of the cyclic ether compound include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, furan, 2-methylfuran, A solvent selected from 3-methylfuran, pyran, 2-methylpyran, 3-methylpyran and the like, or a mixed solvent of a plurality thereof is used.

【0012】炭酸エステル溶媒としては、炭酸エチレ
ン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭
酸エチルメチル、炭酸ジエチル等から選ばれた溶媒ある
いはこれらの複数の混合溶媒が使用される。また、この
際、従来からリチウム二次電池用電解液として提案及び
使用されている他の有機溶媒を混合して用いることもで
きる。有機溶媒としては、酢酸メチル、酢酸エチル、プ
ロピオン酸メチル、プロピオン酸エチル、γ−ブチロラ
クトン等のカルボン酸エステル化合物、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、1,3−ジオ
キソラン、4−メチル−1,3−ジオキソラン等のエー
テルから選ばれた溶媒を、溶媒中の30%容量以下の割
合で用いることも可能である。
As the carbonate ester solvent, a solvent selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like, or a mixed solvent of a plurality thereof is used. At this time, other organic solvents which have been conventionally proposed and used as an electrolyte for a lithium secondary battery can be mixed and used. As the organic solvent, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, carboxylic acid ester compounds such as γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, It is also possible to use a solvent selected from ethers such as 4-methyl-1,3-dioxolane in a proportion of 30% by volume or less in the solvent.

【0013】本発明の電解液において、前記式(1)で
示される有機酸リチウム塩を環状エーテル化合物と炭酸
エステル化合物との混合溶媒に溶解して用いる理由は、
導電率、リチウムサイクル効率、充放電容量の高い電解
液を得るためである。すなわち、後述する実施例にも示
すように、LiN(SO2 CF3 2 塩を炭酸エチレ
ン、炭酸プロピレン等を主成分とする溶媒に溶解して用
いる場合は、正極集電体のアルミニウムの腐食(溶解)
等により、実用可能な程度の充放電容量を有する電池が
得られなくなる。また、無機酸リチウム塩のみを用いた
場合はリチウム金属負極との反応の増加により、リチウ
ムサイクル効率が低下するためである。
In the electrolytic solution of the present invention, the reason for dissolving the organic acid lithium salt represented by the above formula (1) in a mixed solvent of a cyclic ether compound and a carbonate compound is as follows.
This is to obtain an electrolyte having high conductivity, lithium cycle efficiency, and high charge / discharge capacity. That is, as shown in Examples described later, when LiN (SO 2 CF 3 ) 2 salt is dissolved in a solvent containing ethylene carbonate, propylene carbonate or the like as a main component and used, corrosion of aluminum of the positive electrode current collector is caused. (Dissolution)
For example, a battery having a practically usable charge / discharge capacity cannot be obtained. In addition, when only the lithium salt of an inorganic acid is used, an increase in the reaction with the lithium metal negative electrode decreases the lithium cycle efficiency.

【0014】[0014]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 実施例1〜4 有機酸リチウム塩の溶質としてLiN(SO2 CF3
2 を用い、有機溶媒として、テトラヒドロフラン(TH
F)と炭酸エチレン(EC)との体積混合比率が95:
5〜70:30の混合溶媒を用いて、溶質濃度が1mo
l/dm3 の有機電解液を調製した。電解液の導電率、
コインセルを用いたリチウムサイクル効率及び充放電容
量を測定した結果を第1表に示す。
The present invention will be described in more detail with reference to the following examples. Examples 1 to 4 LiN (SO 2 CF 3 ) as a solute of a lithium organic acid salt
2 and using tetrahydrofuran (TH
F) and ethylene carbonate (EC) in a volume mixing ratio of 95:
Using a mixed solvent of 5 to 70:30, the solute concentration is 1 mo
An organic electrolyte of 1 / dm 3 was prepared. Electrolyte conductivity,
Table 1 shows the results of measuring the lithium cycle efficiency and the charge / discharge capacity using the coin cell.

【0015】(導電率の測定)有機電解液の導電率の測
定を次の方法で行った。東亜電波工業(株)製の導電率
計CM−30S及び電導度セルCG−511Bを用い
て、25℃における導電率を測定した。
(Measurement of Conductivity) The conductivity of the organic electrolyte was measured by the following method. The conductivity at 25 ° C. was measured using a conductivity meter CM-30S manufactured by Toa Denpa Kogyo KK and a conductivity cell CG-511B.

【0016】(リチウムサイクル効率の測定)リチウム
サイクル効率の測定は乾燥アルゴン雰囲気下のドライボ
ックス内で、有機電解液をコインセル内に設置して、ポ
テンショスタット/ガルバノスタット(ソーラートロン
社製1287)を用いて、作用極に厚さ100μmのリ
チウム金属箔(有効電極面積:1.23cm2 )、対極
に厚さ1mmのリチウム金属箔(有効電極面積:1.2
3cm2 )を用いて、定電流密度(電流密度:0.6m
A/cm2 )による20サイクルの充放電試験(電析電
気量:6C/cm2 )を行い、作用極に残った電気化学
的に活性なリチウム容量を測定し、次式を用いてリチウ
ムサイクル効率を算出した。
(Measurement of Lithium Cycle Efficiency) In a measurement of lithium cycle efficiency, an organic electrolyte was placed in a coin cell in a dry box under a dry argon atmosphere, and a potentiostat / galvanostat (1287 manufactured by Solartron) was used. Using a 100 μm thick lithium metal foil (effective electrode area: 1.23 cm 2 ) for the working electrode and a 1 mm thick lithium metal foil (effective electrode area: 1.2
3 cm 2 ) and a constant current density (current density: 0.6 m)
A / cm 2 ), a 20-cycle charge / discharge test (electrodeposition amount: 6 C / cm 2 ) was performed, and the electrochemically active lithium capacity remaining at the working electrode was measured. The efficiency was calculated.

【0017】[0017]

【数1】リチウムサイクル効率(%)=100×(1−
1/FOM)
## EQU1 ## Lithium cycle efficiency (%) = 100 × (1-
1 / FOM)

【0018】(コイン型セルによる充放電容量の測定)
図1は、実施例及び比較例において作製したリチウム二
次電池(コイン型;直径20mm、厚さ1.6mm)の
断面図を示す。このコイン型セルは、正極端子を兼ねた
ステンレス製ケース1、負極端子を兼ねたステンレス製
封口板2とがポリプロピレン製ガスケット3で絶縁シー
ルされている。正極4は正極活物質としてのリチウムコ
バルト複合酸化物(LiCoO2 )に、導電剤としての
アセチレンブラックと、結着剤としてのフッ素樹脂と
を、重量比90:5:5の比率で混合し、これを溶剤
(N−メチルピロリドン)に分散させてスラリーとした
後、正極集電体としてのアルミニウム箔に塗布し、乾燥
した後、直径12.5mmの正極を作製した。負極5は
直径16mm、厚さ1.0mmのリチウム金属箔を用
い、有機溶媒電解液に浸された多孔性ポリプロピレンフ
ィルムのセパレータ6とから構成されている。電池の容
量は4.2Vから2.5Vまでの電圧範囲で0.54m
Ahである。
(Measurement of charge / discharge capacity by coin cell)
FIG. 1 is a cross-sectional view of the lithium secondary batteries (coin type; diameter: 20 mm, thickness: 1.6 mm) manufactured in Examples and Comparative Examples. In this coin-type cell, a stainless steel case 1 also serving as a positive electrode terminal and a stainless steel sealing plate 2 also serving as a negative electrode terminal are insulated and sealed with a polypropylene gasket 3. The positive electrode 4 is obtained by mixing lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 90: 5: 5, This was dispersed in a solvent (N-methylpyrrolidone) to form a slurry, which was then applied to an aluminum foil as a positive electrode current collector, dried, and then a positive electrode having a diameter of 12.5 mm was produced. The negative electrode 5 is made of a lithium metal foil having a diameter of 16 mm and a thickness of 1.0 mm, and includes a porous polypropylene film separator 6 immersed in an organic solvent electrolyte. The battery capacity is 0.54m in the voltage range from 4.2V to 2.5V
Ah.

【0019】比較例1〜2 有機溶媒としてジメトキシエタン(DME)と炭酸エチ
レンとの体積混合比率が50:50及び70:30溶媒
を用いた他は実施例1と同様にして、電解液の導電率、
リチウムサイクル効率及びコインセルによる充放電容量
を測定した。得られた結果を第1表に示す。
COMPARATIVE EXAMPLES 1-2 The conductivity of the electrolytic solution was the same as in Example 1 except that dimethoxyethane (DME) and ethylene carbonate were used as solvents in a volume mixing ratio of 50:50 and 70:30. rate,
The lithium cycle efficiency and the charge / discharge capacity of the coin cell were measured. Table 1 shows the obtained results.

【0020】比較例3 有機溶媒としてテトラヒドロフランと炭酸エチレンの等
体積混合溶媒を用いた他は実施例1と同様にして、電解
液の導電率、リチウムサイクル効率及びコインセルによ
る充放電容量を測定した。得られた結果を第1表に示
す。
Comparative Example 3 The conductivity of the electrolytic solution, the lithium cycle efficiency and the charge / discharge capacity of a coin cell were measured in the same manner as in Example 1, except that an equal volume mixed solvent of tetrahydrofuran and ethylene carbonate was used as the organic solvent. Table 1 shows the obtained results.

【0021】比較例4 溶質としてLiPF6 を用いた他は比較例3と同様にし
て、電解液の導電率、リチウムサイクル効率及びコイン
セルによる充放電容量を測定した。得られた結果を第1
表に示す。
Comparative Example 4 The conductivity of the electrolytic solution, the lithium cycle efficiency, and the charge / discharge capacity of the coin cell were measured in the same manner as in Comparative Example 3 except that LiPF 6 was used as the solute. The obtained result is
It is shown in the table.

【0022】比較例5 有機溶媒としてテトラヒドロフランの単独溶媒を用いた
他は実施例1と同様にして、電解液の導電率、リチウム
サイクル効率及びコインセルによる充放電容量を測定し
た。得られた結果を第1表に示す。
Comparative Example 5 The conductivity of the electrolytic solution, the lithium cycle efficiency, and the charge / discharge capacity of a coin cell were measured in the same manner as in Example 1 except that a single solvent of tetrahydrofuran was used as the organic solvent. Table 1 shows the obtained results.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明のリチウム二次電池用電解液は、
導電率に優れ、充電時に正極集電体のアルミニウムの腐
食(溶解)がなく、高いリチウム充放電効率が得られる
ため、良好な充放電特性が得られるとともに、安全性、
信頼性が高い。
The electrolytic solution for a lithium secondary battery of the present invention comprises:
It has excellent electrical conductivity, does not corrode (dissolve) aluminum in the positive electrode current collector during charging, and provides high lithium charge / discharge efficiency.
High reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型セルの断面図である。FIG. 1 is a sectional view of a coin cell.

【符号の説明】[Explanation of symbols]

1 ステンレス製ケース 2 ステンレス製封口板 3 ポリプロピレン製ガスケット 4 正極合剤をアルミニウム箔に敷いた正極 5 リウチム金属箔の負極 6 セパレータ Reference Signs List 1 stainless steel case 2 stainless steel sealing plate 3 polypropylene gasket 4 positive electrode with positive electrode mixture laid on aluminum foil 5 negative electrode of lithium metal foil 6 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小湊 あさを 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 島 邦久 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Asato Kominato 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture Within the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Kunihisa Shima, Chuo-Hachi, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Co., Tsukuba Research Laboratories (72) Shoichiro Mori 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. Mitsubishi Chemical Corporation Tsukuba Research Laboratories

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶質としてのリチウム塩が下記一般式
(1)で示される有機酸リチウム塩 【化1】 を用い、有機溶媒として、環状エーテル化合物及び炭酸
エステル化合物の混合溶媒を、環状エーテル化合物及び
炭酸エステル化合物の体積混合比率が97:3〜65:
35の割合で用いることを特徴とするリチウム二次電池
用電解液。
1. A lithium salt as a solute, wherein the lithium salt is an organic acid lithium salt represented by the following general formula (1): And a mixed solvent of a cyclic ether compound and a carbonate compound as an organic solvent, wherein the volume mixing ratio of the cyclic ether compound and the carbonate compound is 97: 3 to 65:
An electrolyte solution for a lithium secondary battery, wherein the electrolyte solution is used at a ratio of 35.
【請求項2】 環状エーテル化合物が、テトラヒドロフ
ラン化合物、テトラヒドロピラン化合物より選ばれたも
のであることを特徴とする請求項1記載のリチウム二次
電池用電解液。
2. The lithium secondary battery electrolyte according to claim 1, wherein the cyclic ether compound is selected from a tetrahydrofuran compound and a tetrahydropyran compound.
JP9182119A 1997-07-08 1997-07-08 Electrolytic solution for lithium secondary battery Pending JPH1126017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9182119A JPH1126017A (en) 1997-07-08 1997-07-08 Electrolytic solution for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182119A JPH1126017A (en) 1997-07-08 1997-07-08 Electrolytic solution for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1126017A true JPH1126017A (en) 1999-01-29

Family

ID=16112669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182119A Pending JPH1126017A (en) 1997-07-08 1997-07-08 Electrolytic solution for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1126017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229772A1 (en) * 2008-09-11 2011-09-22 Tatsuo Fujinami Electrolyte solution and use therefor
CN110707364A (en) * 2019-09-10 2020-01-17 深圳先进技术研究院 Method for manufacturing secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229772A1 (en) * 2008-09-11 2011-09-22 Tatsuo Fujinami Electrolyte solution and use therefor
US8986896B2 (en) * 2008-09-11 2015-03-24 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and use therefor
CN110707364A (en) * 2019-09-10 2020-01-17 深圳先进技术研究院 Method for manufacturing secondary battery
CN110707364B (en) * 2019-09-10 2021-01-01 深圳先进技术研究院 Method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP3760540B2 (en) Electrolyte for lithium secondary battery
JP3311611B2 (en) Lithium secondary battery
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP3728791B2 (en) Electrolyte for lithium secondary batteries
JP3760539B2 (en) Electrolyte for lithium secondary battery
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
CN106159207B (en) A kind of preparation method of positive electrode active materials, positive plate and lithium ion battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH09147910A (en) Lithium secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
CN107240716B (en) Electrolyte, positive electrode and preparation method thereof, and lithium ion battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JPH1131528A (en) Lithium secondary battery electrolyte
JP3418446B2 (en) Electrolyte for electrochemical cell and battery
JPH09245833A (en) Electrolytic solution for lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPS60154478A (en) Electrolyte for lithium secondary battery
JPH1126017A (en) Electrolytic solution for lithium secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JP2654553B2 (en) Electrolyte for lithium secondary battery
JPH08162155A (en) Nonaqueous electrolytic battery
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JPH10270078A (en) Electrolyte for secondary lithium battery