JPH11258199A - Electrochemical odorant sensor - Google Patents

Electrochemical odorant sensor

Info

Publication number
JPH11258199A
JPH11258199A JP10088168A JP8816898A JPH11258199A JP H11258199 A JPH11258199 A JP H11258199A JP 10088168 A JP10088168 A JP 10088168A JP 8816898 A JP8816898 A JP 8816898A JP H11258199 A JPH11258199 A JP H11258199A
Authority
JP
Japan
Prior art keywords
dms
tbm
working electrode
odorant
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088168A
Other languages
Japanese (ja)
Inventor
Isao Katadokoro
功 片所
Osamu Tawara
修 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10088168A priority Critical patent/JPH11258199A/en
Publication of JPH11258199A publication Critical patent/JPH11258199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an odorant sensor by which an odorant can be monitored simply and quickly and which is low-cost. SOLUTION: A voltage is applied to a working electrode 28 via a lead wire 40. The potential of the working electrode 28 by making use of the potential of a reference electrode 32 as a reference is kept constant in a range of -60 mV to 0 V. As a result, the sensitivity of an odorant sensor becomes equal to TBM(tertiary butylmercaptan) and to DMS(dimethyl sulfide). When the TBM and the DMS are brought into contact with the working electrode 28 via a diaphragm 24 from an opening 22, the oxidation-reduction reaction of the TBM with the DMS progresses selectively. An oxidation-reduction current which is output at this time is amplified by a preamplifier 84 so as to be measured. Thereby, the concentration of the TBM and that of the DMS are determined quantitatively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスやプロパ
ンガスなどの燃料用ガスに付臭剤として添加されるター
シャリーブチルメルカプタン(以下、TBMと略記す
る)及びジメチルサルファイド(以下、DMSと略記す
る)の添加量を制御するために、燃料用ガス中の付臭剤
濃度を測定する付臭剤センサに関するものである。
The present invention relates to tertiary butyl mercaptan (hereinafter abbreviated as TBM) and dimethyl sulfide (hereinafter abbreviated as DMS) which are added as odorants to fuel gas such as natural gas and propane gas. The present invention relates to an odorant sensor for measuring the odorant concentration in a fuel gas in order to control the amount of odorant added.

【0002】[0002]

【従来の技術】天然ガスやプロパンガスなどの燃料用ガ
スには、ガス漏れの検知を容易にするために、付臭剤に
より臭い付けが行なわれている。付臭剤としては、TB
MとDMSの等量混合物がよく使用される。一般に、付
臭剤添加後の燃料用ガス中のTBM濃度及びDMS濃度
はともに約7ppmであり、TBM濃度とDMS濃度の
合計は14〜15ppm程度である。燃料用ガス中のT
BM濃度及びDMS濃度の測定法として、ガスクロマト
グラフィー法や燃焼−NDIR(非分散赤外分析計)法
などがある。簡便な付臭剤センサとよべるものは存在し
ない。
2. Description of the Related Art Fuel gases such as natural gas and propane gas are smelled with an odorant to facilitate detection of gas leaks. As an odorant, TB
An equal mixture of M and DMS is often used. Generally, the TBM concentration and the DMS concentration in the fuel gas after the addition of the odorant are both about 7 ppm, and the total of the TBM concentration and the DMS concentration is about 14 to 15 ppm. T in fuel gas
As a method for measuring the BM concentration and the DMS concentration, there are a gas chromatography method and a combustion-NDIR (non-dispersive infrared spectrometer) method. There is no such thing as a simple odorant sensor.

【0003】ガスクロマトグラフィー法は、付臭剤を添
加した燃料用ガスをキャリアガスとともに充填物がつめ
られたカラムに送って分離した後、TBM濃度及びDM
S濃度を測定する。燃焼−NDIR法は、付臭剤を添加
した燃料用ガスを燃焼してTBM及びDMSを二酸化硫
黄に変換し、NDIRを用いて二酸化硫黄濃度を測定す
ることにより、TBMとDMSの合計の濃度を定量す
る。
In the gas chromatography method, a fuel gas to which an odorant has been added is sent to a column filled with a carrier together with a carrier gas and separated therefrom.
Measure the S concentration. The combustion-NDIR method converts TBM and DMS to sulfur dioxide by burning a fuel gas to which an odorant has been added, and measures the sulfur dioxide concentration using NDIR to determine the total concentration of TBM and DMS. Quantify.

【0004】[0004]

【発明が解決しようとする課題】ガスクロマトグラフィ
ー法は、カラムでの分離に時間がかかり、分析結果が得
られるまでに7分程度の時間が必要なので、燃料用ガス
製造時の付臭剤モニタとして用いるには応答時間がかか
りすぎるという欠点があった。燃焼−NDIR法は、燃
料用ガス燃焼時に多量の水が発生するので、二酸化硫黄
を正確に測定するために十分な除湿を行なう必要があ
る。さらに、燃料用ガス燃焼のために酸素を必要とす
る。これらの従来の方法では、燃焼や分離などの前処理
が必要である。そのため、装置が複雑であり、応答時間
もかかる。さらに装置のコストも高いという問題もあっ
た。
In the gas chromatography method, it takes a long time to perform separation on a column, and it takes about 7 minutes to obtain an analysis result. Therefore, an odorant monitor during fuel gas production is required. There was a disadvantage that the response time was too long to use. In the combustion-NDIR method, a large amount of water is generated at the time of combustion of a fuel gas. Therefore, it is necessary to perform sufficient dehumidification in order to accurately measure sulfur dioxide. In addition, oxygen is required for fuel gas combustion. These conventional methods require pretreatment such as combustion and separation. Therefore, the device is complicated and the response time is long. There was also a problem that the cost of the apparatus was high.

【0005】そこで本発明は、従来法に比較して、簡
便、迅速に付臭剤をモニタリングでき、かつ安価な付臭
剤センサを提供することを目的とするものである。
Accordingly, an object of the present invention is to provide an inexpensive odorant sensor which can monitor an odorant easily and quickly as compared with a conventional method.

【0006】[0006]

【課題を解決するための手段】本発明による電気化学式
付臭剤センサは、電解液が充填されたセンサボディで、
電解液と被検ガスとの接触面にガス透過性隔膜が設けら
れ、その隔膜の電解液側には作用極が形成され、作用極
に対し電解液を介して対極と比較極が配置され、TBM
とDMSに等感度で応答するように作用極の電位が−
0.1V〜0.4Vの範囲で一定に保たれ、対極と作用
極間の電流により被検ガス中のTBMとDMSの合計の
濃度を測定するものである。
An electrochemical odorant sensor according to the present invention is a sensor body filled with an electrolyte,
A gas-permeable diaphragm is provided on the contact surface between the electrolyte and the test gas, a working electrode is formed on the electrolyte side of the diaphragm, and a counter electrode and a comparison electrode are arranged with respect to the working electrode via the electrolyte. TBM
And the potential of the working electrode is-
It is kept constant in the range of 0.1 V to 0.4 V, and measures the total concentration of TBM and DMS in the test gas by the current between the counter electrode and the working electrode.

【0007】このような電気化学式付臭剤センサでは、
作用極と対極との電位差を一定に保ちながら電解を行な
うと、測定成分の酸化還元反応が選択的に進行する。そ
のときに出力される酸化還元電流を測定することによっ
て測定成分の濃度を知ることができる。本発明では、比
較極の電位を基準として、対極に対する作用極の電位
(以下、設定電位という)をターシャリーブチルメルカ
プタンとジメチルサルファイドに等感度で応答するよう
に一定に保ち、対極と作用極間の酸化電流により燃料用
ガス中のターシャリーブチルメルカプタンとジメチルサ
ルファイドの合計の濃度を測定する。この設定電位は、
対極と比較極が白金ブラックでコーティングされた白金
電極で、電解液が6M硫酸の場合、−0.1V〜0.4
Vの範囲、例えば−60mV〜0Vの範囲に設定され
る。
In such an electrochemical odorant sensor,
When electrolysis is performed while keeping the potential difference between the working electrode and the counter electrode constant, the oxidation-reduction reaction of the measurement component proceeds selectively. By measuring the oxidation-reduction current output at that time, the concentration of the measurement component can be known. In the present invention, the potential of the working electrode with respect to the counter electrode (hereinafter referred to as a set potential) is maintained constant with respect to the tertiary butyl mercaptan and dimethyl sulfide with equal sensitivity based on the potential of the reference electrode, and the potential between the counter electrode and the working electrode is maintained. The total concentration of tertiary butyl mercaptan and dimethyl sulfide in the fuel gas is measured by the oxidation current of. This set potential is
When the counter electrode and the reference electrode are platinum electrodes coated with platinum black and the electrolyte is 6 M sulfuric acid, -0.1 V to 0.4
V, for example, -60 mV to 0 V.

【0008】電気化学式ガスセンサは、原理的に酸化成
分の干渉を受けるが、燃料用ガスは炭化水素が主な成分
であり、干渉を受ける成分が少ないので、燃料用ガス中
の付臭剤の測定を行なうことができる。
[0008] In principle, the electrochemical gas sensor is subject to interference of oxidizing components. However, since the fuel gas is mainly composed of hydrocarbons and the amount of interference is small, the measurement of the odorant in the fuel gas is performed. Can be performed.

【0009】[0009]

【実施例】図1に一実施例としての電気化学式付臭剤セ
ンサを示す。この実施例は電気化学式(定電位電解式)
ガスセンサに属するものである。絶縁性材料で形成され
たセンサボディ20は、その底部に開口22をもち、そ
の開口22が疎水性多孔質膜の隔膜24で閉じられてい
る。センサボディ内には電解液26として6Mの硫酸が
入れられており、隔膜24上には電解液側に作用極28
が形成されている。作用極28は隔膜24上に蒸着やス
パッタリング法により形成された金薄膜である。電解液
26中には対極30と比較極32が完全に浸漬されて固
定されている。対極30及び比較極32は白金ブラック
でコーティングされている。
FIG. 1 shows an electrochemical odorant sensor as one embodiment. This example is of the electrochemical type (potential electrolysis type)
It belongs to a gas sensor. The sensor body 20 formed of an insulating material has an opening 22 at the bottom, and the opening 22 is closed by a hydrophobic porous membrane 24. 6 M sulfuric acid is contained in the sensor body as an electrolyte 26, and a working electrode 28 is provided on the diaphragm 24 on the electrolyte side.
Are formed. The working electrode 28 is a gold thin film formed on the diaphragm 24 by vapor deposition or sputtering. The counter electrode 30 and the comparison electrode 32 are completely immersed and fixed in the electrolytic solution 26. The counter electrode 30 and the comparison electrode 32 are coated with platinum black.

【0010】センサボディ20内には電解液26上に空
気層34が設けられており、空気層34は内圧調整口3
6の疎水性薄膜を介して大気とつながっている。その結
果、温度が変化してもセンサボディ20内の圧力は変化
しない。センサボディの中心部には作用極28を固定す
るために中ジャケット38が配置され、中ジャケット3
8の中心部を通って作用極のリード線40が外部から作
用極28へと導かれている。リード線40の先端はカー
ボンのシート状集電体42により作用極28に押しつけ
られ、電気的接触が保たれている。中ジャケット38の
中心部にはサーミスタ82が設けられており、そのサー
ミスタ82、作用極28、対極30及び比較極32のそ
れぞれのリード線が電解液26と隔離された位置に設け
られたプリアンプ84に接続されている。
In the sensor body 20, an air layer 34 is provided on the electrolyte 26, and the air layer 34
6, and is connected to the atmosphere via a hydrophobic thin film. As a result, even if the temperature changes, the pressure in the sensor body 20 does not change. A middle jacket 38 is disposed at the center of the sensor body to fix the working electrode 28,
A working electrode lead wire 40 is guided from the outside to the working electrode 28 through the central portion of the working electrode 8. The distal end of the lead wire 40 is pressed against the working electrode 28 by a carbon sheet-like current collector 42 to maintain electrical contact. A thermistor 82 is provided at the center of the middle jacket 38, and a preamplifier 84 is provided at a position where the leads of the thermistor 82, the working electrode 28, the counter electrode 30, and the comparison electrode 32 are separated from the electrolyte 26. It is connected to the.

【0011】リード線40を介して作用極28に電圧を
印加し、比較極32の電位を基準として作用極28の電
位を一定に保つ。開口22から隔膜24を介して作用極
28にTBM及びDMSを接触させると、TBM及びD
MSの酸化還元反応が選択的に進行する。そのときに出
力される酸化還元電流をプリアンプ84により増幅して
測定することによってTBM及びDMSの濃度を定量す
る。
A voltage is applied to the working electrode 28 via the lead wire 40, and the potential of the working electrode 28 is kept constant with reference to the potential of the comparison electrode 32. When TBM and DMS are brought into contact with the working electrode 28 from the opening 22 through the diaphragm 24, the TBM and DMS
The redox reaction of MS proceeds selectively. The concentration of TBM and DMS is quantified by amplifying and measuring the redox current output at that time by the preamplifier 84.

【0012】この実施例を用いてTBM及びDMSの電
気化学的特性を調べた結果を図2に示す。図2は、作用
極28の設定電位を−0.2V〜0.4Vの範囲で変化
させて、窒素中に等濃度のTBMとDMSをそれぞれ含
む試料を測定したときの、作用極28と対極30間の電
流値を表す図であり、(A)中の破線はTBMを測定し
たもの、(B)中の破線はDMSを測定したものであ
る。それぞれの実線は窒素のみを測定したものである。
横軸は設定電位(V)を表し、縦軸は電流値(μA)を
表す。窒素測定時の電流値とTBM又はDMS測定時の
電流値の差が出力値となる。図2(A),(B)から、
TBM、DMSともに設定電位が−0.1V〜0.4V
の範囲で酸化還元反応を生ずることがわかる。
FIG. 2 shows the result of examining the electrochemical characteristics of TBM and DMS using this example. FIG. 2 shows the working electrode 28 and the counter electrode when changing the set potential of the working electrode 28 in the range of -0.2 V to 0.4 V and measuring a sample containing TBM and DMS at the same concentration in nitrogen. It is a figure showing the electric current value between 30. The broken line in (A) measured TBM, and the broken line in (B) measured DMS. Each solid line is obtained by measuring only nitrogen.
The horizontal axis represents the set potential (V), and the vertical axis represents the current value (μA). The difference between the current value when measuring nitrogen and the current value when measuring TBM or DMS is the output value. From FIGS. 2A and 2B,
Set potential of -0.1V to 0.4V for both TBM and DMS
It can be seen that an oxidation-reduction reaction occurs within the range.

【0013】図3は、設定電位を−0.1V〜0.4V
の範囲でTBM又はDMSを測定したときの、濃度換算
した測定値(濃度)と既知の試料ガス濃度の相関(直線
性)を表す図である。横軸は試料ガス濃度(ppm)、
縦軸は測定値(ppm)である。図3において、TB
M、DMSともに高い直線性をもつので、この実施例を
TBM、DMSの定量に用いることができる。
FIG. 3 shows that the set potential is between -0.1 V and 0.4 V.
FIG. 6 is a diagram showing a correlation (linearity) between a measured value (concentration) converted into a concentration and a known sample gas concentration when TBM or DMS is measured in the range of FIG. The horizontal axis is the sample gas concentration (ppm),
The vertical axis is the measured value (ppm). In FIG. 3, TB
Since both M and DMS have high linearity, this example can be used for the quantification of TBM and DMS.

【0014】また、図2から、設定電位が−60mV〜
0Vのときに、TBMの出力値とDMSの出力値がほぼ
等しいことがわかる。図4は、設定電位を−60mVと
して、濃度がほぼ同じTBM及びDMSを測定したとき
のTBMの出力値ピークとDMSの出力値ピークを表す
図である。測定したDMSの濃度は8.93ppm、T
BMの濃度は8.97ppmであった。この設定電位
で、TBMの感度とDMSの感度がほぼ等しいことがわ
かる。TBMの感度とDMSの感度を等しくすることに
より、燃料用ガス中に含まれるTBMとDMSの合計の
濃度を測定することができる。
FIG. 2 shows that the set potential is -60 mV or more.
It can be seen that at 0 V, the output value of the TBM is almost equal to the output value of the DMS. FIG. 4 is a diagram showing the TBM output value peak and the DMS output value peak when measuring the TBM and DMS having substantially the same concentration with the set potential being −60 mV. The measured DMS concentration was 8.93 ppm, T
The concentration of BM was 8.97 ppm. It can be seen that the TBM sensitivity and the DMS sensitivity are almost equal at this set potential. By making the sensitivity of TBM equal to that of DMS, the total concentration of TBM and DMS contained in the fuel gas can be measured.

【0015】この実施例では、燃焼や分離などの前処理
を行なわずに、燃料用ガス中のTBM及びDMSを直接
測定できるので、簡便かつ迅速に測定することができ、
燃料用ガス製造時のモニタリングに好都合である。電気
化学式ガスセンサを用いた付臭剤センサは、この実施例
に限られるものではなく、他の形式の電気化学ガスセン
サも利用することができる。
In this embodiment, the TBM and DMS in the fuel gas can be directly measured without performing pretreatment such as combustion and separation, so that the measurement can be performed simply and quickly.
This is convenient for monitoring during fuel gas production. The odorant sensor using the electrochemical gas sensor is not limited to this embodiment, and other types of electrochemical gas sensors can be used.

【0016】また、従来の燃焼式ガス漏れセンサは、ガ
ス漏れ以外の炭化水素や炭素化合物に反応して誤作動す
ることがある。ガス漏れセンサにはppb程度の低濃度
検知が求められるので、TBM及びDMSに対する電気
化学式ガスセンサの感度を向上させると、TBMやDM
Sを検知するガス漏れセンサとして応用することができ
る。
Further, the conventional combustion type gas leak sensor sometimes malfunctions in response to hydrocarbons or carbon compounds other than the gas leak. Since the gas leak sensor is required to detect a low concentration of about ppb, if the sensitivity of the electrochemical gas sensor to TBM and DMS is improved, TBM or DM
It can be applied as a gas leak sensor for detecting S.

【0017】[0017]

【発明の効果】本発明の電気化学式付臭剤センサでは、
TBMとDMSに等感度で応答するように作用極の電位
が一定に保たれ、対極と作用極間の電流により被検ガス
中のTBMとDMSの合計の濃度を測定するので、燃焼
や分離などの前処理を行なわずに、燃料用ガス中のTB
M及びDMSを直接測定できるので、簡便かつ迅速に測
定することができる。さらに、電気化学式ガスセンサ
は、ガスクロマトグラフィー装置や燃焼−NDIR装置
に比べて安価なので、低コストにて付臭剤センサを提供
することができる。
According to the electrochemical odorant sensor of the present invention,
The potential of the working electrode is kept constant so that it responds to TBM and DMS with equal sensitivity, and the total concentration of TBM and DMS in the test gas is measured by the current between the counter electrode and working electrode. Of TB in fuel gas without pretreatment
Since M and DMS can be measured directly, they can be measured simply and quickly. Further, since the electrochemical gas sensor is inexpensive as compared with a gas chromatography device or a combustion-NDIR device, an odorant sensor can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施例を表す断面図である。FIG. 1 is a cross-sectional view illustrating one embodiment.

【図2】 作用極の設定電位を−0.2V〜0.4Vの
範囲で変化させて、TBM又はDMSを測定したとき
の、作用極と対極間の電流値を表す図であり、(A)は
TBMを測定したもの、(B)はDMSを測定したもの
である。
FIG. 2 is a diagram showing a current value between a working electrode and a counter electrode when a TBM or DMS is measured by changing a set potential of a working electrode in a range of −0.2 V to 0.4 V; ) Shows the result of measuring TBM, and (B) shows the result of measuring DMS.

【図3】 設定電位を−0.1V〜0.4Vの範囲でT
BM又はDMSを測定したときの、濃度換算した測定値
(濃度)と試料ガス濃度の相関(直線性)を表す図であ
る。
FIG. 3 shows that the set potential is T in a range of -0.1V to 0.4V.
FIG. 7 is a diagram illustrating a correlation (linearity) between a measured value (concentration) converted into a concentration and a sample gas concentration when BM or DMS is measured.

【図4】 設定電位を−60mVとして、濃度がほぼ等
しいTBM及びDMSを測定したときのTBMの出力値
ピークとDMSの出力値ピークを表す図である。
FIG. 4 is a diagram showing a TBM output value peak and a DMS output value peak when measuring a TBM and a DMS having substantially the same concentration with a set potential of −60 mV.

【符号の説明】[Explanation of symbols]

20 センサボディ 22 底部の開口 24 疎水性多孔質膜の隔膜 26 電解液 28 作用極 30 対極 32 比較極 34 空気層 36 内圧調整口 38 中ジャケット 40 作用極のリード線 42 カーボンシート DESCRIPTION OF SYMBOLS 20 Sensor body 22 Bottom opening 24 Hydrophobic porous membrane diaphragm 26 Electrolyte 28 Working electrode 30 Counter electrode 32 Comparative electrode 34 Air layer 36 Internal pressure adjusting port 38 Middle jacket 40 Working electrode lead wire 42 Carbon sheet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料用ガス中に付臭剤として添加される
ターシャリーブチルメルカプタン及びジメチルサルファ
イドの濃度を測定する付臭剤センサであって、 電解液が充填されたセンサボディで、前記電解液と被検
ガスとの接触面にガス透過性隔膜が設けられ、前記隔膜
の前記電解液側には作用極が形成され、前記作用極に対
し前記電解液を介して対極と比較極が配置され、ターシ
ャリーブチルメルカプタンとジメチルサルファイドに等
感度で応答するように前記作用極の電位が−0.1V〜
0.4Vの範囲で一定に保たれ、前記対極と前記作用極
間の電流により被検ガス中のターシャリーブチルメルカ
プタンとジメチルサルファイドの合計の濃度を測定する
ことを特徴とする電気化学式付臭剤センサ。
1. An odorant sensor for measuring the concentration of tertiary butyl mercaptan and dimethyl sulfide added as an odorant to a fuel gas, wherein the sensor body is filled with an electrolyte. A gas permeable diaphragm is provided on the contact surface between the sample and the test gas, a working electrode is formed on the electrolyte side of the diaphragm, and a counter electrode and a comparison electrode are disposed with respect to the working electrode via the electrolyte. , The potential of the working electrode is -0.1 V to respond to tertiary butyl mercaptan and dimethyl sulfide with equal sensitivity.
An electrochemical odorant which is kept constant within a range of 0.4 V and measures the total concentration of tertiary butyl mercaptan and dimethyl sulfide in the test gas by the current between the counter electrode and the working electrode. Sensor.
JP10088168A 1998-03-16 1998-03-16 Electrochemical odorant sensor Pending JPH11258199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088168A JPH11258199A (en) 1998-03-16 1998-03-16 Electrochemical odorant sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088168A JPH11258199A (en) 1998-03-16 1998-03-16 Electrochemical odorant sensor

Publications (1)

Publication Number Publication Date
JPH11258199A true JPH11258199A (en) 1999-09-24

Family

ID=13935398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088168A Pending JPH11258199A (en) 1998-03-16 1998-03-16 Electrochemical odorant sensor

Country Status (1)

Country Link
JP (1) JPH11258199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004350A1 (en) * 2005-07-05 2007-01-11 Gs Yuasa Corporation Electrochemical gas sensor and process for producing the same
WO2018207879A1 (en) * 2017-05-10 2018-11-15 株式会社ユーグレナ Method for evaluating sulfur compound-containing substance, and method for quantifying volatile low molecular weight sulfur compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004350A1 (en) * 2005-07-05 2007-01-11 Gs Yuasa Corporation Electrochemical gas sensor and process for producing the same
JP4835436B2 (en) * 2005-07-05 2011-12-14 株式会社Gsユアサ Electrochemical gas sensor and manufacturing method thereof
WO2018207879A1 (en) * 2017-05-10 2018-11-15 株式会社ユーグレナ Method for evaluating sulfur compound-containing substance, and method for quantifying volatile low molecular weight sulfur compound
JP6426329B1 (en) * 2017-05-10 2018-11-21 株式会社ユーグレナ Method of evaluating sulfur compound-containing substance and method of determining volatile low molecular weight sulfur compound

Similar Documents

Publication Publication Date Title
US20070181444A1 (en) Nitric oxide sensor
Wan et al. Rapid measurement of room temperature ionic liquid electrochemical gas sensor using transient double potential amperometry
US4828673A (en) Apparatus for measuring combustible gas concentration in flue gas
US5733436A (en) Method for determining the state of an electrochemical gas sensor
US20220136994A1 (en) Apparatus, method and sensor for measuring gas concentration
US3824168A (en) Gas detecting and quantitative measuring device
US5608154A (en) Carbon monoxide sensor
Dixon et al. The control and measurement of ‘CO2’during fermentations
US20120006692A1 (en) Solid electrolyte gas sensor for measuring various gas species
US4948496A (en) Gas sensor
US4152233A (en) Apparatus for electrochemical gas detection and measurement
US5635627A (en) Carbon monoxide sensor having mercury doped electrodes
CA2225334A1 (en) Co gas sensor and method of measuring the concentration of co gas
US5720870A (en) Determining gas concentration
US11486846B2 (en) Method and device for analyzing a gas
US4952300A (en) Multiparameter analytical electrode structure and method of measurement
US4333810A (en) Analyzer for chemical oxidizing or reducing agents
JPH11258199A (en) Electrochemical odorant sensor
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
US4078981A (en) CO2 interference free O2 electrode
CA2366909A1 (en) Device and method for measuring alcohol vapour concentration
Guth et al. Gas sensors
JPH02501162A (en) Electrochemical cell noise reduction method
JP2011141166A (en) Method for diagnosing electrochemical sensor and electrochemical sensor
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents