JPH11258441A - Optical waveguide channel element and its manufacture - Google Patents

Optical waveguide channel element and its manufacture

Info

Publication number
JPH11258441A
JPH11258441A JP10061490A JP6149098A JPH11258441A JP H11258441 A JPH11258441 A JP H11258441A JP 10061490 A JP10061490 A JP 10061490A JP 6149098 A JP6149098 A JP 6149098A JP H11258441 A JPH11258441 A JP H11258441A
Authority
JP
Japan
Prior art keywords
film
electrode
optical waveguide
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10061490A
Other languages
Japanese (ja)
Other versions
JP3954192B2 (en
Inventor
Atsuo Kondo
厚男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP06149098A priority Critical patent/JP3954192B2/en
Publication of JPH11258441A publication Critical patent/JPH11258441A/en
Application granted granted Critical
Publication of JP3954192B2 publication Critical patent/JP3954192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a process for forming an electrode pattern, to reduce the bonding defect in the wire bonding and to improve the adhesive property when the electrode is thickened, by forming the electrode by a plurality of metallic films, using Au in the uppermost layer as a main material, and determin ing the microvickers hardness within a specific range. SOLUTION: An optical, waveguide channel element 10 comprises an electrode 18 manufactured by successively laminating a Ti film 20, a Pt film 22 and a metallic film mainly composed of Au (hereinafter Au film) 24 on a LiNbO3 substrate 12. That is, the electrode 18 is formed by the metallic films 20, 22, 24, the uppermost layer (Au film) 24 is mainly composed of Au, and the microvickers hardness of the electrode is within a range of 10-25. Whereby a process for forming the electrode pattern, particularly a process of the positive lift-off treatment is simplified, and the bonding defect in the wire bonding of the Au film 24 of the electrode 18 and the other component can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LiNbO3 基板
上に光導波路および電極が設けられた光導波路素子およ
びその製造方法に関する。
The present invention relates to relates to an optical waveguide device and a manufacturing method thereof is the optical waveguides and electrodes provided LiNbO 3 substrate.

【0002】[0002]

【従来の技術】一般に、光導波路は、放射を一定領域に
閉じ込め、そのエネルギーの流れを経路の軸に平行に案
内して伝搬させる機能を有する。そのため、現在では、
光ファイバケーブルで代表される光の導波線路を光導波
路に変えることによって、光学部品の小型化を図るよう
にしている。
2. Description of the Related Art In general, an optical waveguide has a function of confining radiation in a certain area and guiding and propagating the energy flow parallel to the axis of a path. Therefore, at present,
By changing the optical waveguide represented by an optical fiber cable to an optical waveguide, the size of an optical component is reduced.

【0003】前記光導波路としては、例えばGaAs
系、InP系の半導体導波路、Si上に酸化膜を形成し
たり、ガラス基板を用いる誘電体(ガラス)導波路、L
iNbO3 やLiTaO3 結晶で構成した強誘電体結晶
導波路がある。
As the optical waveguide, for example, GaAs
-Based, InP-based semiconductor waveguides, dielectric (glass) waveguides using an oxide film formed on Si, or using a glass substrate, L
There is a ferroelectric crystal waveguide made of iNbO 3 or LiTaO 3 crystal.

【0004】特に、光導波路型変調器等のように、光導
波路を伝送する光ビームに電極を通じて情報を乗せるよ
うな光学素子としては、優れた電気光学特性を有するL
iNbO3 結晶にTiを拡散させたTi拡散型LiNb
3 導波路が用いられる。
[0004] In particular, as an optical element such as an optical waveguide type modulator which carries information through an electrode on a light beam transmitted through the optical waveguide, L has excellent electro-optical characteristics.
Ti diffusion type LiNb in which Ti is diffused in iNbO 3 crystal
An O 3 waveguide is used.

【0005】このTi拡散型LiNbO3 導波路は、L
iNbO3 基板上に厚さ数100Åの金属Ti膜を形成
し、1000℃程度の温度で4〜10時間の熱拡散操作
を経て製造される。
[0005] The Ti diffusion type LiNbO 3 waveguide has an L
It is manufactured by forming a metal Ti film having a thickness of several hundred degrees on an iNbO 3 substrate and performing a thermal diffusion operation at a temperature of about 1000 ° C. for 4 to 10 hours.

【0006】光導波路素子に電界を印加するための電極
を設ける場合は、従来より、1または2以上の金属膜を
積層することが行われている。電極の形成方法として
は、蒸着法、スパッタ法あるいはメッキ法等が用いら
れ、また、電極パターンの形成方法としては、基板にダ
メージを与えにくいリフトオフ法が用いられる。電極の
材料は、最上層としてAuが用いられ、Au膜の下地層
として基板に対する付着強度の大きいCrやTi等の金
属が用いられる。
When providing an electrode for applying an electric field to an optical waveguide element, one or more metal films are conventionally laminated. As a method for forming an electrode, a vapor deposition method, a sputtering method, a plating method, or the like is used. As a method for forming an electrode pattern, a lift-off method that does not easily damage a substrate is used. As a material of the electrode, Au is used as the uppermost layer, and a metal such as Cr or Ti, which has a high adhesive strength to the substrate, is used as an underlayer of the Au film.

【0007】電極の最上層のAu膜を蒸着法により形成
する場合、Au膜と下地層との密着性を向上させるため
に、蒸着チャンバ内の温度(基板温度とほぼ同じ)を蒸
着開始時に100〜200℃の範囲内に設定し、加熱、
保持しながら行われる。
When the uppermost Au film of the electrode is formed by vapor deposition, the temperature in the vapor deposition chamber (substantially the same as the substrate temperature) is set to 100 at the start of vapor deposition in order to improve the adhesion between the Au film and the underlying layer. Set within the range of ~ 200 ° C, heating,
It is performed while holding.

【0008】しかしながら、そのような加熱下では、耐
熱性や低脱ガス性の観点から、電極パターンを形成する
ために使用するレジストの種類が制限され、ときには、
ポリイミド等の耐熱性樹脂を用いる必要がある。この場
合、キュアの手間やポリイミド膜等の上にポジレジスト
を形成して加工しなければならないこと、さらにはポリ
イミド膜等を剥離する際に加湿しなければならないこと
等、製造工程が複雑になるという問題がある。
However, under such heating, the type of resist used for forming an electrode pattern is limited from the viewpoint of heat resistance and low degassing properties.
It is necessary to use a heat-resistant resin such as polyimide. In this case, the manufacturing process becomes complicated, such as the necessity of forming a positive resist on the polyimide film or the like, which requires labor for curing, and furthermore, humidification when the polyimide film or the like is peeled off. There is a problem.

【0009】また、光導波路素子の電極と他の部品とを
Al等のワイヤを用いて熱圧着法や超音波法等により接
続するワイヤボンディング工程において、加熱下で蒸着
されたAu膜は、Alとのボンド不良を生じやすく、ボ
ンディングの打ち直し回数の増加を余儀なくされるとい
う問題がある。
In a wire bonding step of connecting the electrodes of the optical waveguide element and other parts by a thermocompression bonding method or an ultrasonic method using a wire of Al or the like, the Au film deposited under heating is made of Al. There is a problem in that a bond failure easily occurs, and the number of times of re-bonding must be increased.

【0010】さらに、電極の蒸着法により形成されたA
u膜を厚肉化するためにAuメッキを行う場合におい
て、両者の界面が剥離しやすいという問題もある。
Further, A formed by an electrode deposition method
When Au plating is performed to increase the thickness of the u film, there is also a problem that the interface between the two is easily peeled off.

【0011】[0011]

【発明が解決しようとする課題】本発明はこのような課
題を考慮してなされたものであり、LiNbO3 基板上
に光導波路および電極が設けられ、該電極は蒸着法によ
り1または2層以上の金属膜により形成され、かつ、そ
の最上層をAuを主要材料として形成する光導波路素子
において、電極パターン形成時の工程が簡便で、また、
ワイヤボンディングを行う際のボンド不良が少なく、さ
らに、Auメッキにより電極を厚肉化する際の接着性に
優れる光導波路素子およびその製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem. An optical waveguide and electrodes are provided on a LiNbO 3 substrate, and the electrodes are formed by one or more layers by a vapor deposition method. In an optical waveguide device formed of a metal film of (i) and forming the uppermost layer thereof using Au as a main material, a step of forming an electrode pattern is simple, and
It is an object of the present invention to provide an optical waveguide device which has few bonding defects when performing wire bonding and has excellent adhesiveness when an electrode is thickened by Au plating, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】前記した課題を解決する
ために、本発明に係る光導波路素子は、LiNbO3
板上に光導波路および電極が設けられた光導波路素子に
おいて、前記電極は、1または2層以上の金属膜により
形成されるとともに、その最上層は、Auを主要材料と
し、マイクロビッカース硬さが10〜25の範囲内にあ
ることを特徴とする。
In order to solve the above-mentioned problems, an optical waveguide device according to the present invention is provided in which an optical waveguide and an electrode are provided on a LiNbO 3 substrate. Alternatively, it is formed of two or more metal films, and the uppermost layer is mainly composed of Au and has a micro Vickers hardness in the range of 10 to 25.

【0013】これにより、電極パターン形成時の工程、
特に、ポジ型のリフトオフ処理を施す際の工程が簡便
で、また、Alの細いワイヤを用いて光導波路素子の電
極の最上層のAu膜と他の部品とを接続するワイヤボン
ディングを行う際のボンド不良の発生が少なく、さら
に、蒸着による薄層のAu膜にAuメッキを施し電極を
厚肉化する際の接着性に優れる光導波路素子を得ること
ができる。ここで、マイクロビッカース硬さが10未満
であると、光導波路素子の端面の研磨加工やダイシング
加工等を行う際に形状が変化し、あるいは傷が付き易い
ことから適当でなく、一方、マイクロビッカース硬さが
25を超えると、ボンド不良率が著しく増加して好まし
くない。
Thus, a process for forming an electrode pattern,
In particular, the step of performing a positive type lift-off process is simple, and the wire bonding for connecting the uppermost Au film of the electrode of the optical waveguide element to another component by using a thin wire of Al is performed. It is possible to obtain an optical waveguide device which is less likely to cause bond failure and has excellent adhesiveness when a thin Au film is subjected to Au plating by vapor deposition to increase the thickness of an electrode. Here, if the micro Vickers hardness is less than 10, the shape is changed when the end face of the optical waveguide element is polished or diced, or the surface is easily damaged. When the hardness exceeds 25, the bond failure rate is remarkably increased, which is not preferable.

【0014】また、本発明に係る光導波路素子の製造方
法は、LiNbO3 基板上に光導波路および電極が設け
られ、該電極は蒸着法により1または2層以上の金属膜
により形成される光導波路素子の製造方法において、前
記電極の最上層は、Auを主要材料として、蒸着チャン
バ内温度が10〜50℃の範囲で蒸着を開始して形成さ
れることを特徴とする。
In a method of manufacturing an optical waveguide device according to the present invention, an optical waveguide and an electrode are provided on a LiNbO 3 substrate, and the electrode is formed of one or more metal films by a vapor deposition method. In the method of manufacturing a device, the uppermost layer of the electrode is formed by starting deposition using Au as a main material at a temperature in a deposition chamber of 10 to 50 ° C.

【0015】これにより、光導波路素子の電極の最上層
に形成されるAuを主要材料とする金属膜のマイクロビ
ッカース硬さを10〜25の範囲内にすることができ、
本発明に係る光導波路素子を好適に製造することができ
る。
[0015] Thereby, the micro Vickers hardness of the metal film mainly composed of Au formed on the uppermost layer of the electrode of the optical waveguide element can be set in the range of 10 to 25,
The optical waveguide device according to the present invention can be suitably manufactured.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る光導波路素子
およびその製造方法の好適な実施の形態例を図1〜図4
を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an optical waveguide device and a method for manufacturing the same according to the present invention will be described below with reference to FIGS.
This will be described with reference to FIG.

【0017】図1に示す本実施の形態に係る光導波路素
子10は、LiNbO3 基板12に所定形状の光導波路
14が形成されており、該光導波路14上に偏光子1
6、及び位相変調器としての電極18が設けられてい
る。
In an optical waveguide device 10 according to the present embodiment shown in FIG. 1, an optical waveguide 14 having a predetermined shape is formed on a LiNbO 3 substrate 12, and a polarizer 1 is provided on the optical waveguide 14.
6 and an electrode 18 as a phase modulator.

【0018】製造した光導波路素子10のLiNbO3
基板12のサイズは、幅(図1中、Z方向)が約3m
m、光導波路14方向(図1中、Y方向)の長さが約3
0mmであり、偏光子16のサイズは、光導波路14の
長さ方向(図1中、Y方向)に対応する部分が約1m
m、光導波路14の幅方向(図1中、Z方向)に対応す
る部分が約2mmである。
LiNbO 3 of the manufactured optical waveguide device 10
The size of the substrate 12 is about 3 m in width (Z direction in FIG. 1).
m, the length in the optical waveguide 14 direction (Y direction in FIG. 1) is about 3
0 mm, and the size of the polarizer 16 is approximately 1 m at a portion corresponding to the length direction of the optical waveguide 14 (Y direction in FIG. 1).
m, a portion corresponding to the width direction of the optical waveguide 14 (the Z direction in FIG. 1) is about 2 mm.

【0019】図2に示すように、前記光導波路素子10
は、約1mmの厚み(図1中、X方向)のLiNbO3
基板12上に約200Åの厚みのTi膜20、約100
Åの厚みのPt膜22および約5000Åの厚みのAu
を主要材料とする金属膜(以下、Au膜という。)24
の順に積層された電極18が設けられている。
As shown in FIG. 2, the optical waveguide element 10
Is a LiNbO 3 having a thickness of about 1 mm (X direction in FIG. 1).
On the substrate 12, a Ti film 20 having a thickness of about 200
P thick Pt film 22 and about 5000 厚 み thick Au
(Hereinafter referred to as Au film) 24 whose main material is
Are provided in this order.

【0020】本実施の形態に係る光導波路素子10の製
造方法について、図3を用いて以下に説明する。
A method for manufacturing the optical waveguide device 10 according to the present embodiment will be described below with reference to FIG.

【0021】まず、LiNbO3 基板12を洗浄処理す
る(図3A)。ついで、LiNbO 3 基板12上にフォ
トレジストを塗布してフォトレジスト膜26を形成する
(図3B)。その後、フォトレジスト膜26を露光、現
像処理して、後に電極が形成される部分に開口部28を
形成する(図3C)。その後、蒸着装置を用いて、開口
部28を含め、フォトレジスト膜26全面にTiを蒸着
してTi膜20を形成する。さらに、蒸着により、Ti
膜20上にPt膜22、Au膜24の順に積層する(図
3D)。最後に、LiNbO3 基板12上のフォトレジ
スト膜26をリフトオフ処理して、該フォトレジスト膜
26上に形成されていたTi膜20、Pt膜22および
Au膜24をフォトレジスト膜26とともに除去する
(図3E)。この結果、LiNbO3 基板12上に、T
i膜20、Pt膜22およびAu膜24の順に積層され
た電極18が形成される。これと別途、あるいは並行し
て、LiNbO3 基板12上にTiの熱拡散により光導
波路14を形成し、該光導波路14上に、例えば、Al
2 3 膜とAl膜とを蒸着により積層して偏光子16を
形成し、図1の光導波路素子10が完成する。
First, LiNbOThreeCleaning the substrate 12
(FIG. 3A). Then, LiNbO ThreeForm on the substrate 12
Photoresist to form a photoresist film 26
(FIG. 3B). After that, the photoresist film 26 is exposed and
After image processing, an opening 28 is formed in a portion where an electrode is to be formed later.
(FIG. 3C). Then, using a vapor deposition device, open
Ti is deposited on the entire surface of the photoresist film 26 including the part 28
Thus, a Ti film 20 is formed. Further, by evaporation, Ti
A Pt film 22 and an Au film 24 are laminated on the film 20 in this order (FIG.
3D). Finally, LiNbOThreePhotoresist on substrate 12
The lift-off process is performed on the photoresist film 26 to remove the photoresist film.
26, the Ti film 20, the Pt film 22, and the
The Au film 24 is removed together with the photoresist film 26
(FIG. 3E). As a result, LiNbOThreeOn the substrate 12, T
i film 20, Pt film 22, and Au film 24 are laminated in this order.
The formed electrode 18 is formed. Separately or in parallel with this
And LiNbOThreePhotoconductive by thermal diffusion of Ti on substrate 12
A waveguide 14 is formed, and for example, Al
TwoOThreeThe polarizer 16 is formed by laminating a film and an Al film by vapor deposition.
Then, the optical waveguide device 10 of FIG. 1 is completed.

【0022】図3Dに示す各金属を蒸着する工程におい
て、Ti膜20およびPt膜22は、一般的な方法によ
り、例えば、蒸着チャンバ内で約2.0×10-4Paの
真空度、約150℃の蒸着開始温度(蒸着チャンバ内温
度であり、基板温度とほぼ等しい。)で蒸着を開始す
る。蒸着過程で蒸着チャンバ内の温度は上昇し、蒸着最
終温度は200℃を超える。一方、最上層のAu膜24
の形成は、同じく約2.0×10-4Paの真空度、約1
0〜50℃の範囲内の蒸着開始温度で蒸着を開始する。
この場合の蒸着最終温度は、最高でも約150℃程度に
留まる。
In the step of depositing each metal shown in FIG. 3D, the Ti film 20 and the Pt film 22 are formed by a general method using, for example, a vacuum of about 2.0 × 10 −4 Pa in a deposition chamber. The vapor deposition is started at a vapor deposition start temperature of 150 ° C. (the temperature in the vapor deposition chamber, which is almost equal to the substrate temperature). During the deposition process, the temperature in the deposition chamber increases, and the final deposition temperature exceeds 200 ° C. On the other hand, the uppermost Au film 24
Is formed at a degree of vacuum of about 2.0 × 10 −4 Pa and about 1
The deposition is started at a deposition start temperature in the range of 0 to 50 ° C.
In this case, the final deposition temperature remains at about 150 ° C. at the maximum.

【0023】最上層のAu膜24を蒸着する際の蒸着チ
ャンバ内の蒸着開始温度を種々変えて電極18を形成し
たときの、該電極18のAu膜24のマイクロビッカー
ス硬さおよびボンド不良率の結果を図4に示す。
When the electrode 18 is formed by changing the deposition start temperature in the deposition chamber when depositing the uppermost Au film 24, the micro Vickers hardness and the bond failure rate of the Au film 24 of the electrode 18 are determined. FIG. 4 shows the results.

【0024】ここで、マイクロビッカース硬さは、11
5gf/cm2 の荷重を加えて測定した。単位は、gf
/mm2 である。また、ボンド不良率は、電極18の最
上層のAu膜24にAlの細いワイヤを超音波法により
ワイヤボンディングしたときの接合不良の回数の割合を
ppmで示した。
Here, the micro Vickers hardness is 11
The measurement was performed with a load of 5 gf / cm 2 applied. The unit is gf
/ Mm 2 . The bond failure rate is expressed in ppm as the ratio of the number of bonding failures when a thin wire made of Al was wire-bonded to the Au film 24 on the uppermost layer of the electrode 18 by the ultrasonic method.

【0025】図4より、蒸着開始温度が50℃を超える
と、Au膜24のマイクロビッカース硬さが急激に大き
くなるとともに、ボンド不良率が著しく増加することが
わかる。
FIG. 4 shows that when the deposition start temperature exceeds 50 ° C., the micro-Vickers hardness of the Au film 24 sharply increases, and the bond failure rate remarkably increases.

【0026】蒸着技術において、蒸着温度を下げると、
金属膜の結晶構造が均一となりマイクロビッカース硬さ
が小さくなることは一般的に知られている。そのため、
従来は、光導波路素子の電極を構成するAu膜24を形
成する場合、Au膜24と下地層との密着性を向上させ
るために、100〜200℃の温度範囲内に蒸着開始温
度が設定されていたが、本実施の形態においては、下地
層の種類や膜厚等を最適化することにより、10〜50
℃の範囲内を蒸着開始温度とした場合においても、上記
した問題は生じない。
In the deposition technique, when the deposition temperature is lowered,
It is generally known that the crystal structure of the metal film becomes uniform and the micro Vickers hardness decreases. for that reason,
Conventionally, when forming the Au film 24 constituting the electrode of the optical waveguide element, the deposition start temperature is set within a temperature range of 100 to 200 ° C. in order to improve the adhesion between the Au film 24 and the underlying layer. However, in the present embodiment, by optimizing the type and thickness of the underlayer, 10 to 50
Even when the deposition start temperature is within the range of ° C., the above problem does not occur.

【0027】ここで、蒸着開始温度を10℃未満とする
と、チャンバ内に結露が発生しやすくなり、また、排気
速度が低下するため好ましくない。
Here, if the vapor deposition starting temperature is lower than 10 ° C., it is not preferable because dew condensation easily occurs in the chamber and the evacuation speed decreases.

【0028】本実施の形態において、Au膜24のマイ
クロビッカース硬さを所定の範囲内の小さい値とするこ
とにより、ワイヤボンディングを良好に行うことができ
る。
In this embodiment, by setting the micro-Vickers hardness of the Au film 24 to a small value within a predetermined range, wire bonding can be performed satisfactorily.

【0029】また、図3に示す本実施の形態に係る光導
波路素子の製造工程では、蒸着温度が低いことから、リ
フトオフ処理するフォトレジスト膜26として、ポリイ
ミド等の耐熱樹脂を用いることなく一般的なノボラック
樹脂−ナフトキノンジアジド化合物系のレジスト等を用
いてポジ型処理を行うことができ、したがって、アセト
ン等の溶剤を用いて室温でリフトオフすることが可能と
なり、電極パターンを形成する工程が簡略化される。
In the manufacturing process of the optical waveguide device according to the present embodiment shown in FIG. 3, since the deposition temperature is low, the photoresist film 26 to be lifted off is generally used without using a heat-resistant resin such as polyimide. Novolak resin-naphthoquinonediazide compound-based resist can be used for positive-type processing, and therefore, it is possible to lift off at room temperature using a solvent such as acetone, thereby simplifying the process of forming an electrode pattern. Is done.

【0030】さらに、Au膜24を厚肉化するためにA
uメッキを施す場合、Au膜24の熱膨張係数がAuメ
ッキの熱膨張係数に近づくために、両者の界面の接着性
が良好である。
Further, in order to increase the thickness of the Au film 24, A
When u-plating is performed, the thermal expansion coefficient of the Au film 24 approaches the thermal expansion coefficient of Au plating, so that the adhesion between the two is good.

【0031】さらにまた、本実施の形態に係る光導波路
素子10の電極18は、導電率が約2.5×10-6Ω・
cmであり、バルク並に優れることがわかった。
Further, the electrode 18 of the optical waveguide device 10 according to the present embodiment has a conductivity of about 2.5 × 10 −6 Ω ·
cm, which was superior to that of bulk.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る光導
波路素子によれば、LiNbO3 基板上に光導波路およ
び電極が設けられた光導波路素子において、前記電極
は、1または2層以上の金属膜により形成されるととも
に、その最上層は、Auを主要材料とし、マイクロビッ
カース硬さが10〜25の範囲内にある。
As described above, according to the optical waveguide device of the present invention, in an optical waveguide device having an optical waveguide and an electrode provided on a LiNbO 3 substrate, the electrode has one or more layers. The uppermost layer is formed of a metal film, and its uppermost layer is mainly composed of Au, and has a micro Vickers hardness in the range of 10 to 25.

【0033】このため、電極パターン形成時の工程、特
に、ポジ型のリフトオフ処理を施す際の工程が簡便で、
また、Alの細いワイヤを用いて光導波路素子の電極の
最上層のAu膜と他の部品とを接続するワイヤボンディ
ングを行う際のボンド不良が少なく、さらに、蒸着によ
る薄層のAu膜にAuメッキを施して電極を厚肉化する
際の接着性に優れる光導波路素子を得ることができると
いう効果が達成される。
Therefore, the step of forming an electrode pattern, particularly the step of performing a positive type lift-off process, is simple,
Further, there is little bonding failure when performing wire bonding for connecting the uppermost Au film of the electrode of the optical waveguide element to another component using a thin wire of Al, and furthermore, the thin Au film formed by vapor deposition has an Au film. This achieves an effect that an optical waveguide element having excellent adhesiveness when the electrode is thickened by plating can be obtained.

【0034】また、本発明に係る光導波路素子の製造方
法によれば、LiNbO3 基板上に光導波路および電極
が設けられ、該電極は蒸着法により1または2層以上の
金属膜により形成される光導波路素子の製造方法におい
て、前記電極の最上層は、Auを主要材料として、蒸着
チャンバ内温度が10〜50℃の範囲で蒸着を開始して
形成される。
According to the method of manufacturing an optical waveguide device according to the present invention, an optical waveguide and an electrode are provided on a LiNbO 3 substrate, and the electrode is formed of one or more metal films by a vapor deposition method. In the method for manufacturing an optical waveguide element, the uppermost layer of the electrode is formed by starting deposition at a temperature in a deposition chamber of 10 to 50 ° C. using Au as a main material.

【0035】このため、光導波路素子の電極の最上層に
形成されるAuを主要材料とする金属膜のマイクロビッ
カース硬さを10〜25の範囲内にすることができ、本
発明に係る光導波路素子を好適に製造することができ
る。
Therefore, the micro Vickers hardness of the metal film mainly composed of Au formed on the uppermost layer of the electrode of the optical waveguide element can be set in the range of 10 to 25, and the optical waveguide according to the present invention is provided. The element can be suitably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態に係る光導波路素子の平面図であ
る。
FIG. 1 is a plan view of an optical waveguide device according to an embodiment.

【図2】図1の光導波路素子のII−II線断面図であ
る。
FIG. 2 is a sectional view taken along line II-II of the optical waveguide device of FIG.

【図3】図1の光導波路素子の製造工程を説明するため
の図であり、図3Aは、基板の洗浄処理工程を示し、図
3Bは、フォトレジスト膜の形成処理工程を示し、図3
Cは、フォトレジスト膜の露光、現像処理工程を示し、
図3Dは、蒸着処理によるAu膜の形成処理工程を示
し、図3Eは、リフトオフ処理による電極の形成処理工
程を示す図である。
3A and 3B are views for explaining a manufacturing process of the optical waveguide device of FIG. 1; FIG. 3A shows a cleaning process of a substrate; FIG. 3B shows a forming process of a photoresist film;
C indicates an exposure and development process of the photoresist film,
FIG. 3D shows an Au film forming process by a vapor deposition process, and FIG. 3E shows an electrode forming process by a lift-off process.

【図4】蒸着開始温度とマイクロビッカース硬さおよび
ボンド不良率との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a deposition start temperature, a micro Vickers hardness, and a bond failure rate.

【符号の説明】[Explanation of symbols]

10…光導波路素子 12…LiNbO3
基板 14…光導波路 16…偏光子 18…電極 20…Ti膜 22…Pt膜 24…Au膜 26…フォトレジスト膜
10: Optical waveguide element 12: LiNbO 3
Substrate 14 Optical waveguide 16 Polarizer 18 Electrode 20 Ti film 22 Pt film 24 Au film 26 Photoresist film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】LiNbO3 基板上に光導波路および電極
が設けられた光導波路素子において、 前記電極は、1または2層以上の金属膜により形成され
るとともに、その最上層は、Auを主要材料とし、マイ
クロビッカース硬さが10〜25の範囲内にあることを
特徴とする光導波路素子。
1. An optical waveguide device comprising an optical waveguide and electrodes provided on a LiNbO 3 substrate, wherein the electrodes are formed of one or more metal films, and the uppermost layer is made of Au as a main material. Wherein the micro Vickers hardness is in the range of 10 to 25.
【請求項2】LiNbO3 基板上に光導波路および電極
が設けられ、該電極は蒸着法により1または2層以上の
金属膜により形成される光導波路素子の製造方法におい
て、前記電極の最上層は、Auを主要材料として、蒸着
チャンバ内温度が10〜50℃の範囲内で蒸着を開始し
て形成されることを特徴とする光導波路素子の製造方
法。
2. An optical waveguide device comprising: an optical waveguide and an electrode provided on a LiNbO 3 substrate, wherein the electrode is formed of one or more metal films by a vapor deposition method. A method of manufacturing an optical waveguide device, comprising forming a deposition in a deposition chamber at a temperature of 10 to 50 ° C. using Au as a main material.
JP06149098A 1998-03-12 1998-03-12 Optical waveguide device and manufacturing method thereof Expired - Fee Related JP3954192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06149098A JP3954192B2 (en) 1998-03-12 1998-03-12 Optical waveguide device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06149098A JP3954192B2 (en) 1998-03-12 1998-03-12 Optical waveguide device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11258441A true JPH11258441A (en) 1999-09-24
JP3954192B2 JP3954192B2 (en) 2007-08-08

Family

ID=13172598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06149098A Expired - Fee Related JP3954192B2 (en) 1998-03-12 1998-03-12 Optical waveguide device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3954192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122898A (en) * 2006-10-17 2008-05-29 Hitachi Chem Co Ltd Manufacturing method of flexible optical waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052487B2 (en) 2018-03-29 2022-04-12 住友大阪セメント株式会社 Optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122898A (en) * 2006-10-17 2008-05-29 Hitachi Chem Co Ltd Manufacturing method of flexible optical waveguide

Also Published As

Publication number Publication date
JP3954192B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP7256204B2 (en) A method for transferring a piezoelectric layer onto a supporting substrate
JPH1155070A (en) Surface acoustic wave element and its producing method
CN111919285B (en) Process for manufacturing a substrate for a radio frequency device
JPS6015606A (en) Optical integrated circuit
JP7419806B2 (en) Optical waveguide devices and optical modulators
US8270776B2 (en) Optical waveguide device
CN112154368A (en) Composite substrate for electro-optical element and method for manufacturing same
JP3954192B2 (en) Optical waveguide device and manufacturing method thereof
JPH1143354A (en) Jointing of glass member
JPH11142650A (en) Grid polarizer
JP2574606B2 (en) Dielectric optical waveguide device and method of manufacturing the same
JPH0945233A (en) Manufacture of electric field emitting element
JP3234803B2 (en) Optical waveguide device
JP3194822B2 (en) Manufacturing method of composite substrate material
JPS58223106A (en) Optical circuit element member
JP2002139755A (en) Wavelength conversion element and its manufacturing method
JPH1152315A (en) Operation point control method for waveguide light modulator and waveguide light modulator
JPH11352350A (en) Production of optical waveguide element
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
JP2000206326A (en) Multi-layer film optical element
JPH09146080A (en) Liquid crystal display device and its production
JPH0711611B2 (en) Method of manufacturing waveguide
JPH06302649A (en) Method for connecting semiconductor device
JPH09186067A (en) Transmission mask for charged beam gang exposure
JPH0611673A (en) Manufacture of optical waveguide device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees