JPH1125962A - Nickel positive electrode for alkaline storage battery - Google Patents

Nickel positive electrode for alkaline storage battery

Info

Publication number
JPH1125962A
JPH1125962A JP9173752A JP17375297A JPH1125962A JP H1125962 A JPH1125962 A JP H1125962A JP 9173752 A JP9173752 A JP 9173752A JP 17375297 A JP17375297 A JP 17375297A JP H1125962 A JPH1125962 A JP H1125962A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
nickel
electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9173752A
Other languages
Japanese (ja)
Other versions
JP3505351B2 (en
Inventor
Reizo Maeda
礼造 前田
Katsuhiko Niiyama
克彦 新山
Yoshinori Matsuura
義典 松浦
Mitsuzo Nogami
光造 野上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17375297A priority Critical patent/JP3505351B2/en
Publication of JPH1125962A publication Critical patent/JPH1125962A/en
Application granted granted Critical
Publication of JP3505351B2 publication Critical patent/JP3505351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase a discharging capacity when discharging is performed by a large current while suppressing the reduction in a charging/discharging cycle characteristic by forming the layer of a mixture between a water insoluble binder and a cobalt compound on an electrode surface. SOLUTION: Paste is prepared by mixing nickel hydroxide as a positive electrode active material, cobalt hydroxide as a conductive material, hydroxy- propyl cellulose as a binder and water as viscosity adjusting agent. Then, after foamed nickel as a base body is filled with this paste, the paste is dried, and spray solution is made by mixing suspension containing water insoluble binder and cobalt hydroxide as a cobalt compound. Then, this spray solution is sprayed to the electrode surface, dried and then the layer of mixture is formed on the electrode surface. Then, by molding an electrode having a mixture layer formed on the surface, a desired nickel positive electrode is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池用ニ
ッケル正極に関し、特にアルカリ蓄電池用ニッケル正極
の表面の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel positive electrode for an alkaline storage battery, and more particularly to an improvement in the surface of a nickel positive electrode for an alkaline storage battery.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池、ニッケル
−水素蓄電池、またはニッケル−亜鉛蓄電池などのアル
カリ二次電池に用いられる正極としては、水酸化ニッケ
ルを主成分とするニッケル極が用いられているが、上記
水酸化ニッケルは、充電時にオキシ水酸化ニッケルとな
って体積が膨張し、放電時に水酸化ニッケルとなって元
の体積に戻るという特性を有している。ところが、充放
電サイクルを繰り返すにしたがって、上記の充放電反応
が不可逆化して、徐々に正極の体積が増加(膨化)する
ため、この正極中に電解液が取り込まれることになる。
この結果、セパレータ中の電解液が減少して、電池のサ
イクル特性が低下するという課題を有していた。
2. Description of the Related Art As a positive electrode used for an alkaline secondary battery such as a nickel-cadmium storage battery, a nickel-hydrogen storage battery, or a nickel-zinc storage battery, a nickel electrode mainly composed of nickel hydroxide is used. The nickel hydroxide has a characteristic that it becomes nickel oxyhydroxide during charging and expands in volume, and becomes nickel hydroxide during discharging and returns to its original volume. However, as the charge-discharge cycle is repeated, the above-described charge-discharge reaction becomes irreversible and the volume of the positive electrode gradually increases (expands), so that the electrolyte is taken into the positive electrode.
As a result, there has been a problem that the electrolyte in the separator decreases and the cycle characteristics of the battery deteriorate.

【0003】そこで、特開昭53−75446号公報に
示すように、正極の表面に結着剤層を形成し、これによ
り水酸化ニッケル粒子同士の結着性を向上させて、水酸
化ニッケル粒子間の電子伝導性を高めることにより、上
記充放電反応の不可逆化を抑制するような方法が提案さ
れている。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 53-75446, a binder layer is formed on the surface of the positive electrode, thereby improving the binding property between the nickel hydroxide particles. There has been proposed a method of suppressing the irreversibility of the charge / discharge reaction by increasing the electron conductivity between them.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、充放電反応の不可逆化を十分に抑制すべ
く多量の結着剤を電極表面に塗布した場合には、水酸化
ニッケル粒子同士の接触が不十分となるばかりか、電極
表面部におけるイオン伝導性が低下するため、大電流で
放電する際の放電容量が低下するという課題を有してい
た。本発明は、以上の事情に鑑みなされたものであっ
て、充放電サイクル特性の低下を抑制しつつ、大電流で
放電した場合の放電容量を増大させることができるアル
カリ蓄電池用ニッケル正極の提供を目的とする。
However, in the above-mentioned conventional method, when a large amount of a binder is applied to the electrode surface in order to sufficiently suppress the irreversibility of the charge / discharge reaction, the nickel hydroxide particles are not bonded to each other. In addition to the insufficient contact, the ion conductivity at the electrode surface is reduced, so that there is a problem that the discharge capacity when discharging with a large current is reduced. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a nickel positive electrode for an alkaline storage battery capable of increasing a discharge capacity when discharging at a large current while suppressing a decrease in charge / discharge cycle characteristics. Aim.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、水酸化ニッ
ケルを主成分とする活物質粉末を含むアルカリ蓄電池用
ニッケル正極において、電極表面には、非水溶性結着剤
とコバルト化合物との混合物層が形成されていることを
特徴とする。上記の如く電極表面に非水溶性結着剤が存
在していれば、水酸化ニッケル粒子同士の結着性が向上
するので、水酸化ニッケル粒子間の電子伝導性を高めら
れて、充放電反応の不可逆化が抑制される。したがっ
て、正極の膨化が抑制され、正極中に取り込まれる電解
液量が減少するので、電池のサイクル特性の低下を抑制
することができる。
Means for Solving the Problems To achieve the above object, according to the present invention, there is provided a nickel positive electrode for an alkaline storage battery containing an active material powder containing nickel hydroxide as a main component. A mixture layer of a water-insoluble binder and a cobalt compound is formed on the electrode surface. If the water-insoluble binder is present on the electrode surface as described above, the binding property between the nickel hydroxide particles is improved, so that the electron conductivity between the nickel hydroxide particles is increased, and the charge / discharge reaction is increased. Irreversibility is suppressed. Therefore, swelling of the positive electrode is suppressed, and the amount of electrolyte taken into the positive electrode is reduced, so that deterioration in cycle characteristics of the battery can be suppressed.

【0006】また、結着剤は非水溶性なので、充放電を
繰り返しても溶けることがない。したがって、結着剤の
添加効果が長期間にわたって維持される。加えて、電極
表面に非水溶性結着剤のみならずコバルト化合物も存在
するので、このコバルト化合物によって電極表面におけ
る電子伝導性が向上し、大電流で放電した場合の放電容
量が増加する。
[0006] Further, since the binder is insoluble in water, it does not dissolve even after repeated charging and discharging. Therefore, the effect of adding the binder is maintained for a long time. In addition, since not only the water-insoluble binder but also the cobalt compound exists on the electrode surface, the cobalt compound improves the electron conductivity on the electrode surface and increases the discharge capacity when a large current is discharged.

【0007】また、請求項2記載の発明は、請求項1記
載の発明において、コバルト化合物として、コバルトの
水酸化物またはコバルトの酸化物が用いられることを特
徴とする。このように、コバルト化合物としてコバルト
の水酸化物等を用いれば、上記コバルト化合物の添加効
果が円滑に達成されるので、大電流で放電した場合の放
電容量が更に増大する。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, a hydroxide of cobalt or an oxide of cobalt is used as the cobalt compound. As described above, when the hydroxide of cobalt or the like is used as the cobalt compound, the effect of adding the cobalt compound is smoothly achieved, so that the discharge capacity when a large current is discharged is further increased.

【0008】また、請求項3記載の発明は、請求項1ま
たは2記載の発明において、混合物層内には、更に、A
l、Ca、Mn、Fe、Zn、Sr、Y、Cd、Ba、
La、Ce、Pr、Nd、Sm、Eu、Gd、Yb、
W、及びBiから成る金属群から選択される少なくとも
1以上の金属の化合物が含まれていることを特徴とす
る。上述の如く電極表面にコバルト化合物を添加して電
子伝導性を向上させると、電極表面における電子移動は
円滑化するものの、イオンの拡散が律速反応となるの
で、改良の余地がある。そこで、上記の如く、混合物層
内にAl等の化合物を添加すれば、電極表面部における
イオン伝導性を向上させることができるので、イオンの
拡散が律速反応とならず、この結果大電流で放電した場
合の放電容量を格段に増大させることができる。
[0008] The invention according to claim 3 is the invention according to claim 1 or 2, further comprising: A in the mixture layer.
1, Ca, Mn, Fe, Zn, Sr, Y, Cd, Ba,
La, Ce, Pr, Nd, Sm, Eu, Gd, Yb,
At least one metal compound selected from the metal group consisting of W and Bi is included. When the electron conductivity is improved by adding a cobalt compound to the electrode surface as described above, although electron transfer on the electrode surface is smoothed, diffusion of ions becomes a rate-limiting reaction, and there is room for improvement. Therefore, as described above, if a compound such as Al is added to the mixture layer, the ionic conductivity at the electrode surface can be improved, so that diffusion of ions does not become a rate-determining reaction, and as a result, discharge occurs with a large current. In this case, the discharge capacity can be significantly increased.

【0009】また、請求項4記載の発明は、請求項3記
載の発明において、金属群が、Al、Ca、Mn、Z
n、Y、Cd、La、Ce、Pr、Nd、Sm、Eu、
Gd、Yb、及びBiから成ることを特徴とする。この
ように規制すれば、電極表面部におけるイオン伝導性が
顕著に向上するので、イオン伝導性の低下が著しい低温
放電時であっても、放電容量が低下するのを抑制するこ
とができる。
The invention according to claim 4 is the invention according to claim 3, wherein the metal group is Al, Ca, Mn, Z
n, Y, Cd, La, Ce, Pr, Nd, Sm, Eu,
It is characterized by comprising Gd, Yb, and Bi. If regulated in this way, the ionic conductivity at the electrode surface is significantly improved, so that even at the time of low-temperature discharge where the ionic conductivity is significantly reduced, a decrease in the discharge capacity can be suppressed.

【0010】また、請求項5記載の発明は、請求項3ま
たは4記載の発明において、金属群から選択される金属
のうち少なくとも一つの金属の化合物が、金属水酸化物
または金属酸化物であることを特徴とする。このよう
に、金属群から選択される金属のうち少なくとも一つの
金属の化合物が、金属水酸化物または金属酸化物の状態
であれば、上記の効果が一層円滑に発揮される。
According to a fifth aspect of the present invention, in the third or fourth aspect, the compound of at least one metal selected from the group consisting of metals is a metal hydroxide or a metal oxide. It is characterized by the following. As described above, when the compound of at least one metal among the metals selected from the metal group is in a state of a metal hydroxide or a metal oxide, the above-described effect is more smoothly exerted.

【0011】また、請求項6記載の発明は、請求項1、
2、3、4または5記載の発明において、電極全重量に
対する混合物層の重量比が、0.2〜5.0wt%であ
ることを特徴とする。このように混合物層の割合を規制
するのは、混合物層の重量比が0.2wt%未満である
と、電極表面に存在する混合物層の割合が少な過ぎて、
混合物層を形成する効果が十分に発揮されない一方、混
合物層の重量比が5.0wt%を超えると、混合物層の
厚みが大きくなり過ぎてイオンの拡散距離が長くなる結
果、却ってイオン伝導性が低下するという理由による。
[0011] The invention according to claim 6 is based on claim 1,
In the invention described in 2, 3, 4, or 5, the weight ratio of the mixture layer to the total weight of the electrode is 0.2 to 5.0 wt%. The reason for regulating the proportion of the mixture layer in this way is that if the weight ratio of the mixture layer is less than 0.2 wt%, the proportion of the mixture layer present on the electrode surface is too small,
While the effect of forming the mixture layer is not sufficiently exhibited, when the weight ratio of the mixture layer exceeds 5.0 wt%, the thickness of the mixture layer becomes too large and the diffusion distance of ions becomes longer, resulting in ionic conductivity. For the reason that it decreases.

【0012】また、請求項7記載の発明は、請求項1、
2、3、4、5または6記載の発明において、混合物層
の全重量に対する非水溶性結着剤の重量比が、10〜8
0wt%であることを特徴とする。このように混合物層
における非水溶性結着剤の割合を規制するのは、非水溶
性結着剤の重量比が10wt%未満であると、非水溶性
結着剤の添加効果が十分に発揮されない一方、非水溶性
結着剤の重量比が80wt%を超えると、電極表面にお
ける電子伝導性やイオン伝導性を阻害するという理由に
よる。
[0012] The invention according to claim 7 is based on claim 1,
In the invention described in 2, 3, 4, 5 or 6, the weight ratio of the water-insoluble binder to the total weight of the mixture layer is 10 to 8
0 wt%. The reason why the proportion of the water-insoluble binder in the mixture layer is regulated is that when the weight ratio of the water-insoluble binder is less than 10 wt%, the effect of adding the water-insoluble binder is sufficiently exhibited. On the other hand, when the weight ratio of the water-insoluble binder exceeds 80% by weight, electron conductivity and ion conductivity on the electrode surface are inhibited.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、以下に説
明する。先ず、正極活物質である水酸化ニッケルと、導
電剤である水酸化コバルトと、結着剤であるヒドロキシ
プロピルセルロースと、粘度調整剤としての水とを重量
比で、90:10:0.1:50の割合で混合して、ペ
ーストを調製した。次に、基体である発泡ニッケルに、
上記ペーストを充填した後、ペーストを乾燥(60℃で
1時間)させた。次いで、非水溶性結着剤であるポリテ
トラフルオロエチレン(PTFE)を6wt%含有する
ディスパージョン(懸濁液)とコバルト化合物である水
酸化コバルトとを重量比で、100:6の割合(即ち、
PTFEと水酸化コバルトとの重量比は1:1である)
で混合して噴霧溶液を作製した。
Embodiments of the present invention will be described below. First, nickel hydroxide as a positive electrode active material, cobalt hydroxide as a conductive agent, hydroxypropylcellulose as a binder, and water as a viscosity modifier were mixed in a weight ratio of 90: 10: 0.1. : 50 to prepare a paste. Next, to the foamed nickel as the base,
After filling the paste, the paste was dried (60 ° C. for 1 hour). Next, a dispersion (suspension) containing 6 wt% of polytetrafluoroethylene (PTFE), which is a water-insoluble binder, and cobalt hydroxide, which is a cobalt compound, are in a weight ratio of 100: 6 (that is, 100: 6). ,
(The weight ratio of PTFE to cobalt hydroxide is 1: 1)
To prepare a spray solution.

【0014】この後、この噴霧溶液を電極表面に噴霧
し、更に乾燥(60℃で30分間)させて、電極表面に
混合物層を形成した。尚、この際、PTFEと水酸化コ
バルトとの塗着量は、噴霧溶液の噴霧前後における電極
の乾燥重量の差から、5mg/cm2 (電極全重量に対
する混合物層の重量比は約2wt%)であることを確認
した。しかる後、表面に混合物層が形成された電極を成
型することにより、水酸化ニッケルを4g含有するニッ
ケル正極(長さ70mm、幅40mm、厚さ0.6m
m)を得た。
Thereafter, the spray solution was sprayed on the electrode surface and dried (at 60 ° C. for 30 minutes) to form a mixture layer on the electrode surface. At this time, the coating amount of PTFE and cobalt hydroxide was 5 mg / cm 2 (the weight ratio of the mixture layer to the total weight of the electrode was about 2 wt%) based on the difference between the dry weight of the electrode before and after spraying the spray solution. Was confirmed. Thereafter, by molding an electrode having a mixture layer formed on the surface, a nickel positive electrode containing 4 g of nickel hydroxide (length 70 mm, width 40 mm, thickness 0.6 m)
m).

【0015】尚、非水溶性結着剤としては、上記PTF
Eに限定するものではなく、例えばポリエチレン、ポリ
スチレン等を用いても良いことは勿論である。また、コ
バルト化合物としては、上記水酸化コバルトに限定する
ものではなく、例えばCoO、Co3 4 、CoOOH
等であっても良い。
The water-insoluble binder includes the above-mentioned PTF
It is needless to say that the material is not limited to E, and for example, polyethylene, polystyrene or the like may be used. The cobalt compound is not limited to the above-mentioned cobalt hydroxide, but may be, for example, CoO, Co 3 O 4 , CoOOH
And so on.

【0016】[0016]

【実施例】【Example】

〔実施例〕実施例のニッケル正極としては、前記発明の
実施の形態で示す方法により作製した正極を用いた。そ
して、当該ニッケル正極と、組成式Mm1.0 Ni3.2
1.0 Al0.2 Mn0.6 で示される水素吸蔵合金負極
と、ポリオレフィン不織布から成るセパレータとを渦巻
状に巻回して渦巻電極体を作製した後、この渦巻電極体
を電池缶内に収納し、更に30wt%の水酸化カリウム
溶液(2.4g)を電池缶内に注入した後、電池缶を封
口することにより、容量1150mAhの密閉型ニッケ
ル−水素蓄電池を作製した。尚、この電池はニッケル正
極規制の電池構成としている。このようにして作製した
電池を、以下、本発明電池Aと称する。
 [Examples] As the nickel positive electrode of the examples,
A positive electrode manufactured by the method described in the embodiment mode was used. So
Then, the nickel positive electrode and the composition formula Mm1.0Ni3.2C
o 1.0Al0.2Mn0.6Hydrogen storage alloy negative electrode represented by
And a separator made of polyolefin nonwoven fabric
After making a spiral electrode body by winding in a spiral shape, the spiral electrode body
In a battery can, and then 30 wt% potassium hydroxide
After injecting the solution (2.4 g) into the battery can, sealing the battery can
By mouth, closed type nickel with capacity of 1150mAh
A hydrogen storage battery was manufactured. This battery is nickel-positive
The battery configuration is extremely regulated. Made in this way
The battery is hereinafter referred to as Battery A of the present invention.

【0017】〔比較例1〕電極表面に噴霧する噴霧溶液
として、PTFEのみを含む懸濁液を用いる他は、上記
実施例と同様にして電池を作製した。このようにして作
製した電池を、以下、比較電池X1と称する。
Comparative Example 1 A battery was manufactured in the same manner as in the above example, except that a suspension containing only PTFE was used as a spray solution to be sprayed on the electrode surface. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X1.

【0018】〔比較例2〕電極表面に噴霧する噴霧溶液
として、水酸化コバルトのみを含む懸濁液を用いる他
は、上記実施例と同様にして電池を作製した。このよう
にして作製した電池を、以下、比較電池X2と称する。
Comparative Example 2 A battery was manufactured in the same manner as in the above example, except that a suspension containing only cobalt hydroxide was used as a spray solution to be sprayed on the electrode surface. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X2.

【0019】〔比較例3〕電極表面に噴霧溶液を噴霧し
ない他は、上記実施例と同様にして電池を作製した。こ
のようにして作製した電池を、以下、比較電池X3と称
する。
Comparative Example 3 A battery was manufactured in the same manner as in the above example, except that the spray solution was not sprayed on the electrode surface. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X3.

【0020】〔実験1〕上記本発明電池A及び比較電池
X1〜X3における充放電サイクル特性を調べたので、
その結果を図1に示す。尚、充放電サイクル条件は、
0.1Aの電流値で16時間充電した後、0.1Aの電
流値で放電終止電圧が1.0Vになるまで放電するとい
う条件である。
[Experiment 1] The charge / discharge cycle characteristics of the battery A of the present invention and the comparative batteries X1 to X3 were examined.
The result is shown in FIG. The charge and discharge cycle conditions are as follows:
After charging for 16 hours at a current value of 0.1 A, the battery is discharged at a current value of 0.1 A until the discharge termination voltage reaches 1.0 V.

【0021】図1から明らかなように、電極表面に非水
溶性結着剤とコバルト化合物とが共に存在する本発明電
池Aでは、400サイクル経過後でないと放電容量が低
下しないのに対して、電極表面に非水溶性結着剤及びコ
バルト化合物が全く存在しない比較電池X3では、15
0サイクル経過後に放電容量の低下が始まる。また、電
極表面に非水溶性結着剤のみが存在する比較電池X1、
及び電極表面にコバルト化合物のみが存在する比較電池
X2は、比較電池X3に比べると充放電サイクル特性が
改善されているとはいうものの、それぞれ、250サイ
クル及び200サイクルから放電容量の低下が始まり、
本発明電池Aに比べると、やはり充放電サイクル特性に
劣ることが認められる。
As is apparent from FIG. 1, in the battery A of the present invention in which the water-insoluble binder and the cobalt compound are both present on the electrode surface, the discharge capacity does not decrease unless 400 cycles have elapsed. In the comparative battery X3 in which the water-insoluble binder and the cobalt compound were not present at all on the electrode surface, 15
After 0 cycles, the discharge capacity starts to decrease. In addition, the comparative battery X1, in which only the water-insoluble binder is present on the electrode surface,
And the comparative battery X2 in which only the cobalt compound is present on the electrode surface, although the charge / discharge cycle characteristics are improved as compared with the comparative battery X3, the discharge capacity starts decreasing from 250 cycles and 200 cycles, respectively.
It is also recognized that the charge / discharge cycle characteristics are inferior to the battery A of the present invention.

【0022】〔実験2〕上記本発明電池A及び比較電池
X1〜X3における大電流放電特性を調べたので、その
結果を表1に示す。尚、大電流放電特性の実験は以下の
ようにして行った。先ず、各電池を0.1Aの電流値で
16時間充電した後、0.1Aの電流値で放電終止電圧
が1.0Vになるまで放電させ、このときの放電容量を
C1とした。次に、各電池を0.1Aの電流値で16時
間充電した後、2.0Aの電流値で放電終止電圧が1.
0Vになるまで放電させ、このときの放電容量をC2と
した。そして、大電流放電時における放電し易さの指標
として、下記数1に示す大電流放電能R1を定義した。
[Experiment 2] The large current discharge characteristics of the battery A of the present invention and the comparative batteries X1 to X3 were examined, and the results are shown in Table 1. In addition, the experiment of the large current discharge characteristic was performed as follows. First, each battery was charged at a current value of 0.1 A for 16 hours, and then discharged at a current value of 0.1 A until the discharge end voltage reached 1.0 V. The discharge capacity at this time was defined as C1. Next, each battery was charged at a current value of 0.1 A for 16 hours, and then at a current value of 2.0 A, the discharge end voltage was 1.
Discharge was performed until the voltage reached 0 V, and the discharge capacity at this time was defined as C2. Then, as an index of the easiness of discharge at the time of large current discharge, a large current discharge capability R1 shown in the following Expression 1 was defined.

【0023】[0023]

【数1】 (Equation 1)

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、電極表面に非水
溶性結着剤のみが存在する比較電池X1は大電流放電能
R1が低くなっていることが認められる。また、電極表
面に非水溶性結着剤とコバルト化合物とが共に存在する
本発明電池Aでは、電極表面に非水溶性結着剤及びコバ
ルト化合物が全く存在しない比較電池X3、電極表面に
コバルト化合物のみが存在する比較電池X2と同等かそ
れ以上の大電流放電能R1を有しており、大電流放電特
性に優れることが認められる。前記実験1及び上記実験
2より、充放電サイクル特性と大電流放電特性とを共に
向上させるには、電極表面に非水溶性結着剤とコバルト
化合物とを共に存在させる必要があることを確認でき
た。
As is clear from Table 1, it is recognized that the comparative battery X1 in which only the water-insoluble binder is present on the electrode surface has a low large current discharge capability R1. Also, in the battery A of the present invention in which the water-insoluble binder and the cobalt compound are both present on the electrode surface, the comparative battery X3 in which the water-insoluble binder and the cobalt compound are not present at all on the electrode surface, the cobalt compound on the electrode surface Only has a large current discharge capability R1 equal to or higher than that of the comparative battery X2 in which only the present comparative battery X2 exists, and it is recognized that the high current discharge characteristics are excellent. From Experiments 1 and 2, it can be confirmed that in order to improve both the charge-discharge cycle characteristics and the large-current discharge characteristics, it is necessary to have both a water-insoluble binder and a cobalt compound on the electrode surface. Was.

【0026】〔実験3〕噴霧溶液として、PTFEを6
wt%含有する懸濁液と、水酸化コバルトと、表1に示
す金属の化合物とを重量比で、100:6:1の割合で
混合したものを用いる他は、上記実施例と同様にして電
池を作製した。尚、このようにして作製した電池を、以
下それぞれ本発明電池B1〜B19と称する。そして、
これらの電池を用いて、上記実験2と同様の方法で大電
流放電能R1を測定したので、その結果を表2に示す。
[Experiment 3] PTFE was used as a spray solution.
In the same manner as in the above example, except that a suspension containing wt%, cobalt hydroxide, and a metal compound shown in Table 1 were mixed at a weight ratio of 100: 6: 1. A battery was manufactured. The batteries manufactured in this manner are hereinafter referred to as batteries B1 to B19 of the invention, respectively. And
Using these batteries, the large current discharge capacity R1 was measured in the same manner as in Experiment 2, and the results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、PTFE及び水
酸化コバルトに加えて表2に示す金属の化合物が電極表
面に存在する本発明電池B1〜B19は、PTFE及び
水酸化コバルトのみが電極表面に存在する上記本発明電
池Aに比べて、大電流放電能R1が更に向上しているこ
とが認められる。
As is apparent from Table 2, in the batteries B1 to B19 of the present invention in which the metal compounds shown in Table 2 exist on the electrode surface in addition to PTFE and cobalt hydroxide, only the PTFE and cobalt hydroxide were present on the electrode surface. It can be seen that the large current discharging ability R1 is further improved as compared with the present invention battery A.

【0029】〔実験4〕上記実験3に示す本発明電池B
1〜B19を用いて、低温放電特性を調べたので、その
結果を表3に示す。尚、低温放電特性の実験は以下のよ
うにして行った。先ず、各電池を0.1Aの電流値で1
6時間充電(25℃)した後、0.1Aの電流値で放電
終止電圧が1.0Vになるまで放電(25℃)させ、こ
のときの放電容量をC3とした。次に、各電池を0.1
Aの電流値で16時間充電(25℃)した後、1.0A
の電流値で放電終止電圧が1.0Vになるまで放電(−
20℃)させ、このときの放電容量をC4とした。そし
て、低温放電時における放電し易さの指標として、下記
数2に示す低温放電能R2を定義した。
[Experiment 4] Battery B of the present invention shown in Experiment 3 above
Table 1 shows the low-temperature discharge characteristics of the samples 1 to B19. In addition, the experiment of the low-temperature discharge characteristics was performed as follows. First, each battery was set to 1 at a current value of 0.1 A.
After charging (25 ° C.) for 6 hours, the battery was discharged (25 ° C.) at a current value of 0.1 A until the discharge end voltage reached 1.0 V, and the discharge capacity at this time was C3. Next, each battery was
After charging (25 ° C.) for 16 hours at the current value of A, 1.0 A
Discharge until the discharge end voltage reaches 1.0 V at the current value of (−
20 ° C.), and the discharge capacity at this time was C4. Then, as an index of the ease of discharging at the time of low-temperature discharge, low-temperature discharge capability R2 shown in the following Expression 2 was defined.

【0030】[0030]

【数2】 (Equation 2)

【0031】[0031]

【表3】 [Table 3]

【0032】表3から明らかなように、PTFE及び水
酸化コバルトに加えて表3に示す金属の化合物が電極表
面に存在する本発明電池B1〜B19は、PTFE及び
水酸化コバルトのみが電極表面に存在する上記本発明電
池Aに比べて、低温放電能R2が向上していることが認
められ、特にAl、Ca、Mn、Zn、Y、Cd、L
a、Ce、Pr、Nd、Sm、Eu、Gd、Yb、及び
Biの化合物を用いた本発明電池B1〜B3、B5、B
7、B8、B10〜B17、B19では低温放電能R2
が50%以上と著しく向上し、−20℃という低温であ
っても室温で放電した場合の半分以上の放電容量を得ら
れることが認められる。
As is apparent from Table 3, in the batteries B1 to B19 of the present invention in which the metal compounds shown in Table 3 exist on the electrode surface in addition to PTFE and cobalt hydroxide, only PTFE and cobalt hydroxide were present on the electrode surface. It is recognized that the low-temperature discharge ability R2 is improved as compared with the present invention battery A, and in particular, Al, Ca, Mn, Zn, Y, Cd, and L
Inventive batteries B1 to B3, B5, and B using compounds of a, Ce, Pr, Nd, Sm, Eu, Gd, Yb, and Bi
7, B8, B10 to B17 and B19, low-temperature discharge capability R2
Is remarkably improved to 50% or more, and even at a low temperature of −20 ° C., it is recognized that a discharge capacity of more than half of the case of discharging at room temperature can be obtained.

【0033】〔実験5〕噴霧溶液の噴霧量を変化させる
(即ち、電極全重量に対する混合物層の重量比を変化さ
せる)他は、上記実施例と同様にして電池を作製した。
尚、このようにして作製した電池を、以下それぞれ本発
明電池D1〜D7と称する。そして、これら本発明電池
D1〜D7を用いて、上記実験1と同様の方法で充放電
サイクル特性を調べたので、その結果を表4及び図2に
示す。尚、表4及び図2においては、放電容量が初期容
量の70%となった時点をサイクル寿命とした。尚、電
極全重量に対する混合物層の重量比は、下記数3により
算出した。
[Experiment 5] A battery was fabricated in the same manner as in the above example, except that the spray amount of the spray solution was changed (that is, the weight ratio of the mixture layer to the total weight of the electrodes was changed).
The batteries manufactured in this manner are hereinafter referred to as batteries D1 to D7 of the present invention, respectively. Using these batteries D1 to D7 of the present invention, charge / discharge cycle characteristics were examined in the same manner as in Experiment 1, and the results are shown in Table 4 and FIG. In Table 4 and FIG. 2, the point at which the discharge capacity reached 70% of the initial capacity was defined as the cycle life. The weight ratio of the mixture layer to the total weight of the electrode was calculated by the following equation (3).

【0034】[0034]

【数3】 (Equation 3)

【0035】[0035]

【表4】 [Table 4]

【0036】表4及び図2から明らかなように、混合物
層の重量比が0.2wt%未満の本発明電池D1及び混
合物層の重量比が5.0wt%を超えるの本発明電池D
7は、混合物層の重量比が0.2wt%〜5.0wt%
の本発明電池D2〜D6に比べて充放電サイクル特性が
低下していることが認められる。したがって、電極全重
量に対する混合物層の重量比は、0.2wt%〜5.0
wt%であることが望ましい。
As is clear from Table 4 and FIG. 2, the battery D1 of the present invention in which the weight ratio of the mixture layer is less than 0.2 wt% and the battery D of the present invention in which the weight ratio of the mixture layer exceeds 5.0 wt%.
7 is a mixture layer having a weight ratio of 0.2 wt% to 5.0 wt%.
It is recognized that the charge / discharge cycle characteristics are lower than those of the batteries D2 to D6 of the present invention. Therefore, the weight ratio of the mixture layer to the total weight of the electrode is 0.2 wt% to 5.0.
Desirably, it is wt%.

【0037】〔実験6〕噴霧溶液中の非水溶性結着剤の
含有量を変化させる(即ち、混合物層中の非水溶性結着
剤とコバルト化合物との比率を変化させる)他は、上記
実施例と同様にして電池を作製した。尚、このようにし
て作製した電池を、以下それぞれ本発明電池E1〜E7
と称する。
[Experiment 6] Other than changing the content of the water-insoluble binder in the spray solution (ie, changing the ratio of the water-insoluble binder to the cobalt compound in the mixture layer), A battery was produced in the same manner as in the example. The batteries manufactured in this manner were hereinafter referred to as Batteries E1 to E7 of the invention, respectively.
Called.

【0038】そして、これら本発明電池E1〜E7及び
前記比較電池X1、X2を用いて、上記実験1と同様の
方法で充放電サイクル特性を調べたので、その結果を表
5及び図3に示す。尚、表5及び図3においては、放電
容量が初期容量の70%となった時点をサイクル寿命と
した。更に、上記本発明電池E1〜E7及び前記比較電
池X1、X2を用いて、上記実験2と同様の方法で大電
流放電能R1を調べたので、その結果を表5及び図4に
示す。尚、混合物層の全重量に対する前記非水溶性結着
剤の重量比は、下記数4により算出した。
Using the batteries E1 to E7 of the present invention and the comparative batteries X1 and X2, the charge / discharge cycle characteristics were examined in the same manner as in Experiment 1, and the results are shown in Table 5 and FIG. . In Table 5 and FIG. 3, the point at which the discharge capacity reached 70% of the initial capacity was defined as the cycle life. Further, using the batteries E1 to E7 of the present invention and the comparative batteries X1 and X2, the large current discharge capability R1 was examined in the same manner as in the experiment 2, and the results are shown in Table 5 and FIG. The weight ratio of the water-insoluble binder to the total weight of the mixture layer was calculated by the following equation (4).

【0039】[0039]

【数4】 (Equation 4)

【0040】[0040]

【表5】 [Table 5]

【0041】表5及び図3から明らかなように、非水溶
性結着剤の重量比が10wt%以上の本発明電池E3〜
E7では、充放電サイクル特性に優れる一方、表5及び
図4から明らかなように、非水溶性結着剤の重量比が8
0wt%以下の本発明電池E1〜E6では、大電流放電
能R1に優れることが認められる。したがって、充放電
サイクル特性と大電流放電能R1とを共に向上させるに
は、非水溶性結着剤の重量比は、10wt%〜80wt
%であることが望ましい。
As is clear from Table 5 and FIG. 3, the batteries E3 to E3 of the present invention in which the weight ratio of the water-insoluble binder is 10 wt% or more.
In E7, while the charge / discharge cycle characteristics were excellent, as is clear from Table 5 and FIG. 4, the weight ratio of the water-insoluble binder was 8%.
It is recognized that the batteries E1 to E6 of the present invention of 0 wt% or less have excellent large current discharge capability R1. Therefore, in order to improve both the charge-discharge cycle characteristics and the large current discharge capability R1, the weight ratio of the water-insoluble binder is 10 wt% to 80 wt%.
% Is desirable.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
充放電サイクル特性の低下を抑制しつつ、大電流又は低
温で放電した場合の放電容量を増大させることができる
という優れた効果を奏する。
As described above, according to the present invention,
An excellent effect is obtained that the discharge capacity when discharging at a large current or at a low temperature can be increased while suppressing a decrease in the charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池A及び比較電池X1〜X3の充放電
サイクル特性を示すグラフである。
FIG. 1 is a graph showing charge / discharge cycle characteristics of a battery A of the present invention and comparative batteries X1 to X3.

【図2】混合物層の重量比とサイクル寿命との関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a weight ratio of a mixture layer and a cycle life.

【図3】非水溶性結着剤の重量比とサイクル寿命との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the weight ratio of a water-insoluble binder and the cycle life.

【図4】非水溶性結着剤の重量比と大電流放電能R1と
の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a weight ratio of a water-insoluble binder and a large current discharge capacity R1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kozo Nogami 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主成分とする活物質粉
末を含むアルカリ蓄電池用ニッケル正極において、 電極表面には、非水溶性結着剤とコバルト化合物との混
合物層が形成されていることを特徴とするアルカリ蓄電
池用ニッケル正極。
1. A nickel positive electrode for an alkaline storage battery containing an active material powder containing nickel hydroxide as a main component, wherein a mixture layer of a water-insoluble binder and a cobalt compound is formed on the electrode surface. Nickel positive electrode for alkaline storage batteries.
【請求項2】 前記コバルト化合物として、コバルトの
水酸化物またはコバルトの酸化物が用いられる請求項1
記載のアルカリ蓄電池用ニッケル正極。
2. A cobalt hydroxide or cobalt oxide is used as the cobalt compound.
The nickel positive electrode for an alkaline storage battery according to the above.
【請求項3】 前記混合物層内には、更に、Al、C
a、Mn、Fe、Zn、Sr、Y、Cd、Ba、La、
Ce、Pr、Nd、Sm、Eu、Gd、Yb、W、及び
Biから成る金属群から選択される少なくとも1つ以上
の金属の化合物が含まれている請求項1または2記載の
アルカリ蓄電池用ニッケル正極。
3. The mixture layer further comprises Al, C
a, Mn, Fe, Zn, Sr, Y, Cd, Ba, La,
The nickel for an alkaline storage battery according to claim 1, further comprising a compound of at least one metal selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Yb, W, and Bi. Positive electrode.
【請求項4】 前記金属群が、Al、Ca、Mn、Z
n、Y、Cd、La、Ce、Pr、Nd、Sm、Eu、
Gd、Yb、及びBiから成る請求項3記載のアルカリ
蓄電池用ニッケル正極。
4. The method according to claim 1, wherein the metal group is Al, Ca, Mn, Z
n, Y, Cd, La, Ce, Pr, Nd, Sm, Eu,
The nickel positive electrode for an alkaline storage battery according to claim 3, comprising Gd, Yb, and Bi.
【請求項5】 前記金属群から選択される金属のうち少
なくとも一つの金属の化合物が、金属水酸化物または金
属酸化物である請求項3または4記載のアルカリ蓄電池
用ニッケル正極。
5. The nickel positive electrode for an alkaline storage battery according to claim 3, wherein the compound of at least one metal among the metals selected from the group of metals is a metal hydroxide or a metal oxide.
【請求項6】 電極全重量に対する前記混合物層の重量
比が、0.2〜5.0wt%である請求項1、2、3、
4または5記載のアルカリ蓄電池用ニッケル正極。
6. The method according to claim 1, wherein a weight ratio of the mixture layer to the total weight of the electrode is 0.2 to 5.0 wt%.
6. The nickel positive electrode for an alkaline storage battery according to 4 or 5.
【請求項7】 前記混合物層の全重量に対する前記非水
溶性結着剤の重量比が、10〜80wt%である請求項
1、2、3、4、5または6記載のアルカリ蓄電池用ニ
ッケル正極。
7. The nickel positive electrode for an alkaline storage battery according to claim 1, wherein the weight ratio of the water-insoluble binder to the total weight of the mixture layer is 10 to 80% by weight. .
JP17375297A 1997-06-30 1997-06-30 Nickel positive electrode for alkaline storage batteries Expired - Fee Related JP3505351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17375297A JP3505351B2 (en) 1997-06-30 1997-06-30 Nickel positive electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17375297A JP3505351B2 (en) 1997-06-30 1997-06-30 Nickel positive electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH1125962A true JPH1125962A (en) 1999-01-29
JP3505351B2 JP3505351B2 (en) 2004-03-08

Family

ID=15966484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17375297A Expired - Fee Related JP3505351B2 (en) 1997-06-30 1997-06-30 Nickel positive electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3505351B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525645A (en) * 2003-05-02 2006-11-09 テキサコ オヴォニック バッテリー システムズ エルエルシー Performance enhancing additive for nickel hydroxide positive electrode in alkaline storage battery
US7655355B2 (en) 2001-07-04 2010-02-02 Panasonic Corporation Positive electrode binder for alkaline storage battery
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery
JP2015061815A (en) * 2009-07-17 2015-04-02 株式会社Gsユアサ Cobalt cerium compound, alkaline storage battery, and production method of cobalt cerium compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655355B2 (en) 2001-07-04 2010-02-02 Panasonic Corporation Positive electrode binder for alkaline storage battery
US7887953B2 (en) 2001-07-04 2011-02-15 Panasonic Corporation Positive electrode for alkaline storage battery
JP2006525645A (en) * 2003-05-02 2006-11-09 テキサコ オヴォニック バッテリー システムズ エルエルシー Performance enhancing additive for nickel hydroxide positive electrode in alkaline storage battery
JP2013243142A (en) * 2003-05-02 2013-12-05 Ovonic Battery Co Inc Performance enhancing additive material for nickel hydroxide positive electrode in rechargeable alkaline cells
JP2015061815A (en) * 2009-07-17 2015-04-02 株式会社Gsユアサ Cobalt cerium compound, alkaline storage battery, and production method of cobalt cerium compound
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery
JP5783178B2 (en) * 2010-08-05 2015-09-24 株式会社Gsユアサ Alkaline storage battery and method for producing positive electrode material for alkaline storage battery

Also Published As

Publication number Publication date
JP3505351B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
US7754386B2 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
US5079110A (en) Alkaline storage cell
JP3505351B2 (en) Nickel positive electrode for alkaline storage batteries
JP4243449B2 (en) Alkaline primary battery
JPH11329426A (en) Alkaline secondary battery positive electrode active material and alkaline secondary battery
JP2000048827A (en) Alkaline battery
JPH11111330A (en) Nickel-hydrogen storage battery
JPH11297352A (en) Alkaline storage battery
JP3326274B2 (en) Sealed alkaline storage battery
JP3332488B2 (en) Nickel-hydrogen alkaline storage battery
JP3268938B2 (en) Nickel-hydrogen storage battery
JP2734793B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3330088B2 (en) Negative electrode for secondary battery
JPH08321302A (en) Hydrogen storage electrode
JP2530281B2 (en) Alkaline storage battery
KR100300327B1 (en) A composition for a positive electrode of a nickel-metal hydride battery, a positive electrode using the same and a nickel-metal hydride battery using the same
JP2579058B2 (en) Non-aqueous electrolyte secondary battery
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JPH11238507A (en) Alkaline storage battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPH1021904A (en) Alkaline storage battery
JPH0430145B2 (en)
JPS6376271A (en) Alkailine zinc storage battery
JP2005158533A (en) Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees