JPH11258390A - Cooperative control system for abnormal condition - Google Patents

Cooperative control system for abnormal condition

Info

Publication number
JPH11258390A
JPH11258390A JP10066450A JP6645098A JPH11258390A JP H11258390 A JPH11258390 A JP H11258390A JP 10066450 A JP10066450 A JP 10066450A JP 6645098 A JP6645098 A JP 6645098A JP H11258390 A JPH11258390 A JP H11258390A
Authority
JP
Japan
Prior art keywords
flow rate
signal
flow
compensation
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10066450A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10066450A priority Critical patent/JPH11258390A/en
Publication of JPH11258390A publication Critical patent/JPH11258390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to continue a stable operation by controlling a system to compensate the difference between the suction flow rate in an arbitrary feed water pump and a flow rate request signal with the flow rate of another normal waster feed pump. SOLUTION: In case of abnormal condition when the flow rate of a turbine drive feed water pump 1 decreases, the levels of a feed water flow rate signal 16 and a reactor water level signal 18 decrease and a water level correction signal 411 and a water level control signal 406 increase. Accordingly, a water level correction control signal 412 and a feed water flow rate request signal 414 increase. Then, a signal 526 for correcting the flow rate of a feed water pump 2 increases rapidly and the flow rate of the pump 2 increases to compensate the decrease in the flow rate of the feed water pump 1. Moreover, the control rod compensation and control device 600 in an automatic output regulator 200 conducts a PID calculation of a signal 530 for requesting the compensation of the flow rate of the feed water to increase a signal 601 for requesting the compensation of the reactor output. Subsequently, a control rod drive device 20 inserts control rods 21 to suppress lowering in the water level of a reactor caused by the decrease in a water level signal 402 for the feed water pump 1 in responces to a signal 414 for requesting the flow rate of a feed water pump.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子力発
電プラントにおける原子炉給水流量を制御する原子炉給
水制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor water supply control device for controlling a reactor water supply flow rate in a boiling water nuclear power plant.

【0002】[0002]

【従来の技術】従来、沸騰水型原子力発電プラントで
は、原子炉水位の調整を、給水ポンプにより原子炉圧力
容器に戻す冷却水の量を調整することによって行ってい
る。また、原子炉出力の調整を、制御棒駆動装置により
炉心内の制御棒の位置を調整することによって、あるい
は再循環ポンプモータの電源周波数を調整して再循環ポ
ンプ回転数を変化させ炉心冷却材の強制循環流量を調整
することによって行っている。
2. Description of the Related Art Conventionally, in a boiling water nuclear power plant, the reactor water level is adjusted by adjusting the amount of cooling water returned to a reactor pressure vessel by a feedwater pump. Also, the reactor power can be adjusted by adjusting the position of the control rods in the reactor core by the control rod driving device, or by adjusting the power frequency of the recirculation pump motor to change the recirculation pump rotation speed, and This is done by adjusting the forced circulation flow rate.

【0003】このうち原子炉水位の調整では、原子炉圧
力容器に原子炉水位検出器を設置し、また原子炉圧力容
器から蒸気タービンに蒸気を導く主蒸気管に主蒸気流量
検出器を設置し、更に復水器から原子炉圧力容器に冷却
水を導く給水配管に給水流量検出器を設置して、前記原
子炉水位検出器で検出した原子炉水位信号,前記主蒸気
流量検出器で検出した主蒸気流量信号及び前記給水流量
検出器で検出した給水流量信号を原子炉給水制御装置に
取り込み、この原子炉給水制御装置からの給水ポンプ流
量要求信号により、タービン駆動給水ポンプのタービン
回転数あるいは電動駆動給水ポンプの吐出側に設置した
給水流量調節弁の開度を調整して、原子炉水位が適切な
値になるように制御している。
In the adjustment of the reactor water level, a reactor water level detector is installed in the reactor pressure vessel, and a main steam flow detector is installed in a main steam pipe for guiding steam from the reactor pressure vessel to a steam turbine. Further, a feedwater flow rate detector was installed in a feedwater pipe for guiding cooling water from the condenser to the reactor pressure vessel, and a reactor water level signal detected by the reactor water level detector and a main steam flow rate detector detected. The main steam flow rate signal and the feedwater flow rate signal detected by the feedwater flow rate detector are taken into the reactor feedwater control device, and the turbine speed of the turbine drive feedwater pump or the electric motor is controlled by the feedwater pump flow rate request signal from the reactor feedwater control device. The opening of the feedwater flow control valve installed on the discharge side of the driving feedwater pump is adjusted to control the reactor water level to an appropriate value.

【0004】また、原子炉出力の調整では、原子炉圧力
制御装置からの全蒸気流量信号と制御棒駆動装置からの
制御棒位置信号を自動出力調整装置に取り込んで、この
自動出力調整装置からの制御棒引抜/挿入指令により制
御棒駆動装置が制御棒位置を調整して、原子炉出力が目
標値になるように制御している。
In the adjustment of the reactor power, a total steam flow rate signal from a reactor pressure control device and a control rod position signal from a control rod drive device are taken into an automatic output control device, and the automatic power control device receives the control signal from the automatic power control device. The control rod driving device adjusts the position of the control rod according to the control rod withdrawal / insertion command, and controls the reactor power so that the reactor output becomes a target value.

【0005】更に、原子炉出力の調整では、原子炉圧力
容器に炉心流量検出器を設置し、この炉心流量検出器で
検出した炉心流量と自動出力調整装置からの負荷要求偏
差信号を再循環流量制御装置に取り込み、この再循環流
量制御装置からの制御信号により再循環ポンプモータの
電源周波数を可変周波数電源装置により変化させ、再循
環ポンプモータの回転数を調整して、原子炉出力が目標
値になるように制御している。
[0005] Further, in the adjustment of the reactor power, a core flow rate detector is installed in the reactor pressure vessel, and the core flow rate detected by the core flow rate detector and the load demand deviation signal from the automatic power regulator are recirculated flow rate. The power supply frequency of the recirculation pump motor is changed by the variable frequency power supply device according to the control signal from the recirculation flow control device, and the number of revolutions of the recirculation pump motor is adjusted. It is controlled to become.

【0006】図4はこの従来の原子力発電プラントの構
成図である。原子炉圧力容器1内の炉心2で発生させた
蒸気を、主蒸気管3によって蒸気タービン5に導くよう
にしている。主蒸気管3には主蒸気管の主蒸気流量を検
出する主蒸気流量検出器4を設置しており、主蒸気流量
検出器4の主蒸気流量信号15を原子炉給水制御装置4
00に取り込んでいる。
FIG. 4 is a configuration diagram of this conventional nuclear power plant. The steam generated in the core 2 in the reactor pressure vessel 1 is guided to the steam turbine 5 by the main steam pipe 3. The main steam pipe 3 is provided with a main steam flow detector 4 for detecting a main steam flow rate of the main steam pipe, and a main steam flow signal 15 of the main steam flow detector 4 is transmitted to the reactor water supply control device 4.
00.

【0007】また、復水器6内の冷却水を原子炉圧力容
器1に戻すために、給水配管12にはタービン駆動給水
ポンプ8,電動駆動給水ポンプ9及び給水流量検出器1
1を設けており、給水流量検出器11の給水流量信号1
6を原子炉給水制御装置400に取り込んでいる。更にそ
れぞれの給水ポンプにはその吸込流量を検出する吸込流
量検出器7を設けており、吸込流量検出器7の吸込流量
信号17を原子炉給水制御装置400に取り込んでい
る。
In order to return the cooling water in the condenser 6 to the reactor pressure vessel 1, a water supply pipe 12 is provided with a turbine drive water supply pump 8, an electric drive water supply pump 9, and a water supply flow rate detector 1
1, the feed water flow signal 1 of the feed water flow detector 11 is provided.
6 is taken into the reactor water supply control device 400. Further, each water supply pump is provided with a suction flow rate detector 7 for detecting the suction flow rate, and the suction flow rate signal 17 of the suction flow rate detector 7 is taken into the reactor water supply control device 400.

【0008】原子炉圧力容器1には原子炉水位検出器1
3を設置しており、原子炉水位検出器13の原子炉水位
信号18を原子炉給水制御装置400に取り込んでい
る。原子炉給水制御装置400に取り込んだ原子炉水位
信号18は、水位設定装置401の水位設定信号402と
比較器403にて比較され、水位偏差信号404として
水位制御装置405に入力される。水位制御装置405
は水位偏差信号404が制御動作により零になるように
比例積分微分演算(以下PID演算ということがあ
る)、上下限制限を行い、水位制御信号406として加
算器407へ出力する。
The reactor pressure vessel 1 has a reactor water level detector 1
3 is installed, and the reactor water level signal 18 of the reactor water level detector 13 is taken into the reactor water supply control device 400. The reactor water level signal 18 taken into the reactor water supply control device 400 is compared with the water level setting signal 402 of the water level setting device 401 by the comparator 403, and is input to the water level control device 405 as a water level deviation signal 404. Water level control device 405
Performs a proportional-integral-derivative operation (hereinafter, sometimes referred to as a PID operation) and upper / lower limit so that the water level deviation signal 404 becomes zero by the control operation, and outputs a water level control signal 406 to the adder 407.

【0009】また原子炉給水制御装置400に取り込ん
だ主蒸気流量信号15と給水流量信号16は比較器40
8にて比較され、流量偏差信号409となる。流量偏差
信号409はミスマッチゲイン410を乗算され、補正
水位信号411として加算器407出力へされる。
A main steam flow signal 15 and a feed water flow signal 16 taken into the reactor feed water control device 400 are compared with a comparator 40.
8, and becomes a flow rate deviation signal 409. The flow deviation signal 409 is multiplied by a mismatch gain 410 and output as a corrected water level signal 411 to the adder 407 output.

【0010】加算器407は水位制御信号406と補正
水位信号411を加算し、補正水位制御信号412とし
て流量制御装置413に出力する。流量制御装置413
は補正水位制御信号412をPID演算,上下限制限を
行い、給水流量要求信号414としてタービン駆動給水ポ
ンプ8用の上下限制限器420及び電動駆動給水ポンプ
9用の上下限制限器421へ出力する。上下限制限器4
20及び上下限制限器421は給水流量要求信号414
の上下限制限を行い、この結果を比較器415へ出力す
る。
[0010] The adder 407 adds the water level control signal 406 and the corrected water level signal 411, and outputs the result to the flow control device 413 as a corrected water level control signal 412. Flow control device 413
Performs PID calculation and upper / lower limit on the corrected water level control signal 412, and outputs the corrected water level control signal 412 to an upper / lower limiter 420 for the turbine drive water pump 8 and an upper / lower limiter 421 for the electric drive water pump 9 as a feedwater flow rate request signal 414. . Upper and lower limiter 4
20 and the upper and lower limiters 421
Is performed, and the result is output to the comparator 415.

【0011】比較器415は上下限制限された給水流量
要求信号414と給水ポンプ毎に設けた吸込流量検出器
7の吸込流量信号17を比較し、タービン駆動給水ポン
プ8に対する給水ポンプ流量偏差信号416を流量調整
装置418へ出力する。あるいは電動駆動給水ポンプ9
の給水ポンプ流量偏差信号417を流量調整装置419
へ出力する。
The comparator 415 compares the feed water flow request signal 414 whose upper and lower limits are limited with the suction flow signal 17 of the suction flow detector 7 provided for each feed water pump, and outputs a feed water pump flow deviation signal 416 to the turbine drive water pump 8. Is output to the flow rate adjusting device 418. Or electric drive water pump 9
Of the feed water pump flow deviation signal 417 to the flow controller 419
Output to

【0012】タービン駆動給水ポンプ8の流量調整装置
418は給水ポンプ流量偏差信号416が制御動作によ
り零になるように演算したタービン回転数要求信号42
2をタービン駆動給水ポンプ8へ出力し、タービン駆動
給水ポンプ8はタービン回転数要求信号422と一致す
るように自己のタービン回転数を制御する。また電動駆
動給水ポンプ9の流量調整装置419は給水ポンプ流量
偏差信号417が制御動作により零になるように演算し
た流量調節弁開度要求信号423を電動駆動給水ポンプ
9の吐出側に設けた流量調節弁10に出力し、流量調節
弁10は流量調節弁開度要求信号423と一致するよう
に自己の流量調節弁開度を制御する。原子炉圧力容器1
には原子炉圧力検出器14を設置しており、原子炉圧力
検出器14の原子炉圧力信号19を原子炉圧力制御装置
100に取り込んでいる。原子炉圧力制御装置100に
取り込んだ原子炉圧力信号19は、圧力設定装置101の
圧力設定信号102と比較器103にて比較され、圧力
偏差信号104として圧力調整装置105に入力され
る。圧力調整装置105は圧力偏差信号104に基づき
全蒸気流量信号106を演算し、これを自動出力調整装
置200の比較器203及び比較器213に出力する。
[0012] The flow rate adjusting device 418 of the turbine drive water supply pump 8 has a turbine rotation speed request signal 42 calculated so that the water supply pump flow rate deviation signal 416 becomes zero by a control operation.
2 is output to the turbine drive water supply pump 8, and the turbine drive water supply pump 8 controls its own turbine speed so as to match the turbine speed request signal 422. The flow control device 419 of the electric drive water supply pump 9 outputs a flow control valve opening degree request signal 423 calculated so that the water supply pump flow deviation signal 417 becomes zero by the control operation on the discharge side of the electric drive water supply pump 9. Output to the control valve 10, the flow control valve 10 controls its own flow control valve opening so as to coincide with the flow control valve opening request signal 423. Reactor pressure vessel 1
Is provided with a reactor pressure detector 14, and a reactor pressure signal 19 of the reactor pressure detector 14 is taken into the reactor pressure control device 100. The reactor pressure signal 19 taken into the reactor pressure control device 100 is compared with the pressure setting signal 102 of the pressure setting device 101 by the comparator 103, and is input to the pressure adjusting device 105 as the pressure deviation signal 104. The pressure adjusting device 105 calculates the total steam flow rate signal 106 based on the pressure deviation signal 104 and outputs this to the comparator 203 and the comparator 213 of the automatic output adjusting device 200.

【0013】自動出力調整装置200の比較器203
は、原子炉出力設定装置201の原子炉出力設定信号2
02と全蒸気流量信号106の差分である原子炉出力偏
差信号204を演算し、これを制御棒制御装置205に
出力する。制御棒制御装置205は原子炉出力偏差信号2
04及び制御棒駆動装置20の制御棒位置信号22を入
力し、制御棒駆動装置20へ制御棒操作(挿入/引抜)
指令206を出力する。制御棒駆動装置20は制御棒操
作(挿入/引抜)指令206に基づき制御棒21の位置
を調整している。
The comparator 203 of the automatic output adjusting device 200
Is the reactor power setting signal 2 of the reactor power setting device 201.
A reactor output deviation signal 204 which is the difference between the total steam flow signal 106 and the total steam flow signal 106 is calculated, and is output to the control rod control device 205. The control rod controller 205 outputs the reactor power deviation signal 2
04 and the control rod position signal 22 of the control rod driving device 20 are input, and control rod operation (insertion / withdrawal) is performed on the control rod driving device 20.
The command 206 is output. The control rod driving device 20 adjusts the position of the control rod 21 based on a control rod operation (insertion / withdrawal) instruction 206.

【0014】また、自動出力調整装置200の比較器2
09には、蒸気タービン5に連結した発電機23の発電
機出力信号24及び発電機出力設定装置207の発電機
出力設定信号208を入力しており、比較器209はこ
の差分である発電機出力偏差信号210を演算し、発電
機出力制御装置211に出力する。発電機出力制御装置
211は発電機出力偏差信号210が制御動作により零
になるように比例積分制御を行うとともに、発電機出力
設定信号208を入力して積分制御し、これらを加え合
わせた原子炉出力設定信号212を演算して、これを比
較器213に出力する。比較器213は原子炉出力設定
信号212と全蒸気流量信号106の差分である負荷要
求偏差信号214を演算して、これを原子炉再循環流量
制御装置300の出力制御装置301に出力する。
The comparator 2 of the automatic output adjusting device 200
09, the generator output signal 24 of the generator 23 connected to the steam turbine 5 and the generator output setting signal 208 of the generator output setting device 207 are input. The deviation signal 210 is calculated and output to the generator output control device 211. The generator output control device 211 performs a proportional-integral control so that the generator output deviation signal 210 becomes zero by the control operation, inputs a generator output setting signal 208, performs integral control, and adds a reactor output. The output setting signal 212 is calculated and output to the comparator 213. The comparator 213 calculates a load demand deviation signal 214 which is a difference between the reactor power setting signal 212 and the total steam flow signal 106, and outputs this to the output control device 301 of the reactor recirculation flow control device 300.

【0015】原子炉再循環流量制御装置300の出力制
御装置301は、負荷要求偏差信号214が零となるよ
うに比例積分微分演算(以下PID演算ということがあ
る)、変化率制限及び上下限制限を行い、これを炉心流
量要求信号302として比較器303に出力する。比較
器303は、炉心流量要求信号302と炉心流量検出器
25の炉心流量信号26との差分である炉心流量偏差信
号304を演算し、これを流量制御装置305に出力す
る。流量制御装置305は、炉心流量偏差信号304が
制御動作により零になるようにPID演算,変化率制限
及び上下限制限を行い、速度設定信号306を可変周波
数電源装置27に出力する。可変周波数電源装置27
は、再循環ポンプモーター28の電源周波数が速度設定
信号306に一致するように制御し、これに伴い再循環
ポンプ29の速度を制御する。
The output control device 301 of the reactor recirculation flow control device 300 performs a proportional-integral-differential operation (hereinafter sometimes referred to as PID operation), a rate-of-change limit, and an upper / lower limit so that the load demand deviation signal 214 becomes zero. And outputs it to the comparator 303 as a core flow rate request signal 302. The comparator 303 calculates a core flow deviation signal 304 which is a difference between the core flow request signal 302 and the core flow signal 26 of the core flow detector 25, and outputs this to the flow control device 305. The flow control device 305 performs PID calculation, rate-of-change limitation, and upper / lower limit limitation so that the core flow rate deviation signal 304 becomes zero by the control operation, and outputs a speed setting signal 306 to the variable frequency power supply device 27. Variable frequency power supply 27
Controls the power frequency of the recirculation pump motor 28 to match the speed setting signal 306, and controls the speed of the recirculation pump 29 accordingly.

【0016】この従来の原子力発電プラントにおいて、
例えば、2台のタービン駆動給水ポンプが運転中でかつ
2台の電動駆動給水ポンプが待機中である場合に、1台
のタービン駆動給水ポンプ8の流量が減少する故障が発
生した場合には、原子炉給水流量が減少し、原子炉水位
が低下する。このため原子炉水位信号18が減少し、水
位制御信号406が増加する。
In this conventional nuclear power plant,
For example, when two turbine-driven water supply pumps are operating and two electric-driven water supply pumps are on standby, and a failure occurs in which the flow rate of one turbine-driven water supply pump 8 decreases, Reactor feedwater flow decreases and reactor water level decreases. Therefore, the reactor water level signal 18 decreases and the water level control signal 406 increases.

【0017】一方給水流量信号16が減少し、補正水位
信号411が増加する。これに伴い補正水位制御信号4
12が増加して、流量制御装置413のPID演算によ
り給水流量要求信号414が増加し、給水ポンプ流量偏
差信号416も増加する。流量調整装置418は、給水
ポンプ流量偏差信号416が制御動作により零になるよ
うにタービン駆動給水ポンプ8の流量を増加させるよう
に制御する。
On the other hand, the feedwater flow signal 16 decreases, and the corrected water level signal 411 increases. Accordingly, the correction water level control signal 4
12, the feedwater flow request signal 414 increases due to the PID calculation of the flow controller 413, and the feedwater pump flow deviation signal 416 also increases. The flow control device 418 controls the flow rate of the turbine-driven feed pump 8 to increase so that the feed pump flow deviation signal 416 becomes zero by the control operation.

【0018】故障した給水ポンプの流量変化が比較的小
さい減少の場合には、原子炉水位が低下して原子炉水位
低スクラムに至る前に、健全側の給水ポンプ流量増加に
より補償され、原子炉給水流量の減少が回復するため、
原子炉水位低下は抑制されその後一定になるように制御
されるので、原子炉運転は継続される。
If the change in the flow rate of the failed feed pump is a relatively small decrease, it is compensated by the increase in the flow rate of the feed water pump on the healthy side before the reactor water level drops to reach the low reactor water level scram. Since the decrease in water supply flow is restored,
Since the reactor water level drop is suppressed and then controlled to be constant, the reactor operation is continued.

【0019】以上は故障した給水ポンプの流量変化が比
較的小さい減少の場合の例であるが、給水ポンプの流量
変化が比較的小さい増加の故障の場合でも、健全側の給
水ポンプの流量減少により補償され、原子炉給水流量の
増加が回復するため、原子炉水位上昇は抑制されその後
一定になるように制御されるので、原子炉運転は継続さ
れる。
The above is an example of the case where the change in the flow rate of the failed water supply pump is a relatively small decrease. However, even in the case of a failure in which the change in the flow rate of the water supply pump is relatively small, the flow rate of the sound water supply pump is reduced. Since the increase is compensated and the increase in the reactor water supply flow rate is recovered, the rise in the reactor water level is suppressed and then controlled to be constant, so that the reactor operation is continued.

【0020】また、例えば、2台のタービン駆動給水ポ
ンプが運転中でかつ2台の電動駆動給水ポンプが待機中
である場合に、1台のタービン駆動給水ポンプ8に流量
変化が大きい故障が発生した場合には、タービン駆動給
水ポンプ8にはタービン回転数要求信号422と自己の
タービン回転数の偏差が大きい場合に自己トリップさせ
る機能を有しているため当該故障ポンプは自動トリップ
し、これに伴い待機中の2台の電動駆動給水ポンプが自
動起動する。この場合、当該故障ポンプのトリップ直後
には、原子炉給水流量が減少し、原子炉水位が低下する
が、待機中の2台の電動駆動給水ポンプの自動起動によ
り、原子炉給水流量の減少は回復し、原子炉水位低下は
抑制されその後一定になるように制御されるので、原子
炉運転は継続される。
Further, for example, when two turbine driven water supply pumps are in operation and two electric driven water supply pumps are on standby, a failure occurs in one turbine driven water supply pump 8 with a large change in flow rate. In this case, the failed pump automatically trips because the turbine-driven water supply pump 8 has a function of self-tripping when the deviation between the turbine speed request signal 422 and its own turbine speed is large. Accordingly, the two electrically driven water supply pumps on standby are automatically activated. In this case, immediately after the failure pump trip, the reactor water supply flow rate decreases and the reactor water level decreases.However, the automatic start of the two electrically driven water supply pumps on standby causes the decrease in the reactor water supply flow rate. Since the reactor is recovered and the reactor water level drop is suppressed and thereafter controlled to be constant, the reactor operation is continued.

【0021】このような給水ポンプ故障時に、当該故障
ポンプを自動トリップし待機中の給水ポンプを自動起動
する従来技術としては、例えば特開平6−229507 号があ
る。
As a conventional technique for automatically tripping a failed water supply pump and automatically starting a standby water supply pump when such a water supply pump fails, there is, for example, JP-A-6-229507.

【0022】[0022]

【発明が解決しようとする課題】従来の原子炉給水制御
システムにおいて、例えば、2台のタービン駆動給水ポ
ンプが運転中でかつ2台の電動駆動給水ポンプが待機中
である場合に、1台のタービン駆動給水ポンプ8に比較
的流量変化が大きい故障が発生しかつ当該故障ポンプが
トリップしない場合、原子炉給水流量が減少し、原子炉
水位が低下する。これに伴い原子炉水位信号18が減少
し、水位制御信号406が増加する。一方給水流量信号
16が減少し、補正水位信号411が増加する。
In a conventional reactor water supply control system, for example, when two turbine driven water supply pumps are operating and two electric driven water supply pumps are on standby, one water supply pump is operated. When a failure occurs in the turbine-driven water supply pump 8 having a relatively large change in flow rate and the failure pump does not trip, the reactor water supply flow rate decreases and the reactor water level decreases. Accordingly, the reactor water level signal 18 decreases and the water level control signal 406 increases. On the other hand, the feedwater flow signal 16 decreases, and the corrected water level signal 411 increases.

【0023】このため補正水位制御信号412が増加し
て、流量制御装置413のPID演算により給水流量要
求信号414が増加し、給水ポンプ流量偏差信号416
も増加する。流量調整装置418は、給水ポンプ流量偏
差信号416が制御動作により零になるようにタービン
駆動給水ポンプ8の流量を増加させるように制御する。
Therefore, the corrected water level control signal 412 increases, the feed water flow request signal 414 increases due to the PID calculation of the flow controller 413, and the feed water pump flow deviation signal 416
Also increase. The flow control device 418 controls the flow rate of the turbine-driven feed pump 8 to increase so that the feed pump flow deviation signal 416 becomes zero by the control operation.

【0024】このプラントの応答において、原子炉給水
流量が原子炉水位の変化に現れるまでにはプラント自体
の持つ積分的遅れ要素が存在する。また、水位制御装置
405及び流量制御装置413は制御要素に積分要素を含
むため、制御の遅れ要素が存在する。更に、給水流量と
主蒸気流量の偏差(以下ミスマッチ流量ということがあ
る)の積分値が原子炉水位低下に影響するが、故障した
給水ポンプの流量減少が大きいと、故障した給水ポンプ
を含む全給水ポンプの流量が制御により増加して一定で
ある主蒸気流量に到達するまでのミスマッチ流量が大き
くなり、従って水位低下幅も大きくなるという関係があ
る。
In the response of the plant, there is an integral delay element of the plant itself before the reactor water supply flow rate appears in the change of the reactor water level. In addition, water level control device
Since the control elements of the 405 and the flow control device 413 include an integral element, there is a control delay element. Furthermore, the integral value of the deviation between the feedwater flow rate and the main steam flow rate (hereinafter sometimes referred to as mismatch flow rate) affects the reactor water level drop. However, if the flow rate of the failed feedwater pump is large, the total There is a relationship that the mismatch flow rate increases until the flow rate of the feedwater pump increases by control to reach a constant main steam flow rate, and thus the water level drop width also increases.

【0025】このため、故障した給水ポンプの流量変化
が比較的大きい減少の場合には、これらの遅れ要素のた
めに故障側給水ポンプの流量減少に対して健全側給水ポ
ンプの流量増加が遅れ、更にミスマッチ流量が大きくな
るので、原子炉水位は更に低下して運転継続ができない
可能性がある。
For this reason, when the change in the flow rate of the failed water supply pump is a relatively large decrease, the increase in the flow rate of the sound water supply pump is delayed with respect to the decrease in the flow rate of the failure side water supply pump due to these delay elements. Further, since the mismatch flow rate is further increased, the reactor water level may be further lowered and the operation may not be continued.

【0026】以上は故障した給水ポンプの流量変化が比
較的大きくかつ当該故障ポンプがトリップしない場合の
例であるが、給水ポンプの流量変化が比較的大きい増加
の故障でかつ当該故障ポンプがトリップしない場合で
も、健全側の給水ポンプの流量減少による補償が遅れる
可能性がある。
The above is an example in which the flow rate change of the failed water supply pump is relatively large and the failed pump does not trip. However, the increase in the flow rate change of the water supply pump is relatively large and the failure pump does not trip. Even in such a case, compensation due to a decrease in the flow rate of the water supply pump on the sound side may be delayed.

【0027】本発明の目的は、上記課題に鑑み、任意の
給水ポンプに異常が生じ、当該故障ポンプがトリップし
ないような場合にも安定に運転継続できる異常時協調制
御システムを提供することにある。
In view of the above problems, an object of the present invention is to provide an abnormal time cooperative control system that can stably continue operation even when an abnormality occurs in an arbitrary water supply pump and the failed pump does not trip. .

【0028】[0028]

【課題を解決するための手段】上記目的は、任意の給水
ポンプの吸込流量17と給水ポンプ流量要求信号414に
偏差が生じた場合に、プラント及び制御の遅れ要素が存
在する給水ポンプ流量要求信号414の変化を待たず
に、この流量偏差分を他の健全な全ての給水ポンプの流
量で速やかに補償するように、個々の給水ポンプに対す
る流量要求信号414を調整することによって達成され
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a water supply pump flow request signal which includes a plant and a control delay element when a deviation occurs between the suction flow 17 of an arbitrary water pump and the water supply pump flow request signal 414. This is achieved by adjusting the flow request signals 414 for the individual feed pumps so as to quickly compensate for this flow deviation with the flow of all other healthy feed pumps without waiting for the change in 414.

【0029】また、上記目的は、任意の給水ポンプの吸
込流量17と給水ポンプ流量要求信号414に偏差が生
じた場合に、主蒸気流量を給水能力にあわせ変化させて
ミスマッチ流量を小さくし原子炉水位変化を抑制するよ
うに、制御棒21の位置を調整することによって達成さ
れる。
Further, the above object is to reduce the mismatch flow rate by changing the main steam flow rate in accordance with the water supply capacity when a deviation occurs between the suction flow rate 17 of an arbitrary feed pump and the feed pump flow rate request signal 414. This is achieved by adjusting the position of the control rod 21 so as to suppress the water level change.

【0030】また、上記目的は、任意の給水ポンプの吸
込流量17と給水ポンプ流量要求信号414に偏差が生
じた場合に、主蒸気流量を給水能力にあわせ変化させて
ミスマッチ流量を小さくし原子炉水位変化を抑制するよ
うに、再循環ポンプ29の回転数を変化させ炉心流量を
調整することによって達成される。
Further, the above-mentioned object is to reduce the mismatch flow rate by changing the main steam flow rate in accordance with the water supply capacity when a deviation occurs between the suction flow rate 17 of an arbitrary feed pump and the feed pump flow rate request signal 414. This is achieved by adjusting the core flow rate by changing the rotation speed of the recirculation pump 29 so as to suppress the water level change.

【0031】即ち、任意の給水ポンプの吸込流量17と
給水ポンプ流量要求信号414に偏差が生じた場合に、
この流量偏差分を他の健全な全ての給水ポンプの流量で
速やかに補償し、原子炉給水流量あるいは原子炉水位の
変化を抑制するので、安定な運転継続が可能である。
That is, when a deviation occurs between the suction flow rate 17 of an arbitrary water supply pump and the water supply pump flow rate request signal 414,
This flow rate deviation is promptly compensated for by the flow rates of all other sound water supply pumps, and changes in the reactor water supply flow rate or the reactor water level are suppressed, so that stable operation can be continued.

【0032】また、任意の給水ポンプの吸込流量17と
給水ポンプ流量要求信号414に偏差が生じた場合に、
この流量偏差に応じて制御棒21の位置を調整して主蒸
気流量を給水流量に近づけるように制御し、ミスマッチ
流量を小さくして原子炉水位変化を抑制するので、安定
な運転継続が可能である。
Further, when a deviation occurs between the suction flow rate 17 of an arbitrary water supply pump and the water supply pump flow rate request signal 414,
The position of the control rod 21 is adjusted in accordance with this flow rate deviation to control the main steam flow rate to be close to the feedwater flow rate, and the mismatch flow rate is reduced to suppress the reactor water level change, so that stable operation can be continued. is there.

【0033】また、任意の給水ポンプの吸込流量17と
給水ポンプ流量要求信号414に偏差が生じた場合に、
この流量偏差に応じて再循環ポンプ29の回転数を変化
させ炉心流量を調整して主蒸気流量を給水流量に近づけ
るように制御し、ミスマッチ流量を小さくして原子炉水
位変化を抑制するので、安定な運転継続が可能である。
Further, when a deviation occurs between the suction flow rate 17 of an arbitrary feed water pump and the feed water pump flow request signal 414,
Since the number of revolutions of the recirculation pump 29 is changed in accordance with this flow rate deviation, the core flow rate is adjusted to control the main steam flow rate close to the feedwater flow rate, and the mismatch flow rate is reduced to suppress the reactor water level change. Stable continuation of operation is possible.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。図1は本発明の一実施例を示す構成図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【0035】給水ポンプ1,給水ポンプ2,給水ポンプ
3及び給水ポンプ4に対して、それぞれ給水ポンプ1流
量補償制御装置500,給水ポンプ2流量補償制御装
置,給水ポンプ3流量補償制御装置及び給水ポンプ4流
量補償制御装置を設けている。ただし、ポンプ1流量補
償制御装置500と同様の機能を有する給水ポンプ2流
量補償制御装置,給水ポンプ3流量補償制御装置及び給
水ポンプ4流量補償制御装置は図1に表記していない。
以下では給水ポンプ1流量補償制御装置500で代表さ
せて説明する。
For the water supply pump 1, the water supply pump 2, the water supply pump 3 and the water supply pump 4, respectively, the water supply pump 1 flow compensation control device 500, the water supply pump 2 flow compensation control device, the water supply pump 3 the flow compensation control device and the water supply pump. Four flow compensation controllers are provided. However, the feed water pump 2 flow compensation control device, the feed water pump 3 flow compensation control device, and the feed water pump 4 flow compensation control device having the same functions as the pump 1 flow compensation control device 500 are not shown in FIG.
Hereinafter, the feedwater pump 1 flow rate compensation control device 500 will be described as a representative.

【0036】図2は本発明の一実施例を示す給水ポンプ
1流量補償制御装置500内の構成図である。
FIG. 2 is a block diagram of the feedwater pump 1 flow rate compensating control device 500 showing one embodiment of the present invention.

【0037】比較器531は、給水ポンプ流量要求信号
414と給水ポンプ1の吸込流量信号17を比較し、こ
の差分を給水ポンプ1流量偏差信号532として、警報
判定装置548,切替判定装置543及びPID演算器
533に出力する。
The comparator 531 compares the feed water pump flow demand signal 414 with the suction flow signal 17 of the feed water pump 1, and uses the difference as a feed water pump 1 flow deviation signal 532 to indicate the alarm judgment device 548, the switching judgment device 543, and the PID. Output to the arithmetic unit 533.

【0038】警報判定装置547は、給水ポンプ1流量
偏差信号532の絶対値が警報設定装置546からの警
報設定信号547を越えた場合に、警報指令551を判
定器549に出力する。判定器549は給水ポンプ1運
転中検出信号550が真の場合にのみ警報指令551を
給水ポンプ1警報装置552に出力する。
When the absolute value of the feedwater pump 1 flow deviation signal 532 exceeds the alarm setting signal 547 from the alarm setting device 546, the alarm judging device 547 outputs an alarm command 551 to the judging device 549. The determination unit 549 outputs the warning command 551 to the water supply pump 1 alarm device 552 only when the detection signal 550 during operation of the water supply pump 1 is true.

【0039】切替判定装置543は、給水ポンプ1流量
偏差信号532の絶対値が切替設定装置541からの切
替設定信号542を越えた場合に、切替指令545を判
定器544に出力する。判定器544は給水ポンプ1運
転中検出信号550が真の場合にのみ切替指令545を
給水ポンプ1警報装置552及び切替装置539に出力
する。
When the absolute value of the feed pump 1 flow deviation signal 532 exceeds the switching setting signal 542 from the switching setting device 541, the switching determining device 543 outputs a switching command 545 to the determining device 544. The determiner 544 outputs the switching command 545 to the water supply pump 1 alarm device 552 and the switching device 539 only when the detection signal 550 during operation of the water supply pump 1 is true.

【0040】PID演算器533は給水ポンプ1流量偏
差信号532が制御動作により零になるようにPID演
算し、更に原子炉定格給水流量に対する給水ポンプ1定
格流量の比を乗じて、この結果を給水ポンプ1流量補償
要求534として上下限制限器535へ出力する。上下
限制限器535は給水ポンプ1流量補償要求534の上
下限を制限し、これを給水ポンプ1流量補償信号536
として切替装置539に出力する。
The PID calculator 533 performs a PID calculation so that the feedwater pump 1 flow rate deviation signal 532 becomes zero by the control operation, and further multiplies the ratio of the feedwater pump 1 rated flow rate to the reactor rated feedwater flow rate. It outputs to the upper and lower limiter 535 as the pump 1 flow rate compensation request 534. The upper / lower limiter 535 limits the upper and lower limits of the feedwater pump 1 flow rate compensation request 534, and outputs the same to the feedwater pump 1 flow rate compensation signal 536.
Is output to the switching device 539.

【0041】切替装置539は通常、給水ポンプ1流量
補償制御信号501として零信号発生器537からの零
信号538を選択しているが、切替判定装置543から
切替指令545が出力された場合には、給水ポンプ1流
量補償信号536に切り替わる。切替装置539は、こ
の給水ポンプ1流量補償制御信号501を、図1の給水
流量補償加算器529及び当該給水ポンプ1以外への流
量補償信号として、給水ポンプ2流量補償要求加算器5
06,給水ポンプ3流量補償要求加算器507,給水ポ
ンプ4流量補償要求加算器508に出力する。
The switching device 539 normally selects the zero signal 538 from the zero signal generator 537 as the feed water pump 1 flow rate compensation control signal 501, but when the switching command 545 is output from the switching determination device 543, Is switched to the feed water pump 1 flow rate compensation signal 536. The switching device 539 uses the feedwater pump 1 flow rate compensation control signal 501 as the feedwater flow rate compensation adder 529 in FIG.
06, the feed water pump 3 flow rate compensation request adder 507 and the feed water pump 4 flow rate compensation request adder 508 are output.

【0042】以上の図2の給水ポンプ1流量補償制御装
置500の構成は、図1に表記していない給水ポンプ2
流量補償制御装置,給水ポンプ3流量補償制御装置及び
給水ポンプ4流量補償制御装置についても同様であり、
それぞれの流量補償制御信号は給水ポンプ2流量補償制
御信号502,給水ポンプ3流量補償制御信号503,
給水ポンプ4流量補償制御信号504である。
The configuration of the water supply pump 1 flow rate compensation control device 500 shown in FIG. 2 is similar to that of the water supply pump 2 not shown in FIG.
The same applies to the flow rate compensation control device, the feed water pump 3 flow rate compensation control device, and the feed water pump 4 flow rate compensation control device.
The respective flow compensation control signals are a feed water pump 2 flow compensation control signal 502, a feed water pump 3 flow compensation control signal 503,
This is the feedwater pump 4 flow rate compensation control signal 504.

【0043】図1の給水ポンプ2の流量補償要求加算器
506は、当該給水ポンプ2以外の流量補償信号である
給水ポンプ1流量補償信号501,給水ポンプ3流量補
償信号503及び給水ポンプ4流量補償信号504を加
算し、この結果を給水ポンプ2流量補償要求信号510
として、ゲイン演算器514に出力する。
The flow rate compensation request adder 506 of the feed water pump 2 shown in FIG. 1 includes flow rate compensation signals 501, 501, 503 and 503, and flow rate compensation signals other than the flow rate of the feed pump 2. The signal 504 is added, and the result is added to the feed water pump 2 flow rate compensation request signal 510.
Is output to the gain calculator 514.

【0044】ゲイン演算器514は給水ポンプ2流量補
償要求信号510に、給水ポンプ2定格流量に対する原
子炉定格給水流量の比を乗じて、この結果を給水ポンプ
2流量補償指令信号518として給水ポンプ2流量補償
加算器522へ出力する。
The gain calculator 514 multiplies the feedwater pump 2 flow rate compensation request signal 510 by the ratio of the reactor feedwater flow rate to the feedwater pump 2 rated flow rate, and uses the result as the feedwater pump 2 flow rate compensation command signal 518. Output to the flow rate compensation adder 522.

【0045】給水ポンプ2流量補償加算器522は給水
ポンプ流量要求信号414と給水ポンプ2流量補償指令
信号518を加算し、この結果を給水ポンプ2流量補正
信号526として上下限制限器420に出力する。上下
限制限器420は給水ポンプ2流量補正信号526の上
下限制限を行い、この結果を比較器415へ出力する。
The feed water pump 2 flow compensation adder 522 adds the feed water pump flow request signal 414 and the feed water pump 2 flow compensation command signal 518, and outputs the result to the upper / lower limiter 420 as a feed water pump 2 flow correction signal 526. . The upper / lower limiter 420 limits the upper / lower limit of the feedwater pump 2 flow rate correction signal 526, and outputs the result to the comparator 415.

【0046】比較器415は上下限制限された給水ポン
プ2流量補正信号526と給水ポンプ毎に設けた吸込流
量検出器7の吸込流量信号17を比較し、タービン駆動
給水ポンプ8に対する給水ポンプ2流量偏差信号416
を給水ポンプ2流量調整装置418へ出力する。給水ポ
ンプ2流量調整装置418は給水ポンプ流量偏差信号4
16が制御動作により零になるように演算したタービン
回転数要求信号422をタービン駆動給水ポンプ8へ出
力し、タービン駆動給水ポンプ8はタービン回転数要求
信号422と一致するように自己のタービン回転数を制
御する。
The comparator 415 compares the feedwater pump 2 flow rate correction signal 526 with upper and lower limits with the suction flow signal 17 of the suction flow detector 7 provided for each feedwater pump, and compares the flow rate of the feedwater pump 2 with respect to the turbine drive waterfeed pump 8. Deviation signal 416
Is output to the feedwater pump 2 flow control device 418. The feedwater pump 2 flow rate adjusting device 418 outputs the feedwater pump flow deviation signal 4
16 is output to the turbine drive water supply pump 8, which is calculated so that 16 becomes zero by the control operation, and the turbine drive water supply pump 8 has its own turbine rotation speed so as to match the turbine speed request signal 422. Control.

【0047】以上は給水ポンプ1流量補償信号501が
給水ポンプ2についての流量補正に係わる構成について
のみ記したが、これは他の給水ポンプの流量補正につい
ても同様である。
Although the above description has been made only of the configuration in which the flow rate compensation signal 501 of the feed water pump 1 relates to the flow rate correction of the feed water pump 2, the same applies to the flow rate correction of other feed water pumps.

【0048】一方、給水流量補償加算器529は給水ポ
ンプ1流量補償制御装置500からの給水ポンプ1流量
補償信号501,給水ポンプ2流量補償制御装置526
からの給水ポンプ2流量補償信号502,給水ポンプ3
流量補償制御装置からの給水ポンプ3流量補償信号50
3及び給水ポンプ4流量補償制御装置からの給水ポンプ
4流量補償信号504を取り込み、これらを加算し、こ
の結果を給水流量補償要求信号530として、自動出力
調整装置200内の制御棒補償制御装置600及び原子
炉再循環流量制御装置300内の炉心流量補償制御装置
700へ出力する。
On the other hand, the feed water flow rate compensation adder 529 includes a feed water pump 1 flow compensation signal 501 and a feed water pump 2 flow compensation control device 526 from the feed water pump 1 flow compensation control device 500.
Pump 2 from water supply flow compensation signal 502, water pump 3
Feed water pump 3 flow compensation signal 50 from flow compensation controller
3 and the feed pump 4 flow compensation signal 504 from the feed pump 4 flow compensation control device, take in these signals, add them, and use the result as a feed water flow compensation request signal 530 as a control rod compensation control device 600 in the automatic output adjustment device 200. And the output to the reactor core flow compensation controller 700 in the reactor recirculation flow controller 300.

【0049】自動出力調整装置200内の制御棒補償制
御装置600は給水流量補償要求信号530をPID演
算し、この演算結果を原子炉出力補償要求601として
上下限制限器602へ出力する。上下限制限器602は
原子炉出力補償要求601の上下限を制限し、これを原
子炉出力補償信号603として、原子炉出力偏差補償比
較器604に出力する。原子炉出力偏差補償比較器60
4は、原子炉出力補償信号603と加算器203からの
原子炉出力偏差信号204を比較し、この差分を原子炉
出力偏差補償信号605として制御棒位置制御装置20
5に出力する。原子炉再循環流量制御装置300内の炉
心流量補償制御装置700は給水流量補償要求信号53
0をPID演算し、この演算結果を炉心流量補償要求7
01として上下限制限器702へ出力する。上下限制限
器702は炉心流量補償要求701の上下限を制限し、
これを炉心流量補償信号703として、炉心流量補償比
較器704に出力する。炉心流量補償比較器704は、
炉心流量要求信号302,炉心流量補償信号703及び炉心
流量検出器25の炉心流量信号26との差分である炉心
流量偏差信号705を演算し、これを流量制御装置30
5に出力する。この本発明の一実施例において、運転中
の任意の給水ポンプに異常が生じた場合、例えば2台の
タービン駆動給水ポンプが運転中でかつ2台の電動駆動
給水ポンプが待機中である場合に、タービン駆動給水ポ
ンプ1の流量が減少する異常が生じた場合、給水ポンプ
1吸込流量信号17が減少し、これに伴い図2の給水ポ
ンプ1流量偏差信号532が増加し、PID演算により
給水ポンプ1流量補償信号536が増加する。
The control rod compensation control device 600 in the automatic power adjustment device 200 performs a PID operation on the feedwater flow rate compensation request signal 530 and outputs the operation result to the upper / lower limiter 602 as a reactor power compensation request 601. The upper / lower limiter 602 limits the upper and lower limits of the reactor power compensation request 601, and outputs this as a reactor power compensation signal 603 to the reactor power deviation compensation comparator 604. Reactor power deviation compensation comparator 60
4 compares the reactor power compensation signal 603 with the reactor power deviation signal 204 from the adder 203, and uses the difference as a reactor power deviation compensation signal 605 as the control rod position control device 20.
5 is output. The core flow compensation control device 700 in the reactor recirculation flow control device 300 outputs a feedwater flow compensation request signal 53.
0 is calculated by PID.
01 is output to the upper and lower limiter 702. The upper and lower limiter 702 limits the upper and lower limits of the core flow rate compensation request 701,
This is output to the core flow rate compensation comparator 704 as a core flow rate compensation signal 703. The core flow compensation comparator 704 is
A core flow rate deviation signal 705 which is a difference between the core flow rate request signal 302, the core flow rate compensation signal 703, and the core flow rate signal 26 of the core flow rate detector 25 is calculated.
5 is output. In this embodiment of the present invention, when an abnormality occurs in an arbitrary water supply pump during operation, for example, when two turbine driven water supply pumps are operating and two electric driven water supply pumps are on standby. When the flow rate of the turbine-driven water supply pump 1 decreases, the water supply pump 1 suction flow signal 17 decreases, and the water supply pump 1 flow deviation signal 532 in FIG. 2 increases. One flow compensation signal 536 increases.

【0050】切替装置539は通常給水ポンプ1流量補
償信号501として零信号538を選択しているが、給
水ポンプ1流量偏差信号532の絶対値が切替設定信号
542を越えると、切替指令545により給水ポンプ1流
量補償信号536側に切り替わる。これによって、給水
ポンプ1流量補償制御信号501が増加し、図1の給水
ポンプ2流量補償要求信号510,給水ポンプ2流量補
償指令信号518及び給水流量補償要求信号530が増
加する。
Although the switching device 539 normally selects the zero signal 538 as the feed water pump 1 flow compensation signal 501, the absolute value of the feed pump 1 flow deviation signal 532 is changed to the switching setting signal.
When the value exceeds 542, the flow is switched to the feedwater pump 1 flow rate compensation signal 536 by the switching command 545. Thereby, the feedwater pump 1 flow rate compensation control signal 501 increases, and the feedwater pump 2 flow rate compensation request signal 510, the feedwater pump 2 flow rate compensation command signal 518, and the feedwater flow rate compensation request signal 530 in FIG. 1 increase.

【0051】一方、給水ポンプ1の流量減少により、給
水流量信号16及び原子炉水位信号18が減少し、補正
水位信号411,水位制御信号406が増加し、これに
伴い補正水位制御信号412,給水流量要求信号414
が増加するが、プラントの持つ遅れ要素のため、信号の
増加速度は給水ポンプ2流量補償指令信号518の方が
大きい。
On the other hand, due to the decrease in the flow rate of the feed water pump 1, the feed water flow rate signal 16 and the reactor water level signal 18 decrease, the corrected water level signal 411, the water level control signal 406 increase, and the corrected water level control signal 412, Flow request signal 414
However, the rate of increase of the signal is larger for the feedwater pump 2 flow rate compensation command signal 518 because of the delay factor of the plant.

【0052】従って、給水ポンプ2流量補正信号526
が速やかに増加し、給水ポンプ2の流量が増加して、給
水ポンプ1の流量減少を補償する。なお、この場合、給
水ポンプ3及び給水ポンプ4はいずれも待機中でありこ
れらの給水ポンプ流量へは影響しない。
Accordingly, the feedwater pump 2 flow rate correction signal 526
Increases rapidly, and the flow rate of the feedwater pump 2 increases, thereby compensating for a decrease in the flow rate of the feedwater pump 1. In this case, both the water supply pump 3 and the water supply pump 4 are on standby, and do not affect the flow rates of these water supply pumps.

【0053】また、自動出力調整装置200内の制御棒
補償制御装置600は給水流量補償要求信号530をP
ID演算し、この出力信号である原子炉出力補償要求6
01は増加する。これに伴い、原子炉出力偏差補償信号
605が減少し、制御棒制御装置205は制御棒操作
(挿入)を判定し、制御棒駆動装置20へ制御棒操作
(挿入)指令206を出力する。制御棒駆動装置20は
制御棒操作指令206に基づき制御棒21を挿入し、給
水ポンプ流量要求信号414に対する給水ポンプ1流量
信号402の減少に伴って生じる原子炉水位低下を抑制
する。
The control rod compensation control device 600 in the automatic output adjustment device 200 sends the feed water flow rate compensation request signal 530 to P
The ID is calculated, and the output signal of the reactor power compensation request 6
01 increases. Accordingly, the reactor power deviation compensation signal 605 decreases, the control rod control device 205 determines the control rod operation (insertion), and outputs a control rod operation (insertion) command 206 to the control rod driving device 20. The control rod driving device 20 inserts the control rod 21 based on the control rod operation command 206 and suppresses a decrease in the reactor water level caused by a decrease in the feedwater pump 1 flow rate signal 402 in response to the feedwater pump flow rate request signal 414.

【0054】また、原子炉再循環流量制御装置300内
の炉心流量補償制御装置700は給水流量補償要求信号
530をPID演算し、この出力信号である炉心流量補
償要求701は増加する。これに伴い、炉心流量偏差信
号705が減少し、速度設定信号306も減少する。こ
のため再循環ポンプモータ28の電源周波数が減少し、
再循環ポンプ29の速度が減少して、炉心流量が減少す
る。これにより炉心流量信号26が減少して、炉心流量
偏差信号705は零に整定する。この炉心流量減少によ
って、給水ポンプ流量要求信号414に対する給水ポン
プ1流量信号402の減少に伴って生じる原子炉水位低
下を抑制する。
Further, the core flow rate compensation control device 700 in the reactor recirculation flow rate control device 300 performs a PID operation on the feedwater flow rate compensation request signal 530, and the core flow rate compensation request 701 as the output signal increases. Accordingly, the core flow rate deviation signal 705 decreases, and the speed setting signal 306 also decreases. For this reason, the power supply frequency of the recirculation pump motor 28 decreases,
The speed of the recirculation pump 29 decreases, and the core flow rate decreases. As a result, the core flow signal 26 decreases, and the core flow deviation signal 705 settles to zero. This decrease in the reactor core flow suppresses a decrease in the reactor water level caused by a decrease in the feed water pump 1 flow signal 402 in response to the feed water pump flow request signal 414.

【0055】この場合のプラント応答は図3の実線のよ
うになり、破線で示す従来の技術による応答のように原
子炉水位が低下することはない。
The plant response in this case is as shown by the solid line in FIG. 3, and the reactor water level does not decrease unlike the response according to the prior art shown by the broken line.

【0056】以上のように、本発明の一実施例におい
て、給水ポンプ流量要求信号414に対してある給水ポ
ンプの流量が減少する異常が発生した場合、他の運転中
の健全な給水ポンプの流量増加で故障した給水ポンプの
流量減少を補償し、また故障した給水ポンプの流量減少
により生じる原子炉水位の低下を制御棒挿入及び原子炉
再循環ポンプ速度低下により抑制するので、安定な運転
継続が可能である。
As described above, according to the embodiment of the present invention, when an abnormality in which the flow rate of a certain water supply pump is reduced with respect to the water supply pump flow rate request signal 414 occurs, the flow rate of another sound water supply pump during operation is normal. The increase compensates for the decrease in the flow rate of the failed feed pump, and the decrease in the reactor water level caused by the decrease in the flow rate of the failed feed pump is suppressed by inserting control rods and reducing the speed of the reactor recirculation pump. It is possible.

【0057】なお、以上は給水ポンプ流量要求信号41
4に対してある給水ポンプの流量が減少する異常が発生
した場合の実施例であるが、給水ポンプ流量要求信号4
14に対してある給水ポンプの流量が増加する異常が発
生した場合には、健全な給水ポンプによる蒸気流量補
償,制御棒位置調整による原子炉出力補償及び再循環ポ
ンプ速度調整による原子炉出力補償の応答はそれぞれ上
記と逆の応答となり、この場合にも、他の運転中の健全
な給水ポンプの流量減少で故障した給水ポンプの流量増
加を補償し、また故障した給水ポンプの流量増加により
生じる原子炉水位の上昇を制御棒引抜き及び原子炉再循
環ポンプ速度増加により抑制するので、安定な運転継続
が可能である。
The above description is for the feed water pump flow rate request signal 41.
This is an embodiment in the case where an abnormality occurs in which the flow rate of a certain feed pump decreases with respect to the feed water pump 4.
If an abnormality occurs in which the flow rate of a certain feed pump increases with respect to 14, the steam flow compensation by a sound feed pump, the reactor power compensation by control rod position adjustment, and the reactor power compensation by recirculation pump speed adjustment. Each response is the opposite of the above, again compensating for the increased flow of the failed feed pump due to the reduced flow of the other healthy feed pump and the atomic flow caused by the increased flow of the failed feed pump. Since the rise in the reactor water level is suppressed by pulling out the control rods and increasing the speed of the reactor recirculation pump, stable operation can be continued.

【0058】また、本発明の一実施例では、給水ポンプ
1に流量偏差が生じた場合に、他の健全な給水ポンプに
よる蒸気流量補償,制御棒位置調整による原子炉出力補
償及び再循環ポンプ速度調整による原子炉出力補償を組
み合わせているが、これらのうち、何れか一つであって
も、あるいはいくつかの組み合わせであっても良い。
Further, in one embodiment of the present invention, when a flow rate deviation occurs in the feed water pump 1, steam flow compensation by another healthy feed water pump, reactor power compensation by control rod position adjustment, and recirculation pump speed. Reactor power compensation by adjustment is combined, but any one of them may be used, or some combination may be used.

【0059】[0059]

【発明の効果】以上説明したように、本発明は、任意の
給水ポンプの異常による原子炉水位変動を他の健全な給
水ポンプの流量調整により補償し、制御棒位置の調整あ
るいは炉心流量の調整により抑制するようにしたので、
安定な運転継続が可能である。
As described above, according to the present invention, the reactor water level fluctuation due to an abnormality in an arbitrary water supply pump is compensated by adjusting the flow rate of another sound water supply pump, and the control rod position or the core flow rate is adjusted. , So that
Stable continuation of operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である原子炉給水制御システ
ムの構成図である。
FIG. 1 is a configuration diagram of a reactor water supply control system according to an embodiment of the present invention.

【図2】図1のうち給水ポンプ流量補償制御装置の例を
示す構成図である。
FIG. 2 is a configuration diagram showing an example of a feedwater pump flow compensation control device in FIG. 1;

【図3】本発明の原子炉水位を説明するための特性図で
ある。
FIG. 3 is a characteristic diagram for explaining a reactor water level according to the present invention.

【図4】従来の技術を示す原子炉給水制御システムの構
成図である。
FIG. 4 is a configuration diagram of a reactor water supply control system showing a conventional technique.

【符号の説明】[Explanation of symbols]

4…主蒸気流量検出器、7…吸込流量検出器、8…ター
ビン駆動給水ポンプ、9…電動駆動給水ポンプ、11…
給水流量検出器、13…原子炉水位検出器、20…制御
棒駆動装置、21…制御棒、27…可変周波数電源装
置、28…原子炉再循環ポンプモータ、29…原子炉再
循環ポンプ、100…原子炉圧力制御装置、200…自
動出力調整装置、300…原子炉再循環流量制御装置、
400…原子炉給水制御装置、500…給水ポンプ1流
量補償制御装置、600…制御棒補償制御装置、700
…炉心流量補償制御装置。
4: Main steam flow rate detector, 7: Suction flow rate detector, 8: Turbine drive water supply pump, 9 ... Electric drive water supply pump, 11 ...
Feed water flow rate detector, 13: Reactor water level detector, 20: Control rod drive, 21: Control rod, 27: Variable frequency power supply, 28: Reactor recirculation pump motor, 29: Reactor recirculation pump, 100 ... Reactor pressure control device, 200 ... Automatic power adjustment device, 300 ... Reactor recirculation flow control device,
400: reactor water supply control device, 500: water supply pump 1 flow rate compensation control device, 600: control rod compensation control device, 700
... Core flow compensation controller.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子力発電プラントの複数の原子
炉給水ポンプの流量を制御する原子炉給水制御装置にお
いて、原子炉給水制御装置からの給水ポンプ流量要求信
号と当該給水ポンプの流量との流量偏差を演算し、前記
流量偏差を補償する流量補償信号を演算する流量補償装
置と、他の健全な全ての給水ポンプに対する前記給水ポ
ンプ流量要求信号に前記流量補償信号を加算する給水ポ
ンプ流量補償加算器を具備したことを特徴とする異常時
協調制御システム。
A reactor water supply control device for controlling a flow rate of a plurality of reactor water supply pumps of a boiling water nuclear power plant, comprising: a feed water pump flow rate request signal from the reactor water supply control device and a flow rate of the water supply pump; A flow compensator for calculating a flow deviation and calculating a flow compensation signal for compensating the flow deviation; and a water supply pump flow compensation for adding the flow compensation signal to the water supply pump flow request signal for all other sound water supply pumps. An abnormal time cooperative control system comprising an adder.
【請求項2】沸騰水型原子力発電プラントの原子炉圧力
あるいは主蒸気圧力を制御する原子炉圧力制御装置から
の全蒸気流量信号に基づき原子炉出力偏差信号を演算
し、制御棒の挿入または引抜き操作を制御する自動出力
調整装置において、原子炉給水制御装置からの給水ポン
プ流量要求信号と当該給水ポンプの流量との流量偏差を
演算し、前記流量偏差を補償する流量補償信号を演算す
る流量補償装置と、前記流量補償信号に基づき原子炉出
力補償要求信号を演算する制御棒補償制御装置と、前記
原子炉出力偏差信号から前記原子炉出力補償要求信号を
減算する原子炉出力偏差補償比較器を具備したことを特
徴とする異常時協調制御システム。
2. A reactor power deviation signal is calculated based on a total steam flow signal from a reactor pressure control device for controlling a reactor pressure or a main steam pressure of a boiling water nuclear power plant, and control rods are inserted or withdrawn. In an automatic output adjustment device for controlling operation, a flow compensation between a feed water pump flow request signal from the reactor feed water control device and a flow rate of the feed water pump is calculated, and a flow compensation signal for compensating the flow difference is calculated. An apparatus, a control rod compensation controller for calculating a reactor power compensation request signal based on the flow rate compensation signal, and a reactor power deviation compensation comparator for subtracting the reactor power compensation request signal from the reactor power deviation signal. An abnormal time cooperative control system characterized by comprising:
【請求項3】沸騰水型原子力発電プラントの原子炉圧力
制御装置あるいは自動出力調整装置からの負荷要求偏差
信号に基づき炉心流量要求信号を演算し、炉心流量を制
御する原子炉再循環流量制御装置において、原子炉給水
制御装置からの給水ポンプ流量要求信号と当該給水ポン
プの流量との流量偏差を演算し、前記流量偏差を補償す
る流量補償信号を演算する流量補償装置と、前記流量補
償信号に基づき炉心流量補償要求を演算する炉心流量補
償制御装置と、前記炉心流量要求信号から前記炉心流量
補償要求を減算する炉心流量補償比較器を具備したこと
を特徴とする異常時協調制御システム。
3. A reactor recirculation flow control device for calculating a core flow request signal based on a load request deviation signal from a reactor pressure control device or an automatic power adjustment device of a boiling water nuclear power plant and controlling the core flow. In the flow rate compensation device for calculating a flow rate deviation between the flow rate of the feed water pump and a feed water pump flow request signal from the reactor water supply control apparatus, and calculating a flow rate compensation signal for compensating the flow rate deviation, the flow rate compensation signal An abnormal coordination control system comprising: a core flow rate compensation control device that calculates a core flow rate compensation request based on a core flow rate compensation request; and a core flow rate compensation comparator that subtracts the core flow rate compensation request from the core flow rate requirement signal.
JP10066450A 1998-03-17 1998-03-17 Cooperative control system for abnormal condition Pending JPH11258390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10066450A JPH11258390A (en) 1998-03-17 1998-03-17 Cooperative control system for abnormal condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10066450A JPH11258390A (en) 1998-03-17 1998-03-17 Cooperative control system for abnormal condition

Publications (1)

Publication Number Publication Date
JPH11258390A true JPH11258390A (en) 1999-09-24

Family

ID=13316131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10066450A Pending JPH11258390A (en) 1998-03-17 1998-03-17 Cooperative control system for abnormal condition

Country Status (1)

Country Link
JP (1) JPH11258390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116994787A (en) * 2023-07-28 2023-11-03 华能核能技术研究院有限公司 Method and system for controlling nuclear power of high-temperature gas cooled reactor nuclear power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116994787A (en) * 2023-07-28 2023-11-03 华能核能技术研究院有限公司 Method and system for controlling nuclear power of high-temperature gas cooled reactor nuclear power plant
CN116994787B (en) * 2023-07-28 2024-05-24 华能核能技术研究院有限公司 Method and system for controlling nuclear power of high-temperature gas cooled reactor nuclear power plant

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
US5268939A (en) Control system and method for a nuclear reactor
US4337118A (en) Nuclear reactor power monitoring system
US4440715A (en) Method of controlling nuclear power plant
JP5562806B2 (en) Reactor water level control system
JPH11258390A (en) Cooperative control system for abnormal condition
US8467491B2 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
JP4556883B2 (en) Reactor power controller
JPH1184078A (en) Abnormal time cooperative control system
JP3388320B2 (en) Container level control method and apparatus
JP4003630B2 (en) Reactor recirculation flow controller
JPH09145894A (en) Reactor feed water control device for boiling water nuclear power plant
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPH0539901A (en) Method and device for automatically controlling boiler
JP2001004790A (en) Water level controller of steam generating plant
JP2004279221A (en) Nuclear reactor output control system
JP3093369B2 (en) Reactor water supply control device
JPH0979508A (en) Feed water controller for steam generating plant
JP4709809B2 (en) Water supply control device, nuclear power plant, and water supply control method
JPH0241720B2 (en)
JPH10300888A (en) Reactor control device
JPS60117002A (en) Controller for feedwater to nuclear reactor
JPH03229199A (en) Nuclear power plant controller
JPH08129098A (en) Operation controller for nuclear power plant